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 The expanding propensity of organization users to utilize cloud services 

urges to deliver services in a service pool with a variety of functional and 

non-functional attributes from online service providers. brokers of cloud 

services must intense rivalry competing with one another to provide quality 

of service (QoS) enhancements. Such rivalry prompts a troublesome and 

muddled providing composite services on the cloud using a simple service 

selection and composition approach. Therefore, cloud composition is 

considered a non-deterministic polynomial (NP-hard) and economically 

motivated problem. Hence, developing a reliable economic model for 

composition is of tremendous interest and to have importance for the cloud 

consumer. This paper provides “A location-aware deep learning framework 

for improving the QoS-based service composition for cloud consumers”. The 

proposed framework is firstly reducing the dimensions of data. Secondly, it 

applies a combination of the deep learning long short-term memory network 

and particle swarm optimization algorithm additionally to considering the 

location parameter to correctly forecast the QoS provisioned values. Finally, 

it composes the ideal services need to reduce the customer cost function. The 

suggested framework's performance has been demonstrated using a real 

dataset, proving that it superior the current models in terms of prediction and 

composition accuracy. 

Keywords: 

Cloud service composition 

dimensional reduction  

Deep learning 

Location-aware 

Quality of service  

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Alshaimaa M. Mohammed 

Computer Science and Mathematics Department, Faculty of science, Suez Canal University 

Ismailia Governorate, Egypt 

Email: shaimaa_mostafa@science.suez.edu.eg 

 

 

1. INTRODUCTION  

Cloud computing is a network-based system in which information technology and computing 

resources such as hardware, operating systems, storage, networks, databases, and even whole applications are 

conveyed to users as on-demand facilities just through the internet. Cloud computing displays several 

benefits, such as dynamic environment, on-demand services, scalability, yet additionally has several 

challenges that ought to be considered by experts such as privacy and security, virtualization, scheduling, 

resource discovery, reducing the attacks, service discovery, data replication, service recommendation, service 

composition, and selection. Numerous businesses, including Amazon, IBM, Microsoft, and Google offer 

several services for cloud computing [1], [2]. Subsequently, cloud computing offers a pool of on-demand 

computing resources to users to find their needed service(s) that fulfill their request. As per National Institute 

of Standards and Technology (NIST) definition, cloud computing has five essential characteristics:  

on-demand self-service, broad network access, resource pooling, rapid elasticity, and admeasured services. It 

https://creativecommons.org/licenses/by-sa/4.0/
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is deployed according to three deployment models: public, private, and hybrid models. Furthermore, software 

as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS) are the three service 

categories it provides [3], [4]. These services draw in more taking into account scaling up and down, 

dependable resources for high-performance hardware and software, as well as eliminating security risks and 

maintenance costs. Accordingly, numerous organizational leaders and Information technology (IT) 

organizations’ stakeholders have urged moving to cloud computing. 

Over the last few years, with IT improvement, conventional services cannot accomplish the demand 

of users. Henceforth, blending IT and services is commendable for present-day intelligent systems. Users can 

carry out their requirements identified with education, transportation, commerce, social networking, and 

numerous other utility cloud services [3], [5]. The foremost critical objective for users is to effectively utilize 

their requested services for lower operational cost, increasing scalability, improving performance, and 

utilizing their resources in efficient ways. Subsequently, cloud computing has developed to meet users’ 

computing prerequisites by advertising new features designed to enhance the sharing of computing resources 

and applications on demand and based on pay-as-you-go through the internet [2], [6].  

As a result of the presence of complex and diverse services, a single simple service cannot fulfill the 

existing functional requirements for many real-world cases [7]. To complete a complex service, it is essential 

to have a combination of simple services that work with each other. In this manner, there is a strong need to 

embed a cloud service composition system in cloud computing which has pulled in numerous researchers’ 

inspection [8]. Each cloud service has its own quality of service (QoS) parameters like response time, 

throughput and cost which depicts the non-functional attributes of the service. As the quantity of services is 

expanded in the cloud, various services can meet the users’ request functionality. Yet, these services are 

varying in their QoS values. In this way, the service selection decision-making process brings a major 

challenge in the service composition process. Thus, choosing the proper and optimal simple services that 

would be consolidated to provide composite complex services is one of the most important challenges in 

cloud service composition. The cloud service composition problem in cloud computing can be characterized 

as figuring out what atomic simple services ought to be chosen with the acquired complex composite service 

fulfills both the functional and QoS requirements based on the consumer requirements. Considering different 

and plentiful effective parameters and countless simple services provided by many service providers in the 

cloud pool, the problem with cloud service composition is a combinatorial problem of optimization and also 

has been viewed as a non-deterministic polynomial (NP-hard) problem [8].  

Subsequently, cloud service composition is a method for creating with fundamental meta-services 

features for a complicated composite service that satisfies the functional needs of the consumers. It can be 

relatively straightforward if each function’s meta-service is distinct. There is no standalone cloud service, 

which is the fundamental fact of the cloud environment [9]. Likewise cloud computing innovation’s  

pay-as-you-go feature enables service providers to offer their services in a variety of configurations in 

accordance with service level agreements (SLA) [10]. In this way, the increase in the number of meta-

services diverse cloud providers poses a problem. The functional characteristics of these services are similar, 

but their non-functional actions differ (i.e. QoS) [11]. Accordingly, when different functionally overlapping 

services are supplied at different QoS levels, cloud consumers will find it difficult to choose the right 

services. Consequently, there is a pressing demand for cloud service composition models. 

There are more research concerns about solving the problem of selecting the most appropriate 

services for the QoS-based cloud service composition [12], [13]. Notwithstanding, a large portion of this 

research focuses on static QoS values observed during composition time. In practice, QoS varies over time, 

such future variations should be thought about while designing composite services. 

Contrasted with conventional composition of services, composition process is typically focused on 

long-term goals and economics. Conventional techniques for composition that are focused on quality 

typically take the attributes into account when creating the composition [14]. Which composite service, for 

instance, performs the best right now? This is fundamentally different in cloud environments since the cloud 

service composition in these environments is meant to last for a long time. What hybrid cloud service, for 

instance, will perform best in the coming years even though it may not be the greatest one right now? 

Multiple study fields, including multimedia, statistics, and others, frequently use time-series databases. To 

examine economic models successfully and efficiently in cloud computing, numerous methodologies have 

been developed. 

There is now a solution to the composition of the QoS-aware services issue using a number of 

strategies [13], [15], [16]. These methods ignore the volatility in the cloud environment and instead focus on 

service quality at the time of composition, which does not consent to the commonsense circumstances. 

Nowadays, enormous enterprises and with cloud service providers, institutions are typically more eager to 

establish long-term commercial relationships. Be that as it may, the consumers’ actions (i.e., QoS 

specifications) and the effectiveness of the chosen services (i.e., QoS characteristics) are essentially unstable. 

Accordingly, the composite service with the top QoS performance at the moment is not an awesome 
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timeframe. So compared to regular online services, The cloud service composition is thought of as an 

economic strategy based on the long term. Typically, the economic model of a cloud consumer seeks to 

achieve things like increased throughput, decreased reaction times, and low capital costs. We presume that 

QoS features are expressed as a time sequence in this research. The correlation between the QoS 

characteristic and one or more other QoS attributes is possible. In study [17], when the correlation operator 

between QoS attributes is put to the test, it is found that throughput and response time attributes have a very 

significant negative correlation. By taking into account all of the connected time series, the correlation factor 

between QoS characteristics can be used to forecast the time series of certain QoS qualities. The majority of 

QoS-aware prediction models that are currently available do not take the correlations between QoS variables 

into account. Then again, because of economic considerations, enormous companies and organizations 

generally are more able to construct a long-term business relationship with cloud service providers. On the 

other hand, the end user’s requests (i.e., QoS requirements) and the selected services’ performance (i.e., QoS 

attributes) are both fluctuant in practice. Accordingly, the composite service with the best current QoS 

performance is not necessarily the best after a while or is not awesome sometimes. Thus, cloud service 

composition systems provide a value-added service. 

To tackle the problem of composing the best cloud services that cut down on the function of 

consumer costs, this paper’s work provides a location-aware framework based on deep learning for 

improving cloud consumer QoS-based service composition location-aware deep learning-based service 

composition (L-DLSC). This framework is an enhanced framework based on our earlier work [1]. It 

addresses the problem as a multivariate time series analysis. The proposed L-DLSC framework comprises 

three phases. As per the primary phase, the filtration phase is acquainted and applied to select the best-

contributed attributes to reduce the total execution time of learning and composition. In the subsequent phase, 

the long short-term memory (LSTM) network is used to accurately predict future behavior. In the third phase, 

the composition of the service is handled as a multi-objective problem using the particle swarm optimization 

algorithm (PSO) with considering the location between services and the consumer.  

Therefore, this paper’s contribution can be summed up as: i) by combining the deep learning 

network LSTM and the PSO algorithm, a framework to compose services using deep learning-based service 

composition (DLSC) has been improved; ii) to speed up execution, the number of existing characteristics has 

been decreased utilizing an autoencoder (AE) network. When choosing the best composite service to reduce 

latency, the location parameter is taken into account. 

The remaining portions of the essay are structured; the fundamentals of cloud service composition 

are introduced in section 2. The related work is presented in section 3. Section 4 introduces the proposed 

location-aware deep learning-based cloud service composition architecture. Section 5 presents the 

experimental findings. Section 6 presents conclusions and ideas for additional research. 

 

 

2. METHOD 

Utilizing a combination of cloud services is intended to provide value-added services can complete 

demanding tasks for customers. The consumer’s QoS limitations and preferences must be met as one of the 

service composition’s requirements [1]. The choice of the best individual services that must be combined to 

provide value-added composed services is one of the main issues with the service composition challenge 

[18]. Mathematically, the multi-dimensional, multichoice knapsack problem (MMKP), an NP-hard problem, 

can be used to represent the composition of a QoS aware service. As a result, the composite service (CS) 

problem, which was mentioned in our earlier work, may be characterized as being the make-up 

classifications of the essential services (SC), which are depicted by (1) [1]. 

 

𝑆𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑗, … , 𝐶𝑛] (1) 

 

With C stands for a particular a solitary service class, n stands for the necessary quantity classifications of 

individual services, the (2) defines a single service class called 𝐶𝑗. 

 

𝐶𝑗 = {𝑆1, 𝑆2, … , 𝑆𝑓} (2) 

 

Where, the single service class 𝐶𝑗 contains f (f>1) functionally equivalent services with different QoS values. 

So, the quality of SC can be determined using (3). 

 

𝑄𝑜𝑆(𝑆𝐶) = [𝑄𝑜𝑆(𝐶1), 𝑄𝑜𝑆(𝐶2), … , 𝑄𝑜𝑆(𝐶𝑗), … , 𝑄𝑜𝑆(𝐶𝑛)] (3) 
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Finding the best composited services with the best QoS characteristics to satisfy the needs of cloud 

consumers is a clear objective in the selection process. Cost, throughput, and reaction time are taken into 

account as QoS features in this study.  

For the cloud service composition, which regularly changes in accordance with the complex job 

specification and its needs, there have been a number of necessary workflows. Sequential pattern, conditional 

pattern, loop pattern, and parallel pattern are the four fundamental composition patterns (e.g., workflow 

patterns) that can be used to construct a composite service. The aggregation functions of various QoS 

parameters vary often for each composition pattern. Therefore, as stated in our earlier work, Table 1 displays 

the composition pattern and its accompanying aggregated functions. Ought to be taken into consideration to 

specify and assess the general level of the cloud composite service quality as shown in Figure 1 [1], [14], 

[15]. 

 

 

Table 1. Aggregation functions, where k is the number of loop times, p is a probabilistic variable, and n is the 

total number of composing services [19] 
 Cost Response Time Throughput 

Sequential 
∑ 𝑄𝑐𝑜𝑠𝑡(𝑖)

𝑛

𝑖=1
 ∑ 𝑄𝑟𝑡(𝑖)

𝑛

𝑖=1
 

(𝑄𝑡ℎ(𝑖))𝑖=1…𝑛
𝑚𝑖𝑛  

Parallel 
∑ 𝑄𝑐𝑜𝑠𝑡(𝑖)

𝑛

𝑖=1
 

(𝑄𝑟𝑡(𝑖))𝑖=1…𝑛
𝑚𝑎𝑥  (𝑄𝑡ℎ(𝑖))𝑖=1…𝑛

𝑚𝑖𝑛  

Conditional 
∑ (𝑃(𝑖) ∗ 𝑄𝑐𝑜𝑠𝑡(𝑖))

𝑛

𝑖=1
 ∑ (𝑃(𝑖) ∗  𝑄𝑟𝑡(𝑖))

𝑛

𝑖=1
 ∑ (𝑃(𝑖) ∗  𝑄𝑡ℎ(𝑖))

𝑛

𝑖=1
 

Loop K * 𝑄𝑐𝑜𝑠𝑡 (𝑖) K * 𝑄𝑟𝑡 (𝑖) 𝑄𝑡ℎ (𝑖) 

 

 

 
 

Figure 1. Basic composition pattern [20] 

 

 

The best way to solve the composite service problem is to maximize or minimize the vector’s 

component values while maximizing the 𝑄𝑜𝑆𝑡𝑜𝑡𝑎𝑙  (𝑆𝐶) vector. The composing system is unaware of how the 

final composited service will be delivered. will behave over an extended period of time because it has chosen 

the concrete service providers for the composited service. As a result, it is crucial to foresee the long-term 

desires of cloud users, which are illustrated by the economic framework. As opposed to that, economic 

frameworks are described as “theoretical constructs that characterize economic processes by a collection of 

variables and a set of logical and quantitative linkages between them”. The composition of cloud services 

challenge is seen as an optimization issue with multiple objectives to boost reaction times, cut costs, and 

increase throughput [12]. 

The customer’s actualized QoS values within a specific time period t, together with their 

corresponding weights, a scoring feature S indicated using the common weighted score function [4]: 

 

𝑆(𝑡) =  𝑊𝑡ℎ(𝑡) ∗   𝑞𝑡ℎ(𝑡) + 𝑊𝑐𝑜𝑠𝑡(𝑡) ∗   𝑞𝑐𝑜𝑠𝑡(𝑡) +  𝑊𝑟𝑡(𝑡) ∗   𝑞𝑟𝑡(𝑡) (4) 

 

As a result, for the purpose of creating a composite plan, the score function, which is established using, the 

(5) is the total contains all QoS ratings for the full time T. 

 

𝑆(𝑝𝑙𝑎𝑛) =  ∫ 𝑠(𝑡)𝑑𝑡 
𝑇

0
 (5) 
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Since there are numerous cloud infrastructure and software suppliers offering various combinations. 

These mixtures result in different plans. Finding the composing services that maximize S(plan) is the primary 

goal of the cloud service composition. The research presented in this essay suggests a location-aware 

framework based on deep learning to effectively forecast recommended services that optimize the consumer 

objective function in order to increase composition accuracy. 

 

 

3. RELATED WORK  

Problems with the composition of cloud services is split into two groups: both functional and  

non-functional characteristics, or QoS. Consumers can differ in their preferences, requirements, and actions. 

As a result, approaches to composition that are QoS-based, long-term, and location-aware are necessary. 

 

3.1.  QoS cloud service composition 

Asghari et al. [16] have offered an approach for internet of things (IoT) environments for providing 

composite cloud services. This approach classifies the candidate services into four categories based on their 

QoS fitness value and privacy-preserving level. To determine the QoS fitness value for each candidate 

service, an SFLA-GA hybrid algorithm is proposed of genetic algorithm (GA) and shuffled frog leaping 

algorithm (SFLA) based on nine QoS parameters (i.e., availability, response time, reliability, throughput, 

latency, compliance, success ability, documentation, and best practice). These nine parameters are 

normalized and aggregated together to determine the fitness value for each candidate service. On the other 

hand, the privacy level is determined by considering three factors (i.e., sensitivity, delegation depth, and 

retention time). Finally, the candidate service is belonging to one of four categories: low fitness/low privacy 

level, low fitness/high privacy level, high fitness/low privacy level, and high fitness/high privacy level. 

Finally, the authors have supposed that the last category contains the most proper services for the consumers’ 

request. 

In study [13] uses an eagle strategy to develop a QoS-aware cloud service composition. In this 

approach, exploration and exploitation are balanced in order to address problems like poor convergence rate. 

The interdependencies and correlations between cloud services as well as QoS parameters are not taken into 

account by this approach. The authors presumptively used a single repository for all services. As a result, it 

also ignores the necessity to compose services from a variety of service repositories while limiting 

connectivity across the various clouds. An algorithm for QoS-aware cloud service composition based on 

discrete immune fruit fly optimization algorithm (DIFOA) is proposed in [12]. According to this algorithm, 

the initial population is generated which consider as the initial optimal weights for the resultant services from 

Pareto applied on initial candidate services. At that point, it finds an optimal composed service based on user 

preferences attains good fitness value, execution time, and error rate. Since the workflow and concrete 

services were similar in terms of range, the effect of larger variations in the request-workflow pairs is not 

considered in this algorithm. Additionally, it does not consider the different selection matching functions. 

The composition problem is addressed using integer linear programming (ILP) in [21]. It converts 

the restrictions and objectives of the issue into linear equations, which are then solved by modifying a special 

software solver like LPSolve. Surprisingly, as the size of the problem grows, the integer program technique 

requires exponential time. In order to address the time cost shortage issue, the service composition problem is 

solved using a GA, in which each chromosomal gene represents a composite service's abstract service and 

value denotes an applicant services [22]. A strategy based on GA conducts quick seeks to discover almost 

ideal answers. Nevertheless, because it takes into account static levels of QoS at the moment of construction, 

not at all well suited for cloud service composition. 

The matrix factorization of the user-service matrix is used to leverage the predicted future QoS for 

planning the composite service in [23]. The grid of user services is then divided into the sum of the user and 

service matrices using the singular value decomposition method. However, this paradigm has relied on quick 

QoS values. To maximize resource consumption, the network of deep recurrent neurons is how to predict 

future QoS for cloud service providers [15]. It is regarded as having just one QoS feature. As a result, it is 

unable to take into account the relationships among various QoS parameters. 

 

3.2.  Long-term service composition 

The study [15] proposes a deep learning strategy for long-term QoS-based service composition. It 

uses deep recurrent long short-term memories (LSTMs) to predict long-term QoS trends. It provides a 

composition middleware that sends two types of recommendation requests to the long-term QoS compliance 

checker (LQCC); composition and substitution requests. A composition recommendation request includes the 

ID of a potential component along with QoS requirements to LQCC. LQCC requests the QoS prediction 

trend for the component from the QoS predictor. Then, it checks compatibility between the QoS prediction 
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and QoS requirement intervals and returns a composition recommendation to the middleware. A substitution 

recommendation request includes IDs of the services to substitute and potential substitutes to LQCC. LQCC 

obtains the QoS prediction trends for the component to substitute and potential substitute from the QoS 

predictor. Then, it checks whether the two trends are close enough to each other and returns a substitution 

recommendation to LQCC. 

A framework for DLSC was put out in [1]. This framework works by combining both the PSO 

technique and the deep learning LSTM network to forecast the QoS values. The long-term based QoS service 

composition has been formulated in another model as an optimization issue employing meta-heuristic 

methods such as genetic algorithms, annealing, and tabu search [24]. This model shows that only the most 

effective services with the typical long-term QoS are chosen. The relationships among the QoS measures, 

however, have not been taken into account. 

In [25], ARIMA or the auto-regressive integrated moving average model to forecast how service 

requests will behave going forward. It is not appropriate for long-term composition designing because it has 

not collected stochastic request arrivals. In [26] defines a sustained qualitative approach that cloud service 

providers must compile customer requests. It saw the IaaS composition as an optimization problem including 

preferences. 

 

3.3.  Location-aware service composition 

The presentation of a unique location-aware collaborative filtering approach for QoS-based web 

service recommendation in [27]. First, it considers the individual QoS traits of both services and consumers 

to calculate the likeness between them based on using Pearson’s correlation coefficient (PCC). Then, it 

obtains location information of a user including the network and the country according to the users and 

services and finds the similarity between them. Finally, according to the QoS and location similarities, the 

required service is recommended. 

A location-aware service recommendations with privacy-preservation for the internet of things (IoT) 

environment is proposed in [28]. First, the QoS matrix is divided for recommendation decision-making into 

multiple QoS sub-matrices based on service location information. Second, the neighbors of a target user are 

found through a less-sensitive manner according to the QoS sub-matrices and the locality-sensitive hashing 

(LSH) technique. Finally, the appropriate candidate services to the target user are recommended with the help 

of derived neighbors. 

 

 

4. PROPOSED LOCATION-AWARE DEEP LEARNING-BASED SERVICE COMPOSITION 

FRAMEWORK 

Building precise future economic strategies is key to the cloud business’ success. The work in this 

paper describes the introduction of a location-aware framework for the composition of services using  

deep learning L-DLSC based on reducing the space dimensions of the multiple time series and combining the 

PSO and LSTM networks are used to create an economic framework and choose the best service providers 

for the clients. Three phases make up the suggested model’s flowchart as shown in Figure 2. In the sections 

that follow, the phases of the proposed L-DLSC framework will be thoroughly covered. 

 

 

 
 

Figure 2. The suggested structure for service composition 

 

 

4.1.  Data preprocess and reduction phase 

In this phase, the QoS data will be preprocessed and normalized. Then, their dimensions are reduced 

using an autoencoder network. The main goal of this phase is to reduce the execution time required for 

predicting the long-term QoS data.  
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4.1.1. Data preprocess 

As described in our previous work [1], there are three data preprocessing stages used to increase the 

forecasting accuracy. In accordance with the first step, noise is removed from the QoS time series by using 

the wavelet transform. Data normalization is necessary in the second stage and is done by applying (6) to 

scale converting information from the original space to actual numbers between 0 and 1. 

 

𝑦 =
𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
 (6) 

 

Where the observation’s initial value (x) and its new scaled value (y) are represented, respectively, and min 

and max represent the low and high points of the series. At stage three, in order to transform QoS information 

into supervised machine learning form (X, Y), where X represents patterns for input and Y represents patterns 

for output/label, it must first be converted using time-series format, which is a list of observational metrics 

beginning with x1, x2, ..., xn. The shift function in this phase is used to advance and regress the observations 

using the anticipated/next observations and the planned duration of lagged observations (X), (Y). 

 

4.1.2. Dimensionality reduction 

Many dimensionality reduction methods, including the discrete Fourier transform (DFT) and 

singular value decomposition (SVD), have been proposed for the transformation of time series data [29], 

principal component analysis (PCA) [30], discrete wavelet transform (DWT) [31] and piecewise aggregate 

approximation (PAA) [29]. Time series segmentation is a different method for dimensionality reduction [32]. 

These methods now in use automatically select the amount of hidden variables to be used while also 

identifying hidden variables among n input streams. According to their distributions and correlations, the 

observed values of the hidden variables display the general pattern of various input series. Due to the lack of 

a well-defined similarity measure, these current methods cannot be easily expanded for the tags similarity 

search problem. Most crucially, the relationships between the various time series cannot be handled by 

present techniques. 

Recently, the autoencoder network is widely used for dimension reduction. Autoencoders are simple 

learning networks that aim to transform inputs into outputs with the least possible amount of distortion [33], 

[34]. As shown in Figures 3 and 4, Autoencoders are artificial neural networks (ANN) with symmetric 

structure, where the middle layer represents an encoding of the input data [35]. They are trained to 

reconstruct their input onto the output layer while verifying certain restrictions which prevent them from 

simply copying the data along with the network [36]. Starting with a short code that ignores noise, 

Autoencoders condense the original data. The code is then uncompressed to create an image that is as near to 

the original input as feasible. According to the work in this paper, the Autoencoder network has been 

constructed to reduce the search dimensions. 

 

 

 
 

Figure 3. The autoencoder network [34] 
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Figure 4. visualization description of autoencoder [37] 

 

 

4.2.  Long term prediction 

In our earlier work [1], we showed how extended sequences may be learned and predicted using 

LSTM. The forget gate, input gate, update gate, and output gate are the four components that make up an 

LSTM memory cell [26]. These gates regulate the interactions between memory cells that are close to one 

another as well as the memory cell itself. The status of the cell is compared to a conveyor. The unrolled 

LSTM network and the method for updating each gate value are shown in Figure 5. Where, at time t, the 

memory cell’s input vector (xt) and output result (ht) are, respectively, the input vector and result. The input 

gate’s it, forget gate’s ft, and output gate’s ot values, respectively, are those at time t. it, ft and ot are the values 

of the input gate, the forget gate, and the output gate at time t, respectively. The memory cell’s potential state 

at time t is denoted by ̃Ct. 

According to our experiments, the layer LSTM, the layer’s density and dropout procedure make up 

the majority of the prediction model architecture as shown in Figure 6. First, input matrices comprised of 

four lagged the LSTM layer receives four next values/look ahead values in addition to values for each QoS 

attribute (X) (Y). The dropout technique is then used on the output of the LSTM layer to avoid over-fitting the 

DLSC prediction model. The dense layer, a neural network (NN) that is fully linked and has a linear 

activation function, is where the output from the dropout process passes after that. MSE is then determined as 

the loss function. The “Adam” optimizer is used to optimize the model parameters in order to minimize the 

loss function. The dropout parameter is adjusted to 0.2 following extensive studies to determine the optimal 

way to train the network and obtain the best generalization scenario. The network will not exist without the 

dropout. 

 

 

  
  

Figure 5. LSTM cell [26] Figure 6. Flow chart of the L-DLSC prediction 

model 

 

 

4.3.  Location-aware service composition 

Location is a crucial factor for recommendation of decision making where the QoS often depends 

heavily on the user locations or service locations. For example, a user in Australia may access a web service 

hosted in Australia very quickly, but it is very slow to access a web service hosted in China [27]. Therefore, 

location is a crucial factor that impacts the accuracy of composition results and the satisfaction of the user. 

In this paper, the Haversine formula has been used to calculate the location factor [38]. The 

haversine formula determines the great-circle distance between two points on a sphere given their longitudes 

and latitudes. The law of haversines is important in navigation; it is a special case of a more general formula 

in spherical trigonometry, which relates the sides and angles of spherical triangles. Therefore, the haversine 

formula is considered an accurate way of computing distances between two points on the surface of a sphere 
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using the latitude and longitude of the two points. The haversine formula is a re-formulation of the spherical 

law of cosines, but the formulation in terms of haversines is more useful for small angles and distances. 

 

ℎ𝑎𝑣(𝜃) =  𝑠𝑖𝑛2  (
𝜃

2
) =  

1−cos (𝜃)

2
 (7) 

 

Where, θ is the central angle between any two points on a sphere, such that, θ=d/r, d is the distance between 

the two points along a great circle of the sphere, r is the radius of the sphere. Therefore, during the 

composition process using the PSO algorithm, the distance of the candidate services is determined using the 

haversine formula as illustrated in the following algorithm [39]. 

 

Algorithm. Calculate distance 
Inputs: 

1. Lat1: customer location latitude in decimal 
2. lon1: customer location longitude in decimal 
3. lat2: candidate cloud service location latitude in decimal 
4. lon2: candidate cloud service location latitude in decimal 
Output: distance: distance between the customer and the candidate cloud service 

R=6373 // radius of Earth 

Convert Lat1,lon1,lat2, lon2 into degrees 

dlon= lon2-lon1 //change in coordinates 

dlat= lat2-lat1 

//Haversine formula 

a= math.sin(dlat/2)2+ math.cos(lat1)*math.cos(lat2)*math.sin(dlon/2)2 

C=2 * math.atan2(𝑚𝑎𝑡ℎ. 𝑠𝑞𝑟𝑡(𝑎), 𝑚𝑎𝑡ℎ. 𝑠𝑞𝑟𝑡(1 − 𝑎))      
distance=R*c 

Return distance 

 

The services with a high distance value from the client are penalized under our methodology. The 

following is a possible way to represent a penalty on service x in a certain candidate plan. 

 

Penalty(X) = 1 −
distance(X)

∑ distance(xi)n
i=1

  (8) 

 

Therefore, the objective function of this candidate plan is determined over the entire anticipated period T, 

written as (9). 

 

F(objective)=max
 

{ (∫ s(t)dt ))
T

0
∗ ∏ Penalty(xi

n
i=1 }  (9) 

 

In a candidate constructed service plan, n denotes the total number of cloud services that are engaged. 

 

 

5. RESULTS AND DISCUSSION 

Several tests are conducted and contrasted with the existing framework in [16] and the earlier 

framework provided in [1]. These tests are using the same environment setting in order to evaluate the 

performance of the proposed service composition (L-DLSC) framework. The tests are being conducted on a 

PC with a 2.80 GHz processor, 8.0 GB of RAM, and Windows 10 and Python 3.7 installed.  

 

5.1.  Data description 

During our experiments, we adopted a popular real-world web service dataset, the web services 

(WS-Dream) dataset [40]. This data set includes 339 users (from 31 countries) and 5825 services (hosted in 

74 countries), as well as a historical time series QoS data for 100 cloud service providers, response time, 

throughput, and cost metrics were gathered over the course of six months as 28 time slots [41]. The WS-

Dream dataset is used to conduct the IoT-existing framework while the later QoS dataset is used in our 

previous framework. Here, all experiments are conducted using WS-Dream after adding cost attribute using 

the same strategy as in [41]. 

 

5.2.  Execution time 

Figure 7 shows the comparison results among the proposed service composition L-DLSC 

framework, the existing IoT framework in [16], and the previous DLSC framework given in [1] concerning 

the execution time parameter. To conduct the cost-time analysis, Figure 7 highlights the value of time is 

growing by increasing the quantity of composing services. Nevertheless, the current IoT framework [16] 

https://en.wikipedia.org/wiki/Central_angle
https://en.wikipedia.org/wiki/Great_circle
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whose execution duration is the longest in comparison to our proposed L-DLSC framework due to the 

exhaustive task of decomposing the QoS-matrix into sub-matrices based on the user location then building 

user indices based on the similarity measures between the user and the candidates’ services. Concerning the 

proposed L-DLSC framework, a suitable penalty on the long distances between the candidate services and 

the user is needed to locate the top writing services at a fair price. The typical time required to discover the 

ideal composition plan using the proposed L-DLSC framework 50% more is added in comparison to our 

previous DLSC framework, while the time cost of the IoT Composition framework is increased by 96% 

relative to our previous DLSC framework. Therefore, according to the output of these experiments, the 

proposed L-DLSC framework achieves significantly improved results for the time cost. 

 

5.3.  Optimality 

In Figure 8, the values of the objective function in relation to the number of iterations are shown. 

According to the results given in Figure 8, it is clear that our proposed L-DLSC framework converges faster 

than the others, after which the current IoT framework [16]. Comparing our suggested L-DLSC framework to 

the prior DLSC framework presented in [1], the average best objective F score is raised by 44%. Although 

the average optimal objective F value utilizing the current IoT framework is higher than the proposed  

L-DLSC framework by 32%. This is due to the proposed L-DLSC framework lessens the services’ weight 

which with a high distance from the customer, while increases the weight for the services which have a low 

distance from the customer. On the other hand, the existing IoT framework searches about the most similar 

ones to find the excellent services came from the decomposed matrices that are considered a pricey 

procedure. Besides, this proposed L-DLSC framework converges faster with higher composition values than 

the previous DLSC framework presented in [1]. 

 

 

  
  

Figure 7. Execution time comparison Figure 8. Optimality comparison 

 

 

5.4.  Effect of dimensional reduction 

According to the proposed L-DLSC framework, the first aim is to reduce the dimensions of the 

composition problem. Therefore, the autoencoder network is added to perform this task. Figure 9 shows the 

effect of adding the autoencoder network. According to Figure 9, the accuracy of the long-term prediction 

process is compared after and before adding the autoencoder process in terms of the root mean squared error 

(RMSE) where smaller RMSE means better performance. According to the results in Figure 9, it is found that 

adding the autoencoder network significantly affects both the accuracy and the time required. Also, the 

prediction error has been reduced to 17% after adding the autoencoder due to capturing the most important 

features. 

 

5.5.  Effect of composing services aware of customer location 

Figure 10 shows the comparison between our proposed L-DLSC framework and the previous DLSC 

framework in [1]. The comparison is done after adding the location parameter to pick the best service. As 

stated by findings in Figure 10, which demonstrate that the typical best objective F value using the new 

proposed L-DLSC framework is increased by 44% relative to the previous DLSC framework in [1]. 

 

5.6.  Composition output 

The output of the suggested L-DLSC framework, or the best composition services, is shown in 

Figure 11, where each number in the matrix corresponds to a service ID. Additionally, based on their 

functional requirements, the impact for the average whole dataset using the DLSC framework is divided into 
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three groups. Additionally, a straightforward design for service composition is taken into account, utilizing 

three service classes that are continuously running throughout four periods to create the composite service. 

 

 

 
 

Figure 9. Effect of adding autoencoder 

 

 

 
 

Figure 10. Effect of the location parameter 

 

 

 
 

Figure 11. Composition output 

 

 

6. CONCLUSION AND FUTURE WORK 

To reliably recommend cloud services based on QoS features, the location-aware framework for 

service composition based on deep learning (L-DLSC) is presented in this work. First, by lowering the 

dimensionality of the data, the Autoencoder network has been employed to narrow the search space. Then, a 

combination of the deep learning LSTM network and PSO algorithm is used to solve multi-objective 

problems while also leveraging the strength of the LSTM network when keeping track of time series' 

multivariate QoS characteristics dependencies. Last but not least, the location factor has been taken into 

account when choosing the best composite services. We may infer from the trials that have been done that 

our suggested L-DLSC architecture significantly improves the outcomes in the cloud service composition 

environment. Our proposed framework will be enhanced in the future by the inclusion of new elements like 

security and privacy in the cloud composition issue. 
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