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 In recent years, there has been a strong demand for self-driving cars. For 

safe navigation, self-driving cars need both precise localization and robust 

mapping. While global navigation satellite system (GNSS) can be used to 

locate vehicles, it has some limitations, such as satellite signal absence 

(tunnels and caves), which restrict its use in urban scenarios. Simultaneous 

localization and mapping (SLAM) are an excellent solution for identifying a 

vehicle’s position while at the same time constructing a representation of the 

environment. SLAM-based visual and light detection and ranging (LIDAR) 

refer to using cameras and LIDAR as source of external information. This 

paper presents an implementation of SLAM algorithm for building a map of 

environment and obtaining car’s trajectory using LIDAR scans. A detailed 

overview of current visual and LIDAR SLAM approaches has also been 

provided and discussed. Simulation results referred to LIDAR scans indicate 

that SLAM is convenient and helpful in localization and mapping. 
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1. INTRODUCTION  

Self-driving cars are regarded as the next big thing, benefiting from intelligent transportation 

systems, smart cities, internet of things (IoT), and new technologies such as machine learning. At present, 

automotive industry has contributed towards innovation and economic growth. Navigation for autonomous 

driving vehicles is a very active research area [1], [2]. In order to ensure efficiency and safety of traffic 

systems that rely on driving strategies [3], researchers around the world are concentrating their efforts on 

advancement of this subject [4]. In this context, defense advanced research projects agency (DARPA) has 

been regularly organizing a grand challenge of autonomous [5]. 

One of the most important criteria for autonomous navigation is an accurate localization of the car 

itself. Global navigation satellite system (GNSS) is the most used localization system, providing absolute 

positioning with high accuracy [6]. However, in special conditions such as multi-path effect and latency, 

restrict its use [7]. 

Only by representing environment using different kinds of sensors would robots be able to navigate 

in these conditions. The process of representing environment or constructing a map and estimating position 

of a car simultaneously called simultaneous localization and mapping (SLAM) [8]. SLAM is a solution for 

several applications, including self-driving cars [9], mobile robots [10], unmanned aerial vehicles (UAV) 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Visual and light detection and ranging-based simultaneous localization and … (El Farnane Abdelhafid) 

6285 

[11], and autonomous underwater vehicles [12]. Many SLAM techniques for self-driving cars are discussed 

in literature [13]. Liu and Miura [14] presented an ORB-SLAM-based visual dynamic SLAM algorithm for 

real-time tracking and mapping. In dynamic indoor environments, results show that the algorithm is efficient 

and accurate. Wang et al. [15] proposed a robust multi-lidar for self-localization and mapping problems. 

According to the authors, the suggested solution produced better results than single lidar approaches. In this 

paper, after surveying and discussing the approaches of SLAM-based cameras and light detection and 

ranging (LIDAR), we focused on SLAM using LIDAR sensors in order to create a map of an environment 

and locate the pose of a self-driving car.  

The remainder of this paper is structured: section 2 discusses sensors for perception and localization. 

Techniques based on LIDAR and cameras for localization are also presented. Section 3 shows results 

obtained by implementation of SLAM algorithm. Finally, section 4 concludes by discussing future 

orientations and remaining challenges.  

 

 

2. METHOD 

2.1.  Sensors based localization 

Localization and mapping are the most important requirements for self-driving cars. Car needs to 

know where it is as well as its environment at all times and in any conditions. Car must be able to localize 

itself and generate a map of its surroundings called a “local map”. Map obtained by global positioning system 

(GPS) is insufficient because the environment is extremely dynamic. As a result, creating a local map and 

integrating it with the global map is required for more accurate navigation. Several sensors used for 

localization are presented below, as well as a synthesis of techniques based on cameras and Lidar. 

 

2.1.1. Sensors of perception 

In self-driving cars, perception frameworks can detect and interpret surrounding environment 

dependent on different sorts of sensors. Sensors are extensively ordered into two sorts, depending on what 

property they record. They are exteroceptive if they record an environmental property. Then again, if sensors 

record a property of ego vehicle, they are proprioceptive. Classification and characteristics of sensors used in 

perception are shown in Table 1. 

 

 

Table 1. Sensors of perception 
Sensors Camera LIDAR Radar Ultrasonic GNSS/IMU Odometry 

Role Essential for  

correctly 

perceiving 
environment 

Detailed 3D 

scene geometry 
Object detection 

and relative 

speed estimation 

Short-range all-

weather distance 

measurement. 
Unaffected by 

lighting. 

Measure of ego 

vehicle states 
Tracks wheel 

and calculate 

overall speed 
and orientation 

Characteristics Resolution 
Field of view 

Dynamic 

range 

Number of beams 
Points per second 

Rotation rate 

Field of view 

Range 
field of view 

accuracy 

Range 
Field of view 

Cost 

  

Type Exteroceptive Exteroceptive Exteroceptive Exteroceptive Proprioceptive Proprioceptive 

 

 

2.1.2. Camera-based localization 

There are several localization techniques presented in literature that use only cameras [16], [17] or 

integration of camera [18] to improve performance of these techniques. Suhr et al. [19] proposed, in urban 

environments, using GPS/IMU for global positioning and camera for recognition of road markers as well as 

lane markers to find both lateral and longitudinal positioning. Authors noted that this technique gives, in one 

of 5 experiments, lateral errors of 0.49 m, longitudinal errors of 0.95 m and 1.18 m Euclidean error on 

average. Li et al. [20] suggested, in urban environments also, a vision-based localization approach using only 

cameras. Hybrid method combines a topological map to estimate a global position with a metric map to find 

a fine localization. Authors noted that this low-cost approach gives mean positioning errors of 0.75 m. 

 

2.1.3. LIDAR-based localization 

LIDAR is another important sensor which is able to improve localization performance for  

self-driving cars. It scans the surrounding environment and generates multiple points to build a 3D map using 

light detection and ranging. LIDAR is known to offer precise and robust measurements of the environment. 

Because it is expensive compared to other sensors, LIDAR is employed only to build map, and camera is 

utilized to localize vehicle. 
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Wolcott and Eustice [21] suggested a generic probabilistic localization method based on a 3D 

LIDAR scanner. This technique models world as a fast and exact multiresolution map of a mixture of 

Gaussians. Gaussian mixture maps for localization were evaluated on two autonomous vehicles, in adverse 

weather conditions, and resulted in longitudinal and lateral RMS errors below 0.1 m and 0.13 m, 

respectively. Hata and Wolf [22] proposed, in the urban environment, a method based on multilayer LIDAR 

to estimate the vehicle localization using map of environment created by LIDAR sensor. Authors noted that 

this proposed approach gives longitudinal, lateral and angular errors of 0.1395 m, 0.204 m and 0.019 rad, 

respectively. 

 

2.1.4. Summary 

Camera-based localization solutions provide excellent performance. Error is caused by a low-

textured environment or sensitivity to light changes, which is the biggest drawback of this solution. Finally, 

image processing necessitates a high level of computational complexity. LIDAR, on the other hand, is known 

for its ease of use and accuracy. To take advantage of benefits of each sensor, several techniques use sensor 

fusion as we will see in the next chapter. Table 2 summarizes camera and LIDAR based localization. 

 

 

Table 2. Summary of camera and LIDAR based localization 
 Study Accuracy 

Camera-based localization [19] Longitudinal error 0.95 m 
Lateral error 0.49 m 

Euclidean error 1.18 m 

[20] Positioning error of 0.75 m 
Lidar-based localization [21] Longitudinal error 0.1 m 

Lateral error 0.13 m 

[22] Longitudinal error 0.1395 m 
Lateral error 0.204 m 

Angular error 0.019 rad 

 

 

2.2.  Vision and LIDAR based SLAM 

2.2.1. Principe of SLAM 

SLAM is a technique for simultaneously creating an online map and locating a car on it. It is a 

common practice in self-driving cars that works effectively in both indoor and outdoor environments and 

performs well [23]. But it remains less efficient than prebuilt map localization due to high environmental 

challenges, such as high speed and a large number of dynamic vehicles [24]. 

 

2.2.2. Probabilistic modeling of the SLAM problem 

In order to model the SLAM problem, we consider a vehicle moving through an unknown 

environment, as given in Figure 1. The idea is to use a graph to model the SLAM problem, which includes 

the position xt of the robot as well as map landmarks mi. Lines connecting positions represent the trajectory 

of the robot, and arrows represent the distance to landmarks. The position data is obtained by proprioceptive 

sensors mounted on the robot. Furthermore, landmarks are extracted from the environment using 

proprioceptive sensors such as LIDAR. 

 

 

 
 

Figure 1. Basic idea of SLAM 
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At time 𝑡 we define the following quantities: 𝑥𝑡 is state vector that represents a vehicle; ut is control 

vector applied at 𝑡 − 1 to drive vehicle to xt; mi is vector representing ith landmark; 𝑧𝑡,𝑖 is observation of ith 

landmark. Assuming that duration between two successive positions is constant and equal to 𝑇, the instant 𝑡 
becomes 𝑘𝑇. To simplify calculations, we will use index 𝑘𝑇 = 𝑘. Then, from time 0 to kT, the following sets 

are defined: 

− X0:k = {x0, x1, … , xk}: set of vehicle locations;  

− U0:k = {u0, u1, … , uk}: set of control inputs; 

− Z0:k = {z0, z1, … , zk}: set of observations;  

− M = {m1, m2, … ,mk}: set of landmarks or maps. 

a) Modeling of localization 

Problem of localization consists of calculating a vehicle’s position in a given environment using 

environmental data such as observation and command history [25]. This problem is represented by estimation 

of probability distribution.  

 

P(xk|Z0:k, U0:k, M) 
 

This formulation, which represents global localization, uses all of data from history of observations and 

commands. This gives an accurate estimation of position, but it substantially complicates the calculations. To 

simplify computational complexity, we estimate position at time kT using only data from time (k − 1)T. 

This is local localization represented by:  

 

P(xk|zk−1, uk−1, xk−1, M) 
 

Implementing this model will greatly reduce algorithm’s complexity, but accuracy will degrade as a result. 

b) Modeling of mapping 

Process of building an environment map using sensor data and history of real robot placements is 

known as mapping. Mathematically, mapping problem can be modeled. 

 

P(mk|Z0:k, X0:k) 
 

To create a good mapping, robot’s position must be exact and accurate. 

c) Modeling of SLAM 

SLAM’s probabilistic modeling necessitates determination of the probability quantity at each time 

step. 

 

P(xk, M|Z0:k, U0:k, x0) 
 

This calculation is divided into two parts by (1) and (2), describing the position update and the observation 

update, respectively. 

 

𝑃(𝑥𝑘 , 𝑀|𝑍0:𝑘−1, 𝑈0:𝑘 , 𝑥0) = ∫[ 𝑃(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘) ∗ 𝑃(𝑥𝑘−1, 𝑀|𝑍0:𝑘−1, 𝑈0:𝑘−1, 𝑥0)]𝑑𝑥𝑘−1 (1) 

 

𝑃(𝑥𝑘 , 𝑀|𝑍0:𝑘 , 𝑈0:𝑘 , 𝑥0) =
𝑃(𝑧𝑘|𝑥𝑘 , 𝑀)∗𝑃(𝑥𝑘 , 𝑀|𝑍0:𝑘−1, 𝑈0:𝑘, 𝑥0)

𝑃(𝑧𝑘|𝑍0:𝑘−1, 𝑈0:𝑘)
 (2) 

 

P(xk|xk−1, uk): represent vehicle’s motion model (transition model). P(zk|xk, M): describes observation 

model. η =
1

P(zk|Z0:k−1, U0:k)
: a normalization constant that depends on transition and observation models. 

Finally, we can model SLAM problem by (3). 

 

𝑃(𝑥𝑘 , 𝑀|𝑍0:𝑘 , 𝑈0:𝑘 , 𝑥0) = 𝜂 ∗ 𝑃(𝑧𝑘|𝑥𝑘 , 𝑀) ∗ ∫[ 𝑃(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘) ∗
𝑃(𝑥𝑘−1, 𝑀|𝑍0:𝑘−1, 𝑈0:𝑘−1, 𝑥0)]𝑑𝑥𝑘−1 (3) 

 

2.2.3. Resolution of the SLAM problem 

SLAM problem is regarded as a critical factor of self-driving cars. Many problems, however, 

continue to prevent use of SLAM algorithms in vehicles that should be able to travel hundreds of kilometers 

in a variety of conditions [26]. The main methods for solving this problem are based on the process shown in 

Figure 2. 
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Figure 2. Block diagram of SLAM process 

 

 

2.2.4. Visual SLAM 

Visual simultaneous localization and mapping (V-SLAM) is the problem of establishing location of 

a vehicle in an area while also building a representation of explored region using images as only source of 

external knowledge. V-SLAM extracts features from observed images for localization in dynamic and 

complex environments. Due to techniques-based computer vision employed, visual SLAM is an active area 

of research. Visual SLAM (or vision-based SLAM) refers to use of cameras as only exteroceptive sensor. 

When visual SLAM systems are complemented with data from proprioceptive sensors, it is called visual-

inertial SLAM. Localization process consists of two stages: global localization using topological map and 

local localization using metric map. Li et al. presented in [20] an approach for vision-based localization, 

using hybrid environment model, which combines topological map with metric map to represent 

environment. Nodes of topological map are described by a holistic image descriptor, while interest point 

descriptors define nature landmarks on metric map. This technique, tested in urban environment, contributes 

to the development of a precise (errors mean of 74.54 cm and errors deviation of 91.43 cm) and effective 

localization method. 

 

2.2.5. Introspective vision for SLAM (IV-SLAM) 

V-SLAM algorithms consider that feature extraction errors are independent and identically 

distributed, which is not always true. This hypothesis makes the tracking quality of the V-SLAM algorithms 

low, especially when the detected images include difficult conditions. To address such challenges, the 

authors in [27] presented an introspective vision for SLAM (IV-SLAM). In this approach, the noise process 

of errors from visual features is specifically modelled as context dependent in IV-SLAM. In comparison to 

V-SLAM, results show that IV-SLAM is able to accurately predict sources of error in input images and 

decreases tracking error. 

 

2.2.6. LIDAR based SLAM 

Because of its simplicity and precision, 3D mapping with LIDAR is commonly used to solve SLAM 

problem [28]. LIDAR can, in fact, achieve a low drift motion estimation while maintaining a manageable 

computational complexity [29]. Study in [30] claims that distortions in collected data are caused by moving 

at high speeds, an impact that most studies overlook, including all of details about vehicles’ displacement. 

Idea is to use velocimetry and then look at measurement’s distortion. 

 

2.2.7. Visual-LIDAR fusion-based SLAM 

To further improve the robustness of SLAM, such as respect for aggressive movements and absence 

of visual features, researchers are focusing on vision-LIDAR approaches. Techniques which combine LIDAR 

and stereo cameras. Approach proposed by Seo and Chou in [31] allows us to create a LIDAR map and a 

visual map with map points in different modalities, then use them together to optimize odometry residuals 

such that LIDAR map and operating environment have global coherence. Work proposed in [32] gave a 

combination of low-cost LIDAR sensor and vision sensor. A specific cost function that considers both scan 

and feature constraints is proposed to perform graph optimization. In order to speed up loop detection, a 

specific model with visual features is used to create a 2.5D map. 
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3. RESULTS AND DISCUSSION 

3.1.  Configuration 

This section shows some results produced by implementation of SLAM algorithm in order to build a 

map of environment and a robot trajectory using LIDAR scans. MATLAB software was used to generate 

these simulation results. A data set of laser scans acquired from a real mobile robot is available in MATLAB. 

 

3.2.  Results 

Algorithm begins to aggregate and connect LIDAR scans as robot moves from a start point to an 

arrival location. Figure 3 shows a pose graph for first 15 scans that is linked between them. Figure 4 shows 

final built map (magenta color) and trajectory of robot (green color). 

 

 

  
 

Figure 3. Pose graph for initial 15 scans 

 

Figure 4. Final built map and robot's trajectory 

 

 

By comparing collected scans, the robot identifies recently visited positions and may create loop 

closures along its itinerary. The loop closure data is used to update the map of environment and correct the 

trajectory of robot. Identification of the first loop closure can be observed in Figure 5 (red color). Figure 6. 

shows two loop closures that were detected automatically during robot displacement. After constructing and 

optimizing the pose graph, the algorithm operates on this data to produce an occupancy map that describes 

the area. Results obtained are presented in Figures 7 and 8. 

 

 

  
 

Figure 5. Detection of first loop closure 

 

Figure 6. Two loop closures in final build map 
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3.3.  Summary 

In this section we presented the results of a MATLAB simulation using SLAM algorithm. We 

started with pose graph for first 15 scans, and then we showed first loop closure. All of scans are combined to 

create final map and robot trajectory shown in Figure 6. Using optimized scans and poses, we also built an 

occupancy map. 

 

 

  
 

Figure 7. Occupancy map 

 

Figure 8. Loop closure in occupancy map 

 

 

4. CONCLUSION  

In this paper, we introduced the concept of localization, which is an essential component of  

self-driving cars. We illustrated state-of-the-art techniques for locating vehicles using a camera and LIDAR. 

We were concerned about its accuracy. Then we discussed SLAM method, that can give position of a car 

while simultaneously building a map of environment. Some of these approaches, such as Visual SLAM,  

IV-SLAM, LIDAR SLAM and visual-LIDAR fusion SLAM are discussed. We illustrated accuracy and 

robustness of SLAM solutions in last section by implementing LIDAR SLAM algorithm in MATLAB and 

showing the results. In the future, we will try a hybridized implementation of SLAM algorithm using camera 

and LIDAR fusion. We will also study several approaches to improving algorithm’s performance. 
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