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 Graph neural networks (GNNs) are a new topic of research in data science 

where data structure graphs are used as important components for 

developing and training neural networks. GNN always learns the weight 
importance of the neighbor for perform message aggregation in which the 

feature vectors of all neighbors are aggregated without considering whether 

the features are useful or not. Using such more informative features 

positively affect the performance of the GNN model. So, in this paper 
i) after selecting a subset of features to define important node features, we 

present new graph features’ explanation methods based on graph centrality 

measures to capture rich information and determine the most important node 

in a network. Through our experiments, we find that selecting certain subsets 
of these features and adding other features based on centrality measure can 

lead to better performance across a variety of datasets and ii) we introduce a 

major design strategy for graph neural networks. Specifically, we suggest 

using batch renormalization as normalization over GNN layers. Combining 

these techniques, representing features based on centrality measures that 

passed to multilayer perceptron (MLP) layer which is then passed to 

adjusted GNN layer, the proposed model achieves greater accuracy than 

modern GNN models. 
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1. INTRODUCTION  

The graph convolutional network (GCN) is a new type of neural network. It develops a new 

representation for a node by aggregating feature vectors from all neighbors in the aggregation process, 

regardless of whether the features are effective. By picking a fixed size group of neighbors or assigning 

various weights to different neighbors in the aggregation process, recent methods have improved solutions to 

the above problem [1]. 

In recent years, the field of graph neural network (GNN) research has made significant 

development. Notably, a growing variety of GNN designs have been developed, including GCN [2], 

GraphSAGE [3], and graph attention networks (GAT) [4]. These designs are then used in a variety of 

applications, including social networks [5], [6], chemistry [7], [8], and biology [9], [10]. Node classification 

[2], [4], link prediction [11], [12], graph classification [13], [14], prediction of chemical characteristics, node 

ranking, and natural language processing are just a few of the challenges that GNNs have been used to solve. 

In this paper, we use graph neural networks to solve the node classification problem. Since the success of 

early GNN models like GCN [2] researchers have suggested lots of new modifications [15] to solve the 

model's numerous training issues and increase prediction capabilities. Neighbor sampling [3], [16], attention 

https://creativecommons.org/licenses/by-sa/4.0/
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mechanism [4], usage of personalized PageRank matrix instead of the adjacency matrix [17], leveraging 

proximity in feature space [18], and simplified model design [19] are some of the strategies employed in 

these variations. In addition, there has been a growing tendency to make the models deeper by stacking 

additional layers to enhance the model's expressiveness [20], [21]. In general, GNN models use a weight 

matrix to combine the aggregation and transformation of features in the same layer, which is referred to as 

the graphical convolutional layer. As a learning framework of the graph data these layers are stacked together 

with the regularization (for example, Dropout) and non-linear transformation (for example, rectified linear 

units (ReLU)) [22]. 

By stacking the layer, power of the adjacency matrix is introduced, which aids in the generation of a 

new set of features for a node by aggregating neighbor's features over numerous hops. The number of these 

distinct features is dependent by the model's propagation stages or depth. The final node embeddings are 

either the result of only stacked layers or, in certain cases, the result of combining skip and residual 

connections at the final layer [22]. 

GNNs have become an essential tool for learning graph-centric data. Many prediction applications, 

such as node and graph classification, link prediction and so on [2]. Established a simple end-to-end training 

framework based on spectral graph convolution approximations. Since then, the research community has 

worked to enhance the performance of GNNs, and a number of strategies have been presented. Earlier GNN 

frameworks used a fixed edge propagation strategy, which was not necessarily scalable for bigger graphs. In 

graph neural networks, GraphSAGE [3] and fast graph convolutional networks (FastGCN) [16] propose 

neighbor sampling algorithms. The attention technique is used in GAT [4] to assign weights to features that 

gathered from neighbors. The feature propagation technique within layers of the model is improved by 

approximate personalized propagation of neural predictions (APPNP). Gasteiger et al. [17], similarity 

preserving graph convolutional networks (SimP-GCN) [18], and counter propagation neural network 

(CPGNN) [23], Geom-GCN [24] and jumping knowledge (JK) [25]. Recently, researchers have proposed 

that GNN models be made deeper [21]. DropEdge [20] suggests that a specific number of edges be dropped 

to lower the speed of oversmoothing convergence and relieve information loss. To allow deeper networks, 

graph convolutional network via initial residual and identity mapping (GCNII) [21] uses identity mapping 

and residual connections in GNN layers. To train deep GNN models, RevGNN [26] employs deep reversible 

architectures and uses noise regularization [27]. Traditional GNNs perform well in homophily networks, but 

they do not generalize to heterophily graphs, according to the researchers. Similar to our work, Zhu et al. [23] 

introduced the feature selection and feature extraction method for the GNNs. Chi et al. [28] proposes two 

unique techniques, the GCN res framework and embedding usage, to increase the test accuracy of the 

baseline in various datasets by leveraging residual networks and pre-trained embedding.  

The curse of high dimensionality is a prevalent difficulty in machine learning. The quantity of 

training data needed might expand exponentially in parallel with the data's dimension. As a result, one of the 

key study issues in data science is feature selection, which tries to minimize high dimensionality by 

discovering and choosing the subset of the most important features in a dataset. The following are some of 

the downstream benefits of feature selection: i) faster data mining algorithms using the selected features, 

ii) improved accuracy of the trained model, iii) more interpretable model, and iv) alleviation of the overfitting 

problem by removing irrelevant or redundant features [29].  

According to Duong et al. [30], GNN work well if there is a strong correlation between node labels 

and node features. So, in our work we proposed new features based on centrality measures then we choose 

features that strongly correlate with node labels. The primary benefit of this work is improving accuracy of 

node classification problem by combining:  

− Centrality measures: Features calculated based on the central metrics used to capture rich information 

about the graph and give each node value that represents the importance of this node in this graph and this 

help in improving the solution of the problem of node classification;  

− Selecting features: Choosing the subset of the most important features in a dataset using chi-square 

minimize high dimensionality and reduce used memory size, which lead to a faster model;  

− GNN architecture: We suggest a simple GNN architecture; specifically using batch renormalization that 

helps in stabilizing the learning process in GNN. 

 

 

2. METHOD 

In this section, the comprehensive theoretical basis and the proposed method are discussed in 

appropriate subheadings. Consider G = (V, E) is an undirected graph with nodes V and edges E. Adjacency 

matrix is used to describe a graph and denoted by A ϵ {0, 1} with each element Aij = 1 if there exists an edge 

between node vi and vj, otherwise 𝐴𝑖𝑗 = 0. Diagonal degree matrix of A is denoted as D. Each node has a  

d-dimensional feature vector attached to it, and the feature matrix for all nodes is shown as X ϵ Rn ×d [22]. 
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2.1.  Graph convolution neural network 

GCN is multi-layer feed forward neural networks. It collects a node's neighborhood information, 

then transform it nonlinearly with a trainable weight matrix to get the nodes' final embeddings [31]. The 

feature propagation rule of GCN is 

  

X(k+1) =  σ (D−
1

2 AD−
1

2X(k)W(k))  (1) 

 

where W(k) is trainable weight matrix in the k-th layer, σ (. ) is an activation function such as ReLU, and  

X(k)= [x1
(k)

, … . . , xn
(k)

] are the k-th layer node representations with X(0) = X. However, because features are 

cumulatively aggregated, or combined with those of neighbors, this formulation is suitable for homophily 

datasets. The signal corresponding to the label is strengthened and prediction accuracy is increased by the 

cumulative aggregation of a node's self-features with those of its neighbors. D−1A is used as the normalized 

adjacency matrix instead of the symmetric one D−
1

2 AD−
1

2 [22], [32]. Therefore, the feature propagation 

scheme of GCN in layer k is:  

 

 X(k+1) =  σ (D−1 AX(k)W(k))  (2) 

 

2.2. Chi-square feature selection 

Feature selection is a technique for identifying the features in the data that have the most effect on 

the prediction variable or output. The chi-square feature selection method is a common feature selection 

method. It has two variables, one for the frequency of occurrence of feature t and the other for the probability 

of occurrence of category 𝐶. When classifying nodes, we look to see if the features 𝑡 and 𝐶 are independent. 

The feature 𝑡 cannot be used to identify whether a node belongs to category C if they're independent. In 

practise, determining the extent to which 𝑡 and 𝐶 are associated when they are non-independent is 

challenging. As a result, the chi-square test is applied to determine their relevance [33]. The (3) shows how to 

calculate the chi-square score of features 𝑡 for category 𝑐. 

 

X2(D, t, c) =  ∑ ∑
(Netec − Eetec )

2

Eetec 
ec∈{0,1}et∈{0,1}     (3) 

 

where 𝑁 is the observed frequency, 𝐸 is the expected frequency, 𝑒𝑡 takes the value 1 if the data has feature 𝑡 

and 0 otherwise and 𝑒𝑐 takes the value 1 if the data belong to class 𝑐 and 0 otherwise. According to the first-

order degree of freedom chi-square distribution, the higher the chi-square score for category 𝑐, the more 

category information the feature t contains, and the stronger the relationship between 𝑡 and 𝑐. 
 

2.3. Centrality measures 

According to Cui et al. [34], there is a various way to construct artificial features so in our model 

graph neural network using feature selection based centrality measures (GNNFC), we'll calculate several 

features based on centrality measures. Centrality is a key concept in graph analytics for finding important 

nodes in a graph. It is used to determine the relative significance of nodes in a network. Depending on how 

"importance" is defined, each node may now be significant from a different perspective [35]. Centrality is 

measured using many metrics, each of which describes the importance of a node from a different perspective 

and gives essential analytical information about the graph and its nodes [35].  

 

2.3.1. Degree centrality 

The degree of a node in a non-directed network is defined as the number of direct connections it has 

with other nodes. Now, the Degree Centrality metric measures the significance of a node in a network based 

on its degree, i.e., the greater a node's degree, the more significant it is in a graph [36]. Mathematically, 

degree centrality is defined as (4):  

 

D(v) = ∑ m(v, u)u    (4) 
 

where m(v, u) = 1 if there is a link from node 𝑣 to node 𝑢. 

 

2.3.2. Closeness centrality 

Let's define the "Geodesic distance" between two nodes in a graph to better understand this measure. 

The Geodesic distance 𝑑 between these two nodes is defined as the number of edges between them on the 

shortest path between them. Mathematically, Geodesic distance can be defined as (5). 
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d(u, v) = {
no. of shortest path from u to v

0, if u = v
∞, if there is no paths from u to v

  (5) 

 

Furthermore, the closeness centrality metric measures a node's relevance in a network by how near it 

is to all other nodes in the graph. For a given node, it is defined as the total of the geodesic distances between 

a node and all other nodes in the network [36]. Mathematically, Closeness centrality C(v) can be defined as (6). 

 

C(v) =
1

∑ d(v,u)u
   (6) 

 

2.3.3. Betweenness centrality  

The betweenness centrality captures how much a given node u is in-between others. The number of 

shortest paths (between any two nodes in the graphs) that pass through the target node 𝑢 over the total 

number of shortest paths that exist between any two nodes in the network [35]. Betweenness Centrality of 

node 𝑣 may be described mathematically as (7): 

 

g(v) = ∑
σst(v)

σst
s≠v≠t    (7) 

 

where 𝜎𝑠𝑡(𝑣) is the number of shortest paths that pass-through 𝑣, 𝜎𝑠𝑡 is the total number of shortest paths 

from node 𝑠 to node 𝑡. 

 

2.3.4. Eigenvector centrality 

The topological position of nodes in the network is taken into consideration in all previous centrality 

measurements, but not the relevance of the nodes themselves. Eigenvector centrality calculates a node’s 

centrality based on its neighbors’ centrality. In comparison to a node connected to less significant nodes, a 

node connected to highly important nodes would have a higher eigenvector centrality score [36]. Eigenvector 

centrality may be described mathematically as follows.  

The relative centrality score of vertex v can be defined as (8). 

 

xv =
1

λ
∑ xt =

1

λ
∑ av,txtt∈Gt∈M(v)      (8) 

 

where 𝑀(𝑣) is a set of the neighbors of 𝑣 and λ is a constant. This may be represented in vector notation as 

the eigenvector equation. 

 

Ax = λx   (9) 

 

2.4.  Batch renormalization 

Batch normalization is quite successful in speeding up and improving deep model training. When 

the training minibatches are small or do not contain independent samples, however, its efficacy is reduced 

[37]. Ioffe [38] introduces batch renormalization (BR), which solves the problem with small batches that BN 

has. When the batch size is small, BR introduces two more parameters that restrict the estimated mean and 

variance of BN within a given range, decreasing their drift. 

The batch statistics (μB & σB) are used by BN. When the batch size is small, BR introduces two new 

parameters, r and d, with the goal of constraining the mean and std of BN and lowering the extreme 

difference. Normalization should ideally be done with the instance statistic: 

 

 x̂ =  
x−μ

σ
    (10) 

 

By choosing r =  
σB

σ
  and  d =

μB−μ

σ
: 

 

x̂ =  
x−μ

σ
=

x−μB

σB
 . r + d     (11) 

 

The authors recommend that the maximum absolute values of r and d be restricted. To begin, set the 

boundaries to 1 and 0, as if they were BN, and then progressively loosen them. 

 

 

https://www.sciencedirect.com/topics/computer-science/betweenness
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2.5. Proposed method 

With an increase in the number of hops, the number of input feature combinations grows 

exponentially, making it computationally costly. In addition to feature selection, the model's prediction 

capacity must be improved. As a result, a GNN model may be created using feature selection strategy. 

Starting with all features as input, GNNFC learns to identify significant features while reducing the impact of 

unimportant features. 

In GNNFC we calculate the Chi-square between each feature and the target and choose the features 

with the best Chi-square scores. We specify additional features with regard to graph centrality measurements 

such as betweenness and closeness since graph centralities have been used to characterize various properties 

of graphs. After calculating these features, we merge them with the selected features obtained from input 

features, and then input the new feature matrix for GNN as shown in Figure 1. 

 

 

 
 

Figure 1. An illustration of the proposed method GNNFC 

 

 

The merge process can be written as (12). 

 

X = Concat(selectedF, CentralityF)  (12) 

 

where 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹 is the selected features based on Chi-square method and 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝐹 is the features that 

calculated based on degree, closeness, betweenness and eigenvector centrality measures. 

Following that, we suggest a generic design space for GNNs that consists of four steps:  

- A preprocessing layer that uses multilayer perceptron (MLP) to generate initial node representations.  

- A message passing layer using GCN. 

- A post-processing layer that uses MLP to generate final node embeddings.  

- To predict the node class, feed the node embeddings into a SoftMax layer. 

In the first step the initial node representation is processed hv
0 = X0 using a MLP to produce a 

message. Then in a message passing step a node's representation is iteratively updated by aggregating its 

neighbors’ representations. A node's representation captures the structural information inside its k − hop 

network neighborhood after 𝑘 iterations of aggregation. 

 

hv
(k+1)

= AGG ({ACT (BR(W(k)hu
(k)

+ b(k))) , u ∈ N(v)}) (13) 

 

where hu
(k)

 is the 𝑘-th layer embedding of node, W(k), b(k) are trainable weights, and N(v) is the local 

neighborhood of v. 

The adopted GNN in (13), contains a linear layer, followed by a series of modules: batch 

renormalization BR; nonlinear activation function ACT (. ), where ReLU is considered, aggregation 

function AGG (. ) where SUM is considered. 

In (13), BR is used to normalize node features during training. According to Hamilton [39], 

normalization is most useful in jobs where node feature information is significantly more important than 

structural information, or where there is a large range of node degrees. In GNNs, the BR is especially good in 

stabilizing the value, especially for deep GNNs. As a result, a growing number of GNNs are beginning to use 

normalization. With a deep GNN models, the result tends to get bad performance. One solution is to use the 
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skip connections to concatenate the inputs and outputs of GNN; here, we look at dense connections called 

SKIP-CAT, which concatenate embeddings from all previous layers.  

 

 

3. RESULTS AND DISCUSSION 

In this section, the detailed analysis of our proposed model is discussed. Also, the findings are 

reported extensively. The complete result analysis has been discussed in appropriate subheadings. To test and 

check the efficiency of our experiment on GNNFC, two sets of citation network benchmark datasets are used, 

Cora and Citeseer which are standard citation networks with the same training/validation/testing division 

[40], as summarized in Table 1. 

 

 

Table 1. Information about the datasets used in our experiment 
Dataset Nodes Edges Features Classes 

Cora 2,708 5,429 1,433 7 

Citeseer 3,327 4,372 3,703 6 

 

 

3.1.  Performance of GNNFC versus traditional GNN models 

In our experiments, two suggested new tricks are used with other tricks that exist. Also, the effects 

of different collection strategies in different datasets are discussed. Kong et al. [41] refer to whether or not 

suggested tricks are effective depends on the distribution of the data. The expressive abilities of tricks will be 

significantly influenced by different graph structures. Therefore, there is a need to use different data sets for 

tricks and their collections. 

Through studies via these datasets, we discover that GNN with BR in the citation network Cora and 

Citeseer successfully relieve sensitive to node degrees issue of aggregation operation, which may also be 

used with other tricks because to its flexibility and strong generality. In addition, normalization is usually 

used to stabilize the gradient of GNN. In our second trick the performance of feature selection algorithm is 

examined with respect to graph centrality measures that characterize diverse graphs and discovered that it 

may make GNN have a clear improvement in most situations, so that using these tricks in GNN is strongly 

recommended. For these datasets, combination of two proposed design tricks lead to better average accuracy 

as shown in Table 2. The combination of previous tricks can improve the performance of GNNFC on our 

datasets as shown in Table 3. 

 

 

Table 2. Comparison of the outcomes of node classification of GNNFC and other popular GNN models in 

terms of Accuracy. Results for these GNN models are taken from [22], [42] 
 Cora Citeseer 

GCN (2017) 87.28±1.26 76.68±1.64 

GraphSAGE (2017) 86.90±1.04 76.04±1.30 

GAT (2018) 82.68±1.80 75.46±1.72 

FSGCN (2019) 83.50 73.00 

GEOM-GCN (2020) 85.27 77.99 

WRGAT (2021) 88.20±2.26 76.81±1.89 

GPRGNN (2021) 88.49±0.95 77.08±1.63 

GNNFC (Our method) 89.5±1.90 80.10±1.5 

 

 

Table 3. The outcomes of node classification on Cora and Citeseer datasets in terms of AUC 
 Cora Citeseer 

GNN with BR 87.1 76.9 

GNN With FS, CM 87.9 78.6 

GNN With BR, FS, CM 89.5 80.10 

 

 

3.2.  Convergence of model accuracy and loss function  

In Figure 2 after roughly 200 epochs, GNNFC model achieves the best AUC score in the test set. 

The validation loss converged to a stable value after 300 epochs of running the code. This is shown in  

Figure 2(a) which shows the convergence achieved by the model’s accuracy. The neural network's weights 

were updated using a binary cross-entropy loss function. Figure 2(b) depicts the convergence of the loss 

function. 
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(a) 

 

 
(b) 

 

Figure 2. The convergence of (a) model accuracy and (b) loss function over training and validation data 

respectively 

 

 

4. CONCLUSION  

In this work, a general GNN design space has developed based on feature selection using centrality 

measures. The significance of feature selection-based centrality measures in GNN training has been 

investigated. The fact that feature selection is a good direction in our modified GNN model is confirmed by 

the experiment results. Based on the experimental observations, a new GNN model called GNNFC has been 

proposed. The proposed GNNFC proved that it outperforms existing GNN models on the node classification 

problem using extensive tests. 
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