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 Mobile robots are typically depending only on robot kinematics control. 

However, when high-speed motions and highly loaded transfer are 

considered, it is necessary to analyze dynamics of the robot to limit tracking 
error. The goal of this paper is to present a new algorithm, chaotic-billiards 

optimizer (C-BO) to optimize internal controller parameters of a differential-

drive mobile robot (DDMR)-based dynamic model. The C-BO algorithm is 

notable for its ease of implementation, minimal number of design 
parameters, high convergence speed, and low computing burden. In addition, 

a comparison between the performance of C-BO and ant colony optimization 

(ACO) to determine the optimum controller coefficient that provides 

superior performance and convergence of the path tracking. The ISE 
criterion is selected as a fitness function in a simulation-based optimization 

strategy. For the point of accuracy, the velocity-based dynamic 

compensation controller was successfully integrated with the motion 

controller proposed in this study for the robot's kinematics. Control structure 
of the model was tested using MATLAB/Simulink. The results demonstrate 

that the suggested C-BO, with steady state error performance of 0.6 percent 

compared to ACO's 0.8 percent, is the optimum alternative for parameter 

optimizing the controller for precise path tracking. Also, it offers advantages 
of quick response, high tracking precision, and outstanding anti-interference 

capability. 
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1. INTRODUCTION 

Wheeled mobile robots (WMRs) have become more prevalent for jobs that are too risky or time-

consuming for humans. It incorporates numerous technologies such as actuators, electronic components, 

sensors, controller structure, communication, and data processing [1]. The controller plays important role in 

the design and enhancement of mobile robots, because the working capacity of a mobile robot relies on the 

execution of the controller. Mobile robot's stabilization and tracking control is a significant challenge. A 

study of the non-holonomic WMR kinematic error model has shown that a control scheme with a 

combination of feed-forward and a feedback control law can be used for path tracking control [2]. 

Furthermore, owing to the presence of uneven ground, effective path-tracking control techniques with 

disturbance rejection ability are vital and essential for WMR to accomplish mission objectives. Because a 

mobile robot is required to move at a specific time and location, tracking control is essential [3]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Recently, numerous controllers have been proposed for controlling WMR. Some of the controllers 

were developed based on the kinematics of mobile robots. In any case, when executing tasks that demand 

high-speed motion and/or heavy load transfer, it is necessary to take into account the robot dynamics in 

addition to its kinematics. As a result, some research has been conducted on the structure of controllers that 

depend on the robot dynamics. For example, Ben and Seddik [4], presented a robust adaptive controller with 

disturbances and non-modeled dynamics reliant on neural networks and fuzzy logic-proportional derivative 

(PD) controllers and then generated torque control for mobile robots. Das and Kar [5] presented adaptive 

controller based on fuzzy logic, where fuzzy logic evaluates the system uncertainty and the system 

parameters are tuned online. The actuator dynamics were included in the dynamic model, and the generated 

commands were the voltages. In [6], [7], various forms of trajectory-tracking controllers primarily depend on 

robot dynamics were developed. Signals of control by some of the dynamic controllers shown in literature, as 

in a significant number of the aforementioned studies, are voltages or torques for robot motors, although 

business robots usually receive velocity commands. For such a unique situation, De La Cruz and Carelli [8] 

presented an improvement in a dynamic model that utilized both angular and linear velocities as inputs.  

Khai et al. [9] presented a fuzzy inference system for tuning the parameters of the kinematic controller of 

differential-drive mobile robot (DDMR) without considering a dynamic model. Ammar and Azar [10] 

proposed a fractional-order PID (FOPID) for path tracking control of mobile robots. Azizi et al. [11] 

designed a nonlinear model predictive control (NMPC) strategy based on the derived mathematical model for 

motion planning and control of an omnidirectional mobile robot in dynamic environments. Chen et al. [12] 

proposed a knowledge-based neural fuzzy controller (KNFC) for mobile robot navigation control where the 

parameter of KNFC adjusted by knowledge-based cultural multi-strategy differential evolution (KCMDE).  

Li et al. [13] proposed fuzzy-torque approximation-enhanced sliding mode control for lateral stability of 

mobile robot. Xie et al. [14] presented coupled fractional-order sliding mode control for trajectory tracking 

control of a four-wheeled steerable mobile robot with the ability of collision avoidance.  

 One of the limitations of previous dynamic controllers is the inability to effectively choose an 

appropriate arrangement of controller gains to improve robot performance. Most importantly, it is critical to 

characterize the meaning of “good performance”, and how it can be processed for the determination of the 

optimal setting of controller factors. The utilization of evolutionary algorithms for solving optimization 

challenges, such as controller gain settings, has been extensively investigated [15]. The question of choosing 

the gains of the controller is presented in [16], where the authors proposed evolutionary optimization 

techniques for adjusting PI controller parameters. Following a similar idea, Sathiya and Chinnadurai [17] 

proposed an evolutionary algorithm-based multi-objective effective mobile robot trajectory tracking. 

Sathiya’s study has proven that system efficiency can be enhanced using evolutionary optimization strategies.  

According to the no-free lunch idea, the meta-heuristic optimization approaches able to solve certain 

problems but not others. At this time, the use of a revolutionary meta-heuristic algorithm-depend on ideal 

control strategy to obtain accurate and satisfied results. This shows that the main motive for utilizing the 

chaotic-billiards optimizer (C-BO) algorithm for tuning the gain parameter of the mobile robot's model 

controller. The billiards optimizer algorithm (BOA) is a revolutionary meta-heuristic optimization algorithm 

influenced by the famous games of billiard. In 2020, Kaveh et al. [18] presented it. Each strategy is 

represented in the BOA by a multi-dimensional billiard game, with the pockets representing the best 

solutions obtained. If the ball collides with the other balls, the other ball positions in the strategy of the 

optimization are obtained using vector algebra and conserve principles. The BOA is utilized to successfully 

resolve seven limited engineering standard issues and twenty-three mathematical operations [18]. The C-BO 

method incorporates chaotic logistic maps with the BOA to improve the algorithm's total output. In meta-

heuristic strategies, initialization procedure starts at random based on random choice of the population and 

initial values, and this cannot cause a significant starting technique in the optimization strategy. As a result, 

selecting the correct initial conditions can help them perform better overall. Chaotic logistic maps are being 

used to reorder the agents in order to improve the initialization process. As a result, the authors add a chaotic 

element to the BOA. The C-BO algorithm differs from other algorithms in that it requires fewer parameters 

to design, is simple to create, has a low computation complexity, has a fast speed convergence, and can tackle 

a variety of optimization techniques in various engineering fields. 

This paper presents a proposed C-BO approach for locating the appropriate controller coefficients 

for perfect path-tracking control with superior performance. At a rapid speed convergence, the C-BO 

algorithm tune the coefficients used in the controller. The ISE criterion is used as a fitness function in a 

simulation-based optimization strategy. Ant colony optimization is a search technique based on ant foraging 

behavior. It has been utilized to solve numerous types of optimization problems such as vehicle routing, as 

reported by Dorigo and Gambardella [19]. The ant colony optimization (ACO) algorithm has the ability to 

solve difficult combinatorial optimization challenges. The utilization of ACO has contributed to numerous 

investigations of robot path planning [20]–[22]. 
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The paper is organized as follows: section 2 presents the configuration, kinematic, and dynamic 

model of the mobile robot with differential drive, as well as the development details of the kinematic and 

dynamic controllers; section 3 present the optimization techniques C-BO and ACO and the tuning process 

based on them; section 4 provides simulation results as well as a comparison of system performance for the 

optimization techniques used. Finally, section 5 presents the conclusions of the work carried are highlighted. 

The dynamic model control of DDMR based C-BO algorithm is a new contribution as it has not been 

described in robotic systems. 

 

 

2. METHOD 

Mobile robots have become more prevalent for jobs that are too risky or time-consuming for 

humans. The controller strategy plays important role in the design and enhancement of mobile robots. The 

configuration of a mobile robot depending on control strategy with a differential drive is presented in this study.  

 

2.1.  Differential drive mobile robot model 

The dynamic model is written as a function of torque which is similar to a traditional dynamic 

equation. Figure 1 presents the variables of interest the DDMR. Where G is center of the mass, and ω and u 

are the angular and linear velocities, respectively. Ψ is the orientation of the robot; h is the point of interest 

with coordinates x and y in the XY plane; a is the separation between the point of interest and the point in the 

middle of the virtual axle that links the traction wheels (point B); d is the distance from the points of contact 

of the traction wheels to the floor; and b is the distance from two points G and B. A complete analysis of this 

mathematical model is presented in [23]. As illustrated in the literature, the entire mathematical model of the 

robot is written as a kinematic and dynamic model. The kinematic model can be described by (1). 

 

[
�̇�
�̇�
�̇�
] = [

𝑐𝑜𝑠𝜑  −𝑎𝑠𝑖𝑛𝜑
 𝑠𝑖𝑛𝜑 𝑎𝑐𝑜𝑠𝜑 

0 1

] [
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0
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The dynamic model can be expressed by (2): 
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where θ = [θ1 θ2 θ3 θ4 θ 5 θ6]
T is vector of the model parameters (identified) and δx, δy, δu, and δω are 

parameter uncertainty related to mobile robot. The parameters vector of θ are functions of the robot's physical 

features, such as moment of inertia Iz at G, mass m, and resistance of motors Ra, electromotive motor 

constant kb, friction coefficient Be, the torque constant ka, the inertia moment of each group Ie rotor 

reduction gear-wheel, the wheels radius r, and the distances d and b as shown in Figure 1.  

 

 

x

y

 
 

Figure 1. Mobile robot model 
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The robot servo motors are considered to have PD controllers to control the motor velocity, with 

proportional gains 𝑘𝑃𝑇 > 0 and 𝑘𝑃𝑅 > 0, and gains derivative 𝑘𝐷𝑇 ≥ 0 and 𝑘𝐷𝑅 ≥ 0. It is also considered 

that the both driven wheels' motors have the same characteristics, and negligible inductances. It should be 

noticed that 𝜃𝑖 > 0 for 𝑖 = 1,2,4,6. The parameters θ3 and θ5 can be negative and null if the center of mass 

G is located directly in the middle of the imaginary axis connecting the traction wheels (point B), i.e. 𝑏 = 0. 

However, in this study, it is assumed that b≠0. The equations for the parameters θi were firstly presented in 

[8], and are: 

 

𝜃1 = [
𝑅𝑎

𝐾𝑎
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1
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(2𝑟𝑑𝑘𝑃𝑅)
 ,   

𝜃3 =
𝑅𝑎

𝑘𝑎

𝑚𝑏𝑅𝑡

2𝑘𝑃𝑇
,     𝜃4 =

𝑅𝑎

𝑘𝑎
(
𝑘𝑎𝑘𝑏

𝑅𝑎
+ 𝐵𝑒)

1

𝑟𝑘𝑃𝑇
+ 1,   𝜃5 =

𝑅𝑎

𝑘𝑎

𝑚𝑏𝑅𝑡

𝑑𝑘𝑃𝑅
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2.2.  Control strategy 

The controller was built such that it was dependent on the robot model. The controller was divided 

into two parts. The first part relies on inverse kinematics, and the second part relies on robot dynamics. 

Figure 2 depicts the control scheme. 

 

 

Kinematic 

Controller

Dynamic 

Controller
ROBOT

,h

dV rV

V

.

,  d dh h

 
 

Figure 2. The structure of the proposed control system 

 

 

As illustrated in Figure 2, the controller kinematic accepts the desired values of position  

ℎ𝑑 = [𝑥𝑑 𝑦𝑑]
𝑇 and velocity ℎ̇𝑑. The controller kinematic then calculates the intended robot velocities  

𝑉𝑑 = [𝑢𝑑 𝜔𝑑]
𝑇 depending on such values as well as the real position ℎ = [𝑥 𝑦]𝑇 and orientation of the robot 

Ψ. The dynamic controller receives the required velocities as well as the actual robot velocity 𝑉 = [𝑢 𝜔]𝑇. 

The controller uses this data, coupled with estimations of the robot parameters, to generate the actual velocity 

command 𝑉𝑟 = [𝑢𝑟𝑒𝑓 𝜔𝑟𝑒𝑓]
𝑇
which are provided to the robot's inner controller as references. 

 

2.3.  Kinematic controller 

The kinematic model formalism was introduced in detail in [24]. The kinematic controller depends 

on the robot kinematic model which is given by (1). The controller kinematic law used in this case is: 

 

[
𝑢𝑑

𝜔𝑑
] = [

𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑

−
1
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𝑠𝑖𝑛𝜑

1

𝑎
𝑐𝑜𝑠𝜑

] + [
𝑥�̇� + 𝑙𝑥𝑡𝑎𝑛ℎ (

𝑘𝑥

𝑙𝑥
�̃�)

𝑦�̇� + 𝑙𝑦𝑡𝑎𝑛ℎ (
𝑘𝑦

𝑙𝑦
�̃�)

]    (4) 

 
where 𝑎 > 0; 𝐾𝑥 > 0, and 𝐾𝑦 > 0 are controller gains. Also ℎ𝑒 = ℎ𝑑 − ℎ is errors position vector; and 𝑙𝑥 

and 𝑙𝑦 are the saturation constants. The 𝑡𝑎𝑛ℎ terms are incorporated to restrict the values of the ideal velocities 

𝑉𝑑 to maintain saturation of the actuators of the robot when the errors of the position are too large [25]. 

 

2.4.  Dynamic controller 

To simulate and design the motion control algorithms of a mobile robot, information about the 

dynamic model must be known. The proposed model includes the dynamics of the robot actuators that is not 
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case for the model that uses torques as inputs [23], [24]. Expression (2) can be expressed in a simple format 

by rearranging the terms as (5): 

 

∆ + 𝐻𝑉′̇ + 𝐶(𝑉′)𝑉′ + 𝐹(𝑉′)𝑉′ = 𝑉𝑟   (5) 
 

where 𝑉′ = [𝑖𝑈 𝜔]𝑇 is the vector of modified velocities given by 𝑉′ = [
𝑖 0
0 1

] [
𝑢
𝜔

]. The value of i=1 rad2/s. 

The H, C(v′) and F(v′) matrices, as well as ∆ vector are as below. 

 

𝐻 = [
𝜃1

𝑖
0

0 𝜃2

], 𝐹(𝑉′) = [

𝜃4

𝑖
0

0 𝜃6 + (
𝜃5

𝑖
− 𝜃3)𝑖𝑈

], 𝐶(𝑉′) = [
0 −𝜃3𝜔

𝜃3𝜔 0
], ∆= [

−𝜃1 0
0 −𝜃2

] [
𝛿𝑢

𝛿𝜔
] 

 

As shown in Figure 2, the dynamic controller receives the references of the kinematic controller for 

angular and linear velocities Vd and produces a new set of angular and linear velocity commands Vr for the 

robot. The modified desired vector of velocities 𝑉𝑑
′ is defined as 𝑉𝑑

′ = [
𝑖 0
0 1

] [
𝑢𝑑

𝜔𝑑
]. The velocity error vector 

is given by �̃�′ = 𝑉𝑑
′ − 𝑉′. Expression (5) is expressed in its linear parameterization form to design the 

dynamic controller. The new expression for the reference velocity vector is as in (6). The uncertainty vector 

is ignored in this case. The suggested control law for parametric uncertainty is as in (7): 

 

𝑉𝑟 = 𝐺′𝜃 = [�̇� 0 −𝜔2 𝑢 0 0
0 �̇� 0 0 𝑢𝜔 𝜔

]𝜃    (6) 

 

𝑉𝑟 = �̂� (�̇�𝑑
′ + 𝑇(�̃�′)) + �̂�𝑉𝑑

′ + �̂�𝑉𝑑
′     (7) 

 

where �̂�, 𝐶,̂ and �̂� are estimations of H, C, and F, respectively, 𝑇(�̃�′) = [
𝑙𝑢 0
0 𝑙𝜔

] [
tanh (

𝑘𝑢

𝑙𝑢
𝐼�̃�)

tanh (
𝑘𝜔

𝑙𝜔
�̃�

], 𝑘𝑢 > 0 and 

𝑘𝜔> 0 are gain constants, 𝑙𝑢∈ ℝ and 𝑙𝜔∈ ℝ  are constants of saturation, and �̃� = 𝜔𝑑 − 𝜔 , �̃� = 𝑢𝑑 − 𝑢  are 

the current velocity errors. 𝑇(�̃�′) gives saturation to make sure that the robot's commands are always within 

the physical boundaries set by the robot, assuming that 𝑉𝐷
′  and �̇�𝐷

′  are bounded to specific values. When the 

dynamic variables are not accurately described or changed, an updated control law is applied. The control 

law is stated in its linear parameterized form to develop the updated law. 

 

𝑉𝑟 = 𝐺𝜃 = [
𝛿1 0 −𝜔𝑑𝜔 𝑢𝑑 0 0
0 𝛿2 (𝑖𝑢𝑑𝜔 − 𝑖𝑢𝜔𝑑) 0 𝑢𝜔𝑑 𝜔𝑑

] 𝜃   (8) 

 

where 𝛿1 = �̇�𝑑 + 𝑙𝑢 tanh (
𝑘𝑢

𝑙𝑢
�̃�) , 𝛿2 = �̇�𝑑 + 𝑙𝜔tanh (

𝑘𝜔

𝑙𝜔
�̃�). The vector of parametric errors is defined  

�̃� = 𝜃 − 𝜃 where 𝜃 is the parameter estimation vector, (7) can be written as (9): 

 

𝑉𝑟 = 𝐺𝜃 + 𝐺�̃� = 𝐻𝜎 + 𝐶𝑉𝑑
′ + 𝐹𝑉𝑑

′ + 𝐺�̃�   (9) 

 

where 𝜎 = �̇�𝑑
′ + 𝑇(�̃�′). 

Considering some of the parameters of the entire controller, such as  𝑙𝑥 , 𝑙𝑦, 𝑙𝑢 𝑎𝑛𝑑 𝑙𝜔 must be 

calculated based on the robot's physical limits. But others, like 𝑘𝑥 , 𝑘𝑦, 𝑘𝑢 and 𝑘𝜔 can be selected by the user. 

"How to choose the right set of gains of the robot controller to operate well?" is an essential question that 

arises. Collection of gains to minimize a cost function is one approach to solving this problem (like energy 

consumption or tracking error). The C-BO will be discussed in the next subsection, which is utilized to 

choose the gains based on the functions we provide. 

 

 

3. THE PROPOSED METHOD 

The meta-heuristic optimization approaches able to solve certain problems but not others. At this 

time, the use of a revolutionary meta-heuristic algorithm-depend on ideal control strategy to obtain accurate 

and satisfied results. An overview of the BOA and the proposed C-BO are explained in this section. 
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3.1.  The BOA technique 

Different meta-heuristic algorithms have been constructed for dealing with complicated structure of 

current industrial systems and find optimum solutions. The BOA optimization method inspired by the 

popular game of billiards [18], [26]. Billiards is a game in which balls are struck with a cue and then passed 

around for a table. A six-pocket table is used for billiards, with one pocket in each corner and another in the 

long sides. To shatter the balls, the player moves a cue ball towards them. Then he must reposition the balls 

in better placements. A multi-dimensional billiard ball, consisting of a number of decision factors, is 

represented a possible solution in the BOA. The balls are considered as populations, and each dimension 

containing as a design variable. The procedure starts with a generation random of balls, with some of the 

better balls being selected for pockets. Ordinary and cue balls are the two types of balls. A target ball is hit by 

the cue ball, which pushes it into a corner. After balls collision, the rules of the Kinematic and the collision 

are formed, condition and moving directions of colliding balls are provided. The following is an example of 

the BOA optimization process. 

a) Initialization: the balls' agents in space are originally distributed as (10): 

 

𝐵𝑛,𝑚
0 = 𝑉𝑎𝑟𝑚

𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑[0,1](𝑉𝑎𝑟𝑚
𝑚𝑎𝑥 − 𝑉𝑎𝑟𝑚

𝑚𝑖𝑛)     n=1,2,3…,2N; m=1,2,3…., M  (10) 

 
where, 𝐵𝑛,𝑚

0  signifies the variable's initial record for nth ball. 𝑉𝑎𝑟𝑚
𝑚𝑎𝑥 and 𝑉𝑎𝑟𝑚

𝑚𝑖𝑛 set the upper and 

lower boundaries for the 𝑚𝑡ℎ variable. 𝑟𝑎𝑛𝑑[0,1] denote a random value that distributes evenly in [0, 1], 

M and 2N denote variables numbers and populations.  

b) Evaluation: fitness function is measured using the ball and pocket positions. 

c) The determination of pockets: The pocket includes two roles in this algorithm; i) a ball objective that 

provides this BOA's exploit capability and ii) memory, which remembers the first top solutions found. 

This memory's purpose is to improve BOA's behavior without increasing the computing cost. The 

optimal balls found locations are updated using this memory in each iteration 

d) Balls Grouping: In this step, balls are sorted according to their accuracy. Regular balls and cue balls are 

the two types of balls. The first half of these balls are regular balls (i.e., n=1, 2, …, N), and the second 

sets cue balls (i.e., n=N+1, …, 2N). Each cue ball in an outstanding group corresponds to the same rank 

[18]. 

e) Assigning the pockets to balls: A roulette-wheel selection strategy is used to assign a destination pocket 

to each ordinary ball. More features are promised in the pockets with a smaller fitness value. The 

following is the likelihood of picking a pocket: 

 

𝑃𝐾 =
𝑒−𝛽𝑓𝑘

∑ 𝑒−𝛽𝑓𝑘
𝑘

 ; 𝑘 = 1,2,3… . 𝑘    (11) 

 

where, β represents the pocket's fitness value and indicates a selection pressure>zero and fk indicates 

the fitness of kth pocket. The target balls are struck by the cue balls and travel into the pockets. 

f) Ball position updating: The updated locations of ordinary balls are recorded after the collision. Ordinary 

balls' new placements are as (12) and (13), 

 

𝑃𝑅 =
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
     (12) 

 
𝐵𝑛,𝑚

𝑛𝑒𝑤 = 𝑟𝑎𝑛𝑑[−𝐸𝑅,𝐸𝑅](1 − 𝑃𝑅)(𝐵𝑛,𝑚
𝑜𝑙𝑑 − 𝑃𝑘,𝑚

𝑛 ) + 𝑃𝑘,𝑚
𝑛  , n=1,2,3……….N   (13) 

 

where 𝑩𝒏,𝒎
𝒏𝒆𝒘 and 𝑩𝒏,𝒎

𝒐𝒍𝒅  signify new and old value of the mth parameter from the ordinary ball. The 𝑷𝒌,𝒎
𝒏  

sgnify the mth variable of the kth pocket. The accuracy rate is clarified by 𝑷𝑹. 𝒓𝒂𝒏𝒅[−𝑬𝑹,𝑬𝑹] Indicates a 

uniformly distributed random number in the range[−𝑬𝑹,𝑬𝑹]. 𝑬𝑹 signify error rate, 𝒊𝒕𝒆𝒓 and 𝒊𝒕𝒆𝒓𝒎𝒂𝒙 

represent the current and max iterative numbers, respectively. The placements of cue balls after the 

collision are determined by their velocities, which are calculated as (14), 

 

𝑣𝑛
′⃗⃗⃗⃗ = 𝑠𝑞𝑟𝑡(2𝑎𝐵𝑛

𝑜𝑙𝑑𝐵𝑛
𝑛𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)𝐵𝑛

𝑜𝑙𝑑𝐵𝑛
𝑛𝑒𝑤̂     (14) 

 

where 𝒗𝒏
′⃗⃗ ⃗⃗  is ordinary ball velocity; 𝑩𝒏

𝒐𝒍𝒅𝑩𝒏
𝒏𝒆𝒘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the ball movement vector and 𝑩𝒏

𝒐𝒍𝒅𝑩𝒏
𝒏𝒆𝒘̂  is the movement 

unit vector of nth ball ordinary after collision. The letter a stand for acceleration rate, and it equals one. 

Cue ball speeds are calculated as (15) and (16). 
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𝑣𝑛+𝑁⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
𝑣𝑛
′⃗⃗⃗⃗  ⃗

𝐵𝑛
𝑜𝑙𝑑𝐵𝑛

𝑛𝑒𝑤̂ .𝐵𝑛+𝑁
𝑜𝑙𝑑 +𝑁𝐵𝑛

𝑜𝑙𝑑̂ 𝐵𝑛+𝑁
𝑜𝑙𝑑 𝐵𝑛

𝑜𝑙�̂�;   𝑛 = 1,2,3… .𝑁   (15) 

 

𝑣𝑛+𝑁
′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜔(1 −

𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)(𝑣𝑛+𝑁⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑣𝑛

′⃗⃗⃗⃗ )    (16) 

 

where 𝒗𝒏+𝑵
′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝒗𝒏+𝑵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  signify the nth cue ball velocities after and before the collision. 𝑩𝒏

𝒐𝒍𝒅 Indicate 

location of nth cue ball before billiard stick. 𝝎 Identifies a user-defined parameter [0,1] for controlling 

the cue ball movement. The (17) are the updated cue ball position: 

 

𝐵𝑛+𝑁
𝑛𝑒𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

𝑣𝑛+𝑁
′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

2𝑎
𝑣𝑛+𝑁

′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ +  𝐵𝑛
𝑜𝑙𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   , 𝑛 = 1,2,3… . 𝑁    (17) 

 

g) Testing the boundary conditions' limits: As the balls' locations are updated, they may fall out of the 

table, causing the final balls' positions to be placed outside of the specified range. As a result, the ball 

size should be adjusted. 

h) Testing the termination conditions: The procedure will be completed once specific criteria, such as the 

number of iterations, have been met. It will be continued if not. 

 

3.2.  The C-BO algorithm   

Because the novel proposed C-BO algorithm has a straightforward formulation that makes it simple 

to apply, we chose it over ACO. Selection of ACO as the performance comparison because ACO had better 

results in earlier optimization efforts. The initialization process in the BOA-based meta-heuristic technique is 

initiated randomly because of the population sample selection as in (10), and therefore cannot achieve 

accurate beginning procedure. Because meta-heuristic algorithms are overly sensitive to initialization states 

and good beginning states will improve the performance of these algorithms. The main importance of 

combining chaotic with meta-heuristic algorithms and analyzing their influence on performances in [27], 

[28]. Because of their higher computing efficiency, chaotic logistic maps are the best option [27]. 

Furthermore, logistic maps have a higher probability of obtaining values between 0 and 1, allowing for faster 

local searches. The following is a formula for this chaotic map: 

 

𝑦1 = 𝑟𝑎𝑛𝑘 

𝑦𝑖+1 = 4. 𝑦𝑖(1 − 𝑦𝑖), 𝑖 = 1,2, … . 𝑁 (18) 
 

This part is replacing the initialization of BOA in steps a) to h) presented in (10) to (17). where rank is a 

vector of random integers in the range of [0, 1]. The C-BO algorithm is built by substituting the random randi 

with the chaotic mapping vector (18). The traditional BOA with a chaotic character can be strengthened and 

improved in this way. 

 

3.2.1. Tuning and simulation process-based C-BO algorithm   

In this section, C-BO is used to optimize parameters 𝑘𝑥 , 𝑘𝑦, 𝑘𝑢 and 𝑘𝜔 of the tracking controller 

described in (4) and (7). Figure 3 depicts the ISE fitness function convergence of the C-BO, where shows a 

lower change after 300 iterative. The C-BO is implemented with 40 agents and 300 iterative. Constraints of 

the ISE are the gain factors (kx , ky , ku and kω), 0.01 ≤ kx, ky, ku and ky ≤ 15. This optimization technique 

repeats itself until the ISE's lowest value is found. To ensure that C-BO will work for the majority of runs 

since it is a stochastic optimization, the average optimized fitness function (ISE) and corresponding standard 

deviation for thirty independent runs are generated, displayed, and compared as illustrated in the Table 1. It is 

important to emphasize that the C-BO's low standard deviations demonstrate its stability. In 11 seconds, the 

C-BO arrived at best solution with the smaller value of the ISE. The C-BO algorithm, in particular, has a 

faster convergence rate than the ACO. The four gains after tuning for the controller (kx =  9.90,  

ky =  4,367, ku =  9.77 and kω =  3,767) change this error signal to offer the system control input. The 

system is thus forced to provide an output that is as close to the intended position as possible by the control 

input. 

 

3.3.  The ant colony optimization algorithm  

Ant colony optimization is a graph-based evolutionary metaheuristic technique that has been used to 

address a variety of difficult optimization issues. The fundamental goal of ACO is to determine the cheapest 

path in a graph. Artificial ants explore this graph in the quest for better routes. Each ant has a rather simple 

behavior; thus, it will often find only law-quality paths on its own. In the colony, ant cooperative leads to better 
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pathways [29]. Figure 4 present the flowchart of ACO for optimize the parameter of the tracking controller. The 

optimum controller parameter calculation realized depending on the cost functions equation [30]: 

 

𝐼𝑆𝐸(𝑒) = ∑ 𝑒𝑖
2𝑛

𝑖=1   

 

 

 
 

Figure 3. Cost convergence over iterations 

 

 

Table 1. Comparison of the statistical results for C-BO and ACO algorithms 
Technique Ave. Std. dev. 

Tuning using ACO 0.0914 0.0334 

Tuning using C-BO 0.038 0.0031 

 

 

Start 

Initialize number of ants, pheromone, 

and probability selected path

Evaluate the fitness function

Run the process model

Update pheromone and probability

Calculate optimum of kx, ky,ku and kω

Max. Iteration 

number reached

NO

Yes

Stop
 

 

Figure 4. ACO flowchart  
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3.3.1. Tuning and simulation process based ACO 

In this section, ACO is used to optimize the parameters of the tracking controller described in the 

controller section. It uses an ISE to ensure a perfect control performance under nominal operating conditions. 

One main point to be noted from this ACO specification is that some of the significant variables in the ACO 

algorithm are map size dependent, as shown in Table 2. This enables the entire calculation to function in 

simulation environments of varying sizes and designs, without having to re-program any part of the 

algorithm. The four gains after tuning for the controller (𝑘𝑥 =  4,659, 𝑘𝑦 =  4,271,𝑘𝑢 =  5,342, and  

𝑘𝜔 = 2,932) at that point alter this error signal to provide the control input for the system. 

 

 

Table 2. ACO specifications 
Specifications values 

No. of ants 1000 

Number of iterations 1000 

Alpha 0.8 

Beta 0.2 

evaporation rate 0.7 

 

 

4. RESULTS AND DISCUSSION 

MATLAB 2020a/Simulink was used to investigate and implement the mobile robot controller 

approaches. A comparison of the simulation results for the two scenarios is presented to show the efficiency 

of the suggested C-BO algorithm, as well as the significance of the dynamic model. In case 1, the kinematic 

model only of the robot was considered without looking to dynamic model. The robot was directly controlled 

and dependent on the C-BO and ACO optimization techniques. For case 2, the overall dynamic model was 

considered, including the speed and acceleration limitations dependent on the C-BO and ACO. The controller 

was expected to follow the path of an 8-shaped trajectory. In the simulation cases, the robot started at 

position (0.2, 0.0) m with 0° orientation, and followed an 8-shaped trajectory starting at (0.0, 0.0) m. The 

path of the robot is represented by a sequence of intended positions and velocities, both of which differ in 

time. Noise in the position values and velocities that were fed back to the controllers were included. The 

simulation repeats with similar conditions for optimization purposes. The simulation started with no 

parameter refreshing, and this began only at 𝑡 = 100 s. It remained active until the end of the simulation 

period. The accompanying parameters that were utilized in the simulation cases are: fixed sample time of  

0.1 s and controller gains kx, kx, ku, and  kw; saturation constants lx, lx, lu, lw; adaptation gains. 
 

γ =  diag(1.7, 1.1, 0.5, 0.3, 0.01, 0.5); and sigma modification  

Γ =  diag(0.0005, 0.001,0.001, 0.00006, 0.001,0.001). 
 

4.1. Case 1: Robot with the kinematic model only 

Figures 5 and 6 show the robot's path and the development of the distance error as case 1 of the 

simulation. The distance error is defined as the difference between the targets position hd and real position h 

at any given time. Figures 7 and 8 individually represent the advancement of the ideal and real X and Y 

positions with and without tuning the controller parameter during case 1 of the simulation. It is worth noting 

that a difference in performance when compared to the case without the optimization technique should be 

observed. As in the simulation without the optimization technique, the distance error did not reduce to zero. 

Instead, it oscillates around 0.1 m, causing the robot's path to be distorted. The distance error was reduced by 

roughly 0.01 after the ACO was used to tune the controller gain value. While the distance error was also 

reduced by 0.02 after applying C-BO to tune the controller gain value. 

 

4.2. Case 2: Robot model with perfect dynamic compensation  

In this case, the dynamic model of the pioneer 3-DX with LASER was considered, with limitations 

placed on its speed and acceleration. The proposed tuning strategy has the drawback of being reliant on 

dynamic model knowledge. In this case, ignoring the effects of the dynamic model was not significant. the 

noise was applied to the position and velocity values that were supplied back to the controllers to make the 

simulation more realistic. The principal objective of this study is to see the successful of the C-BO and ACO 

in discovering the ideal coefficients that will result in improved performance and better convergence. Table 3 

indicates the optimum controllers ‘parameters. The offline learning approach was utilized in both C-BO and 

ACO algorithms. After utilizing the ACO, the objective function value obtained was 3,490 with the 

parameter values (kx = 4,659, ky = 4,271, ku = 5,342 and kω = 2,932). Conversely, after utilizing C-BO, 

the results are (kx = 9.90, ky = 4,367, ku = 9.77, and kω = 3,767). 
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Figure 5. Robot path with kinematic controller only after using C-BO and ACO optimization technique 

 

 

 
 

Figure 6. Distance error with kinematic controller only after using C-BO and ACO optimization technique 

 

 

 
 

Figure 7. Desired and actual position on x axis with kinematic controller only after using the C-BO and ACO 

optimization techniques 

 

 

 
 

Figure 8. Desired and actual position on Y axis with kinematic controller only after using the C-BO and ACO 

optimization technique 
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Figures 9 and 10 show the robot path before and after upgrading the parameters, as well as the 

evolution of the distance error during the simulation. It is worth noting that without optimization, the distance 

error fluctuates nearly about 0.2 m till the upgrading of the parameter is enabled at t = 100 s. This results in 

reduction in the error to a value lower than 0.05 m at t = 200 s. After tuning the controller gain, which uses 

ACO, the distance error vibrates at 0.02 m till the parameter adjusted at 𝑡 = 100 s is activated, the error 

drops to less than 0.008 m at 𝑡 = 200 s. Similarly, after tuning the controller gain using C-BO with the 

distance error vibration around 0.02 m till the parameter activation updated at 𝑡 = 100 s, the distance error 

vibrated around 0.02 m till the parameter activation updated at 𝑡 = 100 s. At 𝑡 = 200 s, the error is 

minimized to a value less than 0.006 m. Figures 11 and 12 show the ideal and actual positions of X and Y, 

respectively, after using the C-BO and ACO optimization techniques. From the figures, it can be observed 

that the robot is always behind the ideal location when no optimization approaches are used. 

 

 

 
 

Figure 9. Robot path with a perfect dynamic compensation after using C-BO and ACO optimization 

techniques 

 

 

 
 

Figure 10. Distance error with a perfect dynamic compensation after using C-BO and ACO optimization 

techniques 

 

 

 
 

Figure 11. Desired and actual position on x axis with perfect dynamic compensation after using C-BO and 

ACO optimization techniques 
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Figure 12. Desired and actual position on Y axis with perfect dynamic compensation after using C-BO and 

ACO optimization technique 

 

 

Table 3. The comparison results of C-BO and ACO controllers after perfect dynamic compensation with 

impact of disturbances 
Technique Controller gains ISE 

Without an optimization 

technique 

kx =  0.1, ky =  0.1, 
ku =  4, kw =  4 

8.6 

Tuning using ACO 
kx =  4.659, ky =  4.271 

ku =  5.342, kω = 2.932 
12.4 

Tuning using C-BO 
kx =  9.90, ky =  4.367, 
ku =  9.77, kω =  3.767 

15.3 

 

 

From the results for the control gains presented in Table 3, it can be seen that the minimum error 

(ISE, IAE) value is accomplished by considering the set of gains after utilizing the C-BO or ACO. The 

simulation results show that the C-BO technique exhibits a better performance and convergence rate than the 

ACO. It has the benefits of quick response, tracking accuracy, good anti-interference, and high stability 

hence, the C-BO technique offers the best decision for path-tracking control of mobile robots with 

differential drive. Also, from the result presented tuning utilizing C-BO has the least error margin (i.e., a 

steady-state error for the robot’s path is 0.006, ISE = 0.1172 ) as compared to ACO (which gave a steady-

state error of 0.008 for the robot’s path, ISE = 0.1325). 

 

 

5. CONCLUSION 

Motion control for a differential-drive mobile robot-based dynamic model compensation controller 

was presented in this study. Compared to models that are based only on the robot's kinematics, this approach 

produces more accurate simulation results allowing for a more precise assessment of robot behavior. The 

control parameters can be fine-tuned using either the proposed C-BO algorithm or the ACO methodology. 

We used the novel proposed C-BO algorithm because it has a simple formulation that makes it easy to 

implement. MATLAB/Simulink was used to test the control design of the mobile robot using a differential 

drive. The simulation results demonstrate that the C-BO technique outperforms the ACO technique in terms 

of the performance and convergence rate. A quick response, outstanding anti-interference, and tracking 

precision are all advantages. Consequently, the C-BO method is the most effective method for determining 

the tuning parameters that offer the optimal path tracking control for mobile robots with differential drives. 

The applicability, effectiveness, and superiority of the C-BO to identify the optimal solution have been 

demonstrated by comparisons of the results of C-BO optimization with the ACO approaches. 
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