
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 12, No. 6, December 2022, pp. 6635~6644 

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i6.pp6635-6644      6635  

 

Journal homepage: http://ijece.iaescore.com 

Comparison study of transfer function and artificial neural 

network for cash flow analysis at Bank Rakyat Indonesia 
 

 

Anifatul Faricha1, Siti Maghfirotul Ulyah2, Rika Susanti3, Hawwin Mardhiana4,  

Muhammad Achirul Nanda5, Ilma Amira Rahmayanti2, Christopher Andreas2 
1Department of Electrical Engineering, Institut Teknologi Telkom Surabaya, Surabaya, Indonesia 

2Department of Mathematics, Universitas Airlangga, Surabaya, Indonesia 
3 Emerge Research, Bekasi, Indonesia 

4Department of Information System, Institut Teknologi Telkom Surabaya, Surabaya, Indonesia 
5Department of Agricultural and Biosystem Engineering, Universitas Padjadjaran, Sumedang, Indonesia 

 

 

Article Info  ABSTRACT  

Article history: 

Received Sep 15, 2021 

Revised Jun 26, 2022 

Accepted Jul 18, 2022 

 

 The cash flow analysis is essential to examine the economic flows in the 

financial system. In this paper, the financial dataset at Bank Rakyat 

Indonesia was used, it recorded the sources of cash inflow and outflow 

during a particular period. The univariate time series model like the 

autoregressive and integrated moving average is the common approach to 

build the prediction based on the historical dataset. However, it is not 

suitable to estimate the multivariate dataset and to predict the extreme cases 

consisting of nonlinear pairs between independent-dependent variables. In 

this study, the comparison of using two types of models i.e., transfer 

function and artificial neural network (ANN) were investigated. The transfer 

function model includes the coefficient of moving average (MA) and 

autoregressive (AR), which allows the multivariate analysis. Furthermore, 

the artificial neural network allows the learning paradigm to achieve optimal 

prediction. The financial dataset was divided into training (70%) and testing 

(30%) for two types of models. According to the result, the artificial neural 

network model provided better prediction with achieved root mean square 

error (RMSE) of 0.264897 and 0.2951116 for training and testing 

respectively. 
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1. INTRODUCTION  

As the effect of global industrialization, mainly on the financial system, finance has been becoming 

a vital concern in the economic flows [1]. Finance includes budgeting, cash management, financial 

forecasting, credit, investment analysis, and also modern business analysis required to adopt technology that 

is suitable to the global environment [2]. Generally, finance can be classified into two categories i.e., public 

finance and private finance. Private finance includes firms, individual businesses, and corporate. Meanwhile, 

public finance concerns the disbursement and revenue related to the government such as state government, 

central government, and semi-government [3]. Several techniques are widely used to determine the 

operational and financial performance of the business activity such as comparative statement analysis (e.g., 

comparative income and position statement analysis), trend analysis, fund flow statement, common-size 

analysis, ratio analysis, and cash flow statement [4]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Cash flow analysis is essential because it can be used to determine the amount of money to run 

business operations and complete transactions. It records the sources of cash inflow and the use of cash 

outflow during a particular period such as cash assets, near-cash assets, current liabilities, and notes 

receivable [5]. Generally, the forecasting method in cash prediction uses time series techniques that create 

models by capturing patterns in historical data and extrapolating these patterns into the future [6]. There are 

several models of time series forecasting such as linear time series models, regression, and exponential 

smoothing [7]–[9]. However, those models have limitations, for example, in the linear time series model, the 

pair of independent and dependent variables are assumed linearly correlated, whereas many financial cases 

are non-linear [10]. Furthermore, in the regression model, it is broadly reported that this model requires the 

basic assumption i.e., normality in residual, no multicollinearity, and homoscedasticity [11], [12]. Afterward, 

exponential smoothing, this model also has a lagging effect and requires the updated actual cash flow 

regularly [13]. Another conventional model widely used for financial forecasting is the Box-Jenkins model 

known as autoregressive integrated moving average (ARIMA) [14], [15]. ARIMA essentially relies on the 

complete historical data to do forecasting, it is also relatively robust and efficient for short-run forecasting 

[16]. However, the ARIMA is not suitable to estimate the extreme cases consisting of a nonlinear 

relationship [17]. The transfer function includes the coefficient of moving average (MA) and autoregressive 

(AR) [18]. It is a time series approach that can explain the dynamic series case in the model prediction [19].  

Recently, an artificial intelligence algorithm has also attracted many researchers and is extensively 

applied in forecasting models in many areas such as engineering, social, business, finance, stock problem, 

and weather prediction [20], [21]. To build a model using an artificial neural network (ANN) does not need 

to meet any basic assumption and can capture nonlinearity. In addition, ANN has the learning mechanism at 

the training process to minimize the error which becomes one of the main advantages of this algorithm to 

generalize result prediction based on the historical data and elaborate the latent part between input-output 

pair [22], [23].  

In this paper, the comparison between machine learning ANN and classical parametric modeling 

(multi-input transfer function) was studied for cash flow analysis at Bank Rakyat Indonesia (BRI). 

Furthermore, the novelty of this study was also by the inclusion of four dummy variables i.e., i) day (1 to 30), 

ii) weekday (1 to 7), iii) holiday (0 or 1), and iv) month. The importance level of the independent variable 

and dummy variable examined using significance test were included here. In addition, the optimal model 

generated by the algorithm was also reported. This paper is organized as follows: the definition of cash flow 

analysis, model prediction using transfer function, and ANN are explained in section 2. Section 3 presents the 

analysis of the results. Finally, in section 4, we build our conclusion. 

 

 

2. RESEARCH METHOD 

The financial statement of BRI from July 2019 to September 2020 was used in this study accessed 

through the Kaggle board [24]. Table 1 summarizes all the parameters linked to the money flows at BRI. 

According to Table 1, there are nine parameters included in the historical financial dataset at BRI. In this 

study, the parameters in Table 1 were divided into the dependent and independent variables. The dependent 

variables included four variables i.e., cash_in_echannel, cash_out_echannel, cash_in_office, cash_out_office. 

Furthermore, the independent variables were all parameters in Table 1 other than those dependent variables. 

In addition, besides independent and dependent variables, the dummy variables were also added in this study 

such as day, month, weekday, and holiday. 

 

 

Table 1. Explanation of all parameters linked to the cash flow at BRI 
No. Parameter Description 

1. cash_in_echannel Total cash inflow to cash recycles machine (CRM) and automated teller machine (ATM) 

2. cash_out_echannel Total cash outflow from CRM and ATM 
3. cash_in_office Total cash inflow to BRI 

4. cash_out_office Total cash outflow from BRI 

5. current account Total current account 
6. deposits Total deposits 

7. other_liabilities Investment other than current accounts, savings, and deposits 

8. savings Total savings 
9. ave_weekly_dpk Average of dpk’s weekly balance 

10. day Day 1 to 30 

11. month July 2019 to September 2020 
12.  weekday Weekday 1 to 7 (1 for Sunday; 2 for Monday; 3 for Tuesday; 4 for Wednesday; 5 for 

Thursday; 6 for Friday; 7 for Saturday) 

13. holiday Holiday and Non-Holiday (0 for holidays (not operating); 1 for effective days (operating)) 
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In this paper, two kinds of models were used to assess the financial statement forecasting at BRI i.e., 

transfer function and ANN. The transfer function model was built using statistical analysis software (SAS) 

and ANN used IBM SPSS software. To build the prediction model using the transfer function or ANN, the 

dataset was divided into training (70%) and testing (30%). The training dataset was from July 31, 2019 to 

May 18, 2020 and the testing dataset used the BRI’s financial statement from May 19, 2020 to September 30, 

2020. This proportion of split was adapted from the work by Ulyah et al. [25] who compared some ratios of 

training and testing data and concluded that the highest accuracy of ANN was obtained in the ratio of 70:30. 

 

2.1.   Transfer function 

The transfer function is a time series model which explains the dynamic characteristics of the series 

process. Herein, the transfer function model was used to estimate four dependent variables and all linked 

parameters to the cash flow at BRI (including the dummy variable), which was summarized in Table 1. The 

general formula of the transfer function used in this study can be written in (1) [26], [27], 

 

�̂�𝑡 = ∑
𝜔𝑗(𝐵)

𝛿𝑗(𝐵)
𝑘
𝑗=1 𝐵𝑏𝑗𝑋𝑗𝑡 +

𝜃(𝐵)

𝜙(𝐵)
𝛼𝑡 (1) 

 

where,  

�̂�𝑡  : predicted dependent variable 

𝑋𝑡 : independent variable 

𝜔(𝐵) : coefficient of MA with order s, where  𝜔(𝐵) = 1 − 𝜔1𝐵 − 𝜔2𝐵2 − ⋯ − 𝜔𝑠𝐵𝑠 

𝛿(𝐵) : coefficient of AR with order r, where  𝛿(𝐵) = 1 − 𝛿1𝐵 − 𝛿2𝐵2 − ⋯ − 𝛿𝑟𝐵𝑟 

𝜃(𝐵) : coefficient of MA with order q, where 𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞  

𝜙(𝐵) : coefficient of AR with order p, where  𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝 

𝛼𝑡 : residual at t 

 r, s, p, q, and b are constant. 

 

2.2.  Artificial neural network 

The ANN was used to predict four dependent variables for cash flow analysis in BRI during the 

period from July 2019 to September 2020 with total data points of 425. The architecture of ANN used in this 

study consisted of four layers i.e., one input layer followed by two hidden layers and one output layer, as 

depicted in Figure 1. The input layer included several nodes from the independent variables and dummy 

variables. All nodes from the input layer were connected to the nodes at the subsequent layer. As shown in 

Figure 1, two hidden layers were applied in this architecture. Then, the output layer consisted of four 

predicted dependent variables i.e., cash_in_echannel (�̂�1), cash_out_echannel (�̂�2), cash_in_office (�̂�3), and 

cash_out_office (�̂�4).  

 

 

 
 

Figure 1. The architecture of the ANN model used in this study 

 

 

In this study, the hidden layer and output layer used the tangential hyperbolic (tanh) as the activation 

function (Φ) determined in (2). The (3) to (5) are for the forward computation i.e., input layer to hidden layer 

(ℎ̅1), hidden layer to hidden layer (ℎ̅𝑝+1), and hidden layer to output layer (�̅�) respectively, where W is the 
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weight matrix and �̅� is the input vector. Furthermore, the backward computation from the output layer to the 

input layer is presented in (6), it is to update the weights through the learning process using the gradient of 

the loss function, where the loss function is symbolized as L, the connected weight from hidden unit hr-1 to hr 

is 𝑤(ℎ𝑟−1,ℎ𝑟), and the output is o [28]. 

 

Φ(𝑥) =
𝑒2𝑥−1

𝑒2𝑥+1′
 (2) 

 

ℎ̅1 = Φ(𝑊1
𝑇�̅�) (3) 

 

ℎ̅𝑝+1 = Φ(𝑊𝑃+1
𝑇 ℎ̅𝑝)∀𝑝𝜖{1 … 𝑘 − 1} (4) 

 

�̅� =  Φ(𝑊𝑘+1
𝑇 ℎ̅𝑘) (5) 

 
𝜕𝐿

𝜕𝑤(ℎ𝑟−1,ℎ𝑟)
=

𝜕𝐿

𝜕𝑜
. [

𝜕𝑜

𝜕ℎ𝑘
∏

𝜕ℎ1+𝑘

𝜕ℎ𝑖

𝑘−1
1=𝑟 ]

𝜕ℎ𝑟

𝜕𝑤(ℎ𝑟−1,ℎ𝑟)
∀𝑝𝜖{1 … 𝑘} (6)      

 

2.3.  Model evaluation 

In this study, the root mean square error (RMSE) calculated in (7) was used to evaluate the result 

from the two models i.e., transfer function and ANN. The predicted and observed dependent variable is 

denoted as 𝑌 ̂and 𝑌 respectively. Then, the total number of observations is N. As explained before, the dataset 

was divided into training and testing processes with the total number of observations are 293 and 132 

respectively. 

 

𝑅𝑀𝑆𝐸 = √∑
(�̂�𝑖−𝑌𝑖)2

𝑁

𝑁
𝑖=1  (7) 

 

 

3. RESULTS AND DISCUSSION 

Table 2 summarizes the descriptive statistics from all variables linked to BRI’s cash flow from 

July 31, 2019 to September 30, 2020. It consisted of the independent and dependent variables, the average, 

the maximum and minimum money flow, and the standard deviation. It was beneficial for the initial 

statistical analysis purposes. 

 

 

Table 2. Descriptive statistics of all parameters linked to the financial statement at BRI 

Variable Parameter Average (Rupiah) Max (Rupiah) Min (Rupiah) 
Standard Deviation 

(Rupiah) 

Y1,t cash_in_echannel 703.341.411,7647 3.744.400.000 0 342.185.918,984555 

Y2,t cash_out_echannel -699.203.294,1176 0 -2.670.100.000 373.507.578,335473 

Y3,t cash_in_office 89.779.694.500,3 656.925.500.445 0 92.603.694.469,84 
Y4,t cash_out_office -62.862.353.977,7 0 -344.749.440.186 52.247.391.640,6855 

X1,t current account 881.283.069.011,1 4.678.342.418.901,08 382.093.559.530,92 386.604.058.906,816 

X2,t deposits 900.630.117.960,0 3.464.394.920.252 729.321.441.460 191.594.178.022,817 
X3,t other_liabilities 13.765.019.988,40 47.590.591.383,56 10.080.295.595,6199 3.401.930.180,24512 

X4,t savings 678.195.351.169,58 2.794.601.471.249,23 617.056.714.583,39 109.363.810.824,234 

X5,t ave_weekly_dpk 309.217.338.523,2 451.620.877.687,121 254.411.463.022,328 37.614.262.501,333 

 

 

3.1.  Transfer function model 

The financial statement from BRI was divided into training and testing datasets. The training dataset 

was used to build the transfer function model by including all the independent, dummy, and dependent 

variables. Table 3 shows the significance of all parameters required to generate the transfer function model. 

As shown in Table 3, every predicted dependent variable was affected by certain parameters, and not all the 

parameters were significant which was indicated by the P-value. The transfer model for predicted 

cash_in_echannel (�̂�1), cash_out_echannel (�̂�2), cash_in_office (�̂�3), and cash_out_office (�̂�4) were 

generated in (8) to (11) respectively. The transfer model for predicted cash_in_echannel (�̂�1) was strongly 

affected by the independent variable of the current account shown in (8). Then, the transfer model for 

predicted cash_out_echannel (�̂�2) was affected by two dependent variables i.e., deposits and 

other_liabilities, shown in (9). Furthermore, the transfer model for predicted cash_in_office (�̂�3) was 
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affected by the independent variable of the current account shown in (10). Finally, the transfer model for 

predicted cash_out_office (�̂�4) was affected by the independent variable of savings shown in (11).  

 

 

Table 3. Significant test results from all parameters to build the transfer function model 
Transfer function model Parameter Estimate P-Value Conclusion 

cash_in_echannel 

(b=0, r = 0, s = 2) ARIMA 
([1,7],[7]) 

𝝁 -950675112 0.1442 Not Significant 

ϕ7 0.63924 <.0001 Significant 

θ1 0.11465 0.0071 Significant 

θ7 0.79782 <.0001 Significant 

𝜔10 -0.0000353 0.9832 Not Significant 

𝜔11 -0.0035181 0.0955 Significant 

𝜔12 0.0009918 0.5505 Not Significant 

cash_out_echannel 

 
MITF (b=1, r = 2, s = 2) 

(b=8, r = 0, s = 1) ARIMA 

([1,7],[1,7]) 

𝝁 1.04982E11 <.0001 Significant 

ϕ1 0.09118 0.0217 Significant 

ϕ7 0.80304 <.0001 Significant 

θ1 0.0046551 0.7215 Not Significant 

θ7 0.99534 <.0001 Significant 

𝜔20 0.03218 0.0372 Significant 

𝜔21 0.0062744 0.7890 Not Significant 

𝜔22 -0.01060 0.6044 Not Significant 

𝛿21 0.10445 0.7088 Not Significant 

𝛿22 -0.81547 0.0010 Significant 

𝜔30 -3.03614 0.0199 Significant 

𝜔31 0.34128 0.7955 Not Significant 

cash_in_office 

(b=8, r = 2, s = 2) ARIMA 
([1,7],[7]) 

𝝁 -637872059 <.0001 Significant 

ϕ1 -0.13807 <.0001 Significant 

ϕ7 0.84133 <.0001 Significant 

θ7 0.99201 <.0001 Significant 

𝜔20 0.00004724 0.4538 Not Significant 

𝜔21 0.00002243 0.8309 Not Significant 

𝜔22 0.00005089 0.4642 Not Significant 

𝛿21 -1.76013 <.0001 Significant 

𝛿22 -0.91038 <.0001 Significant 

cash_out_office 

(b=8, r = 2, s = 0) ARIMA 

([7],[7]) 

𝝁 -7.1855E10 <.0001 Significant 

ϕ1 0.76147 <.0001 Significant 

θ7 0.99518 <.0001 Significant 

𝜔40 0.01119 0.1952 Not Significant 

𝛿41 0.24590 <.0001 Significant 

𝛿42 -1.00000 <.0001 Significant 

 

 

𝑌1,𝑡 = (−0.0000353 − 0.0035181𝐵 − 0.0035181𝐵2)𝑋1,𝑡 +
(1−0.11465𝐵−0.79782𝐵7)𝛼𝑡

(1−0.63924𝐵7)
 (8) 

 

𝑌2,𝑡 = (
0.03218−0.00627𝐵+0.0106𝐵2

1−0.10445𝐵+0.81547𝛿2𝐵2
) 𝑋2,𝑡−1 + (−3.0361 − 0.34128𝐵)𝑋3,𝑡−8 +

(1−0.00466𝐵−0.99534𝐵7)𝛼𝑡

(1−0.09118𝐵−0.80304𝐵7)
 (9) 

 

𝑌3,𝑡 = (
0.00004724−0.00002243𝐵−0.00005089𝜔22𝐵2

1+1.76013𝐵+0.91038𝐵2 ) 𝑋2,𝑡−8 +
(1−0.99201𝐵7)𝛼𝑡

(1+0.13807𝐵−0.84133𝐵7)
 (10) 

 

𝑌4,𝑡 = (
0.01119

1−0.24590𝐵+1.00000𝐵2) 𝑋4,𝑡−8 +
(1−0.99518𝐵7)𝛼𝑡

(1−0.76147𝐵7)
 (11) 

 

3.2.  Artificial neural network (ANN) model  

In the same way as the transfer function model, herein, the dataset used to build the artificial neural 

network (ANN) model was divided into two categories i.e., training dataset and testing dataset. Figure 2 

depicts the importance or significance of the independent variables used to build the ANN model. As shown 

in Figure 2, the importance of the independent and dummy variables in order was saving, deposits, 

other_liabilities, weekday, holiday, current_account, ave_weekly_dpk, day, and month. Furthermore, the 

summary result of the ANN model is presented in Table 4. The sum of squares error (SSE) was used to 

evaluate the ANN model, based on Table 4, the SSE for training and testing were 20,560 and 11,496 

respectively.  

 

3.3.  Comparison of transfer function and artificial neural network model 

The RMSE was used to evaluate the transfer function and ANN model. Table 5 summarizes the 

RMSE from the two types of models. The training dataset was from July 31, 2019 to May 18, 2020 with 293 
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of the number of observations. The testing dataset was from May 19, 2020 to September 30, 2020 with a total 

number of observations of 132.  

 

 

  

Figure 2. The importance of the independent variables used to build the ANN model 

 

 

Table 4. Model summary result 
Parameter Training Testing 

Relative error for scale dependents 

cash_in_echannel 0.721 1.054 

cash_out_echannel 0.480 0.806 
cash_in_office 0.378 0.435 

cash_out_office 0.303 0.444 

Average overall relative error  0.426 0.588 
Stopping rule used 1 consecutive step(s) with no decrease in error - 

Training time 12 seconds - 

Sum of Squares Error 20.560 11.496 
 

 

 

Table 5. The comparison between transfer function and ANN model 

Model 
RMSE 

Training Testing 

Transfer Function 284,205,145.209827 319,686,051.63671 

ANN 0.264897 0.2951116 

 

 

The RMSE in Table 5 is the cumulative RMSE between the observed data (𝑖. 𝑒. , 𝑌1, 𝑌2, 𝑌3, 𝑌4) and 

the predicted value (𝑖. 𝑒. , �̂�1, �̂�2, �̂�3, �̂�4). According to Table 5, the numerical results of RMSE at the training 

and the testing were dropped significantly using the ANN model. Furthermore, Figure 3 demonstrates the 

comparison of the ANN model and transfer model to estimate the observed data of cash_in_office (𝑌3) where 

Figure 3(a) describes the training stage and Figure 3(b) depicts the testing stage. According to  

Figures 3(a) and 3(b), overall, the ANN model estimated the observational data curve more accurately than 

the transfer function model. These results reveal that the ANN model has more favorable prediction 
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capability than the transfer function does, it is mainly due to the ANN model including the learning process 

to adjust the weight to obtain the optimal prediction. 

 

 

 
(a) 

 

 
(b) 

 

Figure 3. The comparison of two types of models to estimate the observed data of cash_in_office;  

(a) training process and (b) testing process 

 

 

4. CONCLUSION 

This paper successfully demonstrated the comparison study using the two types of models i.e., ANN 

and transfer function for cash flow analysis at Bank Rakyat Indonesia (BRI) from July 31, 2019 to September 

30, 2020. In this study, besides including the independent variables and dependent variables provided by 

BRI, the dummy variables were also added to build the model. There was a total of 425 observational 

datasets which were divided into two stages i.e., training dataset and testing dataset with a total number of 

observations of 293 and 132 respectively. To build the transfer function model, all the significances of 

parameters were checked using P-value to obtain the optimal estimation. The transfer function model for 

predicted cash_out_echannel was strongly affected by independent variables of deposits and other_liabilities. 

Then, the transfer function model for predicted cash_in_echannel and cash_in_office was strongly affected 

by the independent variable of the current account. Furthermore, the transfer model for predicted 
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cash_out_office was affected by independent variables of savings. The second model was ANN, herein, the 

importance of the independent and dummy variables was examined. The obtained high significance level in 

order was saving, deposits, other_liabilities, weekday, holiday, current_account, ave_weekly_dpk, day, and 

month, respectively. The RMSE achieved by the ANN model was 0.264897 and 0.2951116 for training and 

testing respectively. The comparison models between the transfer function and ANN were also analyzed. 

Based on the result, the achieved RMSE value for ANN dropped significantly. These findings indicate that 

the ANN has better prediction than the transfer function does. In the future study, we are concerned about 

using the ANN model by including several parameters to improve the current prediction model such as by 

adjusting the number of hidden layers, units, neurons, and the activation function. 
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