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 Hyperspectral image (HSI) has been widely adopted in many real-world 

applications due to its potential to provide detailed information from spectral 

and spatial data in each pixel. However, precise classification of an object 

from HSI is challenging due to complex and highly correlated features that 

exhibit a nonlinear relationship between the acquired spectral unique to the 

HSI object. In literature, many research works have been conducted to 

address this problem. However, the problem of processing high-dimensional 

data and achieving the best resolution factor for any set of regions remains to 

be evolved with a suitable strategy. Therefore, the proposed study introduces 

simplified modeling of the hyperspectral image in which precise detection of 

regions is carried out based on the characterization of pure signatures based 

on the estimation of the maximum pixel mixing ratio. Moreover, the 

proposed system emphasizes the pixel unmixing problem, where input data 

is processed concerning wavelength computation, feature extraction, and 

hypercube construction. Further, a non-iterative matrix-based operation with 

a linear square method is performed to classify the region from the input 

hyperspectral image. The simulation outcome exhibits efficient and precise 

object classification is achieved by the proposed system in terms classified 

HSI object and processing time. 
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1. INTRODUCTION  

Hyperspectral imaginary (HSI) provides a good scope of in-depth analysis for various remote-

sensing domains to understand, identify objects, materials, or trace processes [1]. HSI technology utilizes 

various spectrometer sensors (such as AVIRIS and ROSIS) to capture views or locations of interest over the 

wavelength ranges from perceptible to closer infrared [2]. The captured HSI encompasses the rich spectral 

evidence revealing the exclusive corporal attributes of the ground traits and offers abundant spatial 

information related to the ground traits [3]. Therefore, HSI is widely used in many real-world applications to 

obtain thorough spectral evidence and to address problems of discriminating objects that cannot be resolved 

well through multispectral images. HSI's potential applications include precision agriculture, environment 

monitoring, atmosphere, ocean, inland waters, ice and snow, medicine, forestry, mine detection, space, and 

mineral exploration [4], [5]. HSI generally captures more than two hundred contiguous wavelength bands 

ranging from 0.4 to 2.5 µm and constructs a hypercube that systematically combines the 3D spectral and 2D 

spatial information, which helps practitioners realize accurate identification and characteristics ground 

objects [6], [7]. Despite the wide range of information that offers many opportunities, it also comes with 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Precise identification of objects in a hyperspectral image by … (Soumyashree M. Panchal) 

6069 

many challenges due to a variety of reasons. First, the captured HSI exhibits the unique statistical and 

geometric features of high dimensional 3D spectral and 2D spatial data [8]. On the other hand, the hypercube, 

an n-dimensional hyperspectral object obtained from HSI, may contain less specific information because of 

non-uniform proportion or distribution of spectral and spatial information and highly correlated adjacent 

bands [9].  

As a result, HSI pixels are most likely to be assorted and mixed with manifold substances [10]. 

Therefore, mining pure signatures from HIS poses a huge challenge in the process of region classification 

and analysis. This has led to the research field of spectral unmixing, which can be regarded as a quantitative 

and measurable analysis to identify pure signature (endmembers) and their mixing ratio (abundance). 

Extensive research works have been done in the literature to address spectrum unmixing problems based on 

linear and nonlinear approaches. Nonlinear methods can simulate physical phenomena well, so they can bring 

better separation or unmixing performance for some applications [11]. Besides, nonlinear methods are 

usually associated with complex mathematical representations and are applicable to limited applications [12]. 

In contrast, linear methods are easy to implement and widely adopted in various remote sensing fields. A 

least square method is one of the popular linear approaches to solve the problem of spectral mixing based on 

abundance estimation [13]. 

However, this method is highly dependent on the recognizability conditions, that it needs to process 

a large number of spectral bands compared to a number of the pure signature. In addition, the highly 

correlated bands and redundancy in HSI also lead to an increase in computational overhead, which may 

compromise the performance of the abundance estimation. In this regard, several solutions were introduced 

in the literature that is generally based on feature extraction and band selection methods. The band  

selection-based approach is mainly a matter of correlation analysis and computation of shared or common 

information, whereas feature extraction is mostly done using principal component analysis (PCA), scaling 

techniques, and linear discriminant analysis (LDA). The work done by Kang et al. [14] suggested an HSI 

classification scheme where attributes were extracted using an edge-aware filter, and its dimensionality is 

reduced using PCA. The reduced features were then introduced to the SVM classifier to perform HSI 

classification. Since the HSI data is very complex, highly correlated, and in this study, only spectral features 

were extracted, which may not provide better feature representation during the training phase, and the 

classifier may not perform very well. The study of Rajegowda and Balamurugan [15] employed an 

unsupervised band selection mechanism approach to classifying highly redundant hyperspectral data. Texture 

analysis is done based on the metric-band similarities and employed the application of kernel-oriented neural 

networks for the classification. The work of Zhou et al. [16] adopted a learning model to address unmixing 

problems with the matrix factorization technique. In a similar direction, the work of Qi et al. [17] presented a 

solution against unmixing problem based on the sparse matrix representation considering both spatial and 

spectral data processing.  

Chatterjee and Yuen [18] also employed a learning mechanism using a sparse coding dictionary 

towards achieving higher accuracy in the classification process. In the study of Narmadha et al. [19], the 

authors have focused on the HSI compression using Polyadic decomposition and discrete wavelet transform 

approach. This approach provides good compression performance but may be subjected to the error of 

information loss or visual quality in the reconstructed image. The work of Drumetz et al. [20] considered the 

problem of intra-class variability of HSI and introduced an unmixing mechanism based on the group sparsity 

and mixed norms as an optimization problem. In another study by Wang et al. [21], an approach of 

independent component analysis (ICA) is used to characterize mixing ratio variables, and a gradient descent 

mechanism is used to classify the HSI regions. In the work of Liu et al. [22], spatial structural attributes and 

statistical information is combined and represented into the positive matrix factorization to handle 

dynamicity associated with the unmixing process. Salem et al. [23] suggested a band selection mechanism 

oriented on the layer-based spectral and spectrum information using C-means clustering. The work of  

Wo et al. [24] introduced a framework to assess different techniques from different perspectives, such as 

feature representation and classification performance.  

The work of Hossain et al. [25] presented a dimension minimization mechanism based on the joint 

approach of PCA and normalized shared information. Rizkinia and Okuda [26] introduced a regularization 

algorithm developed based on the nuclear norm using a low-rank local mixing ratio to classify regions in the 

HSI. Apart from this, there are various other works carried out in the context of spectral unmixing such as 

sparse regression using learning techniques given by Yuan et al. [27], sparse coding mechanism for object 

extraction by Farani and Rabiee [28], a blind unmixing approach introduced by Yao et al. [29]. Hence, there 

are many research efforts based on the different techniques proposed by the researchers to address the 

unmixing and region classification in the HSI. However, most of the existing methods are subjected to less 

accuracy in the precise feature representation. Also, many of the previous works based on the learning 

techniques may be subjected to the computation overhead and inappropriate classification outcome. The 

following are the few significant research problem being explored based on the above discussions.  
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− According to analysis, most existing works only use spectral information in the feature extraction process, 

so they achieved low performance.  

− Also, the adoption of matrix factorization is most dominant in previous research works. 

− It has also been found that many research schemes are associated with iterative mechanisms to solve the 

unmixing problem. However, such approaches are computationally expensive and do not place much 

focus on classification errors. 

− The classification error rests on the fact that it shows an error in the mixing ratio estimation, which is less 

considered in existing works. 

Therefore, the proposed research study intended to present a different solution, unlike existing 

research works, to address problems of pixel mixing. The proposed scheme aims at classifying the objects in 

the HSI based on the characterization of pure signature distribution across an identifiable surface in the 

hyperspectral scene. A set of values for the mixing ratio is obtained for each pixel representing the 

percentage of each pure signature present in the HSI data with a high spatial correlation to local regions. 

Further, finding the extreme mixing ratio value for each pixel and assigning it to the corresponding pure 

signature class. The design consideration of the proposed scheme is based on the different factors viz. i) the 

statistical dependence of pure signatures should be least correlated, as pure signatures represent different 

classes, ii) the pure signatures occurrence possibility is usually low, and iii) if they occur then the spatial 

scope of their occurrences is generally less. In addition, the fully constrained least-squares method (FCLSM) 

is used to perform material quantification to accurately estimate the maximum size of the true mixing ratio of 

the sub-pixels contained in the vector. Figure 1 highlights the schematic architecture of the proposed method. 

The proposed study presents an analytical model capable of classifying an object from an HSI using 

a non-recursive and computationally efficient mechanism. The core idea is to estimate the maximum mixing 

ratio vector corresponding to the pure signature to be set to the particular object class. The systematic 

processes involved in the proposed methodology are highlighted as follows:  

− Indian pine HSI image dataset is considered for the execution of the proposed scheme for HSI 

classification.  

− Wavelength is determined based on the maximum and minimum range of bands provided in the dataset to 

construct hypercube 

− Further, the transformation of the color space is carried out to represent HSI into Red, Green and Blue 

(RGB) color space. This process helps in dealing with the high dimensionality nature of HSI. It is also 

further used to represent the final outcome by superimposing the RGB image to the classified object with 

a pure signature.  

− Mixing pixel map is estimated to obtain 3D vector that consists of spatial dimension, and maximum value 

of mixing pixel is obtained from the 3D vector for each corresponding pure signature pixels  

− In the classification phase, the HSI region obtained based on the maximum value of the mixing pixel is 

then superimposed with the RGB image to interpret the final outcome. The proposed method's design is 

carried out so that it is more flexible, computationally efficient, and can handle any linear constraint. The 

next section discusses the methodology adopted in the design implementation of the proposed scheme to 

address pixel unmixing and classification of the region of highly correlated spectral data. 

 

 

 
 

Figure 1. Proposed model of HSI classification 
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2. METHOD 

This section discusses the method adopted in implementing the proposed system to address the 

problem of pixel unmixing (PU) by characterizing the distribution of the pure signature (ρ) or endmembers in 

the HSI region. The initial operation will be to estimate the involved quantity of endmembers which is 

followed by retrieval of spectral signatures. It should be noted that this extraction is carried out from these 

endmembers. At the end, the final step will be to evaluate the sufficient availability of each pixel in these 

endmembers. The process of the pixel decomposition for pixel unmixing SUis carried out by estimating the 

maximum value of the proportion of mixing pixel or abundance (α) using the least square method (LSM) 

Figure 2 illustrates pixel mixing context in HIS with its component as abundance and endmember.  

 

 

 
 

Figure 2. illustration of HSI and component as abundance and endmember 

 

 

2.1.  Problem formulation  

This section presents a formulation of the problem for unmixing the pixel from the highly correlated 

HSI image. However, prior to problem formulation, it is essential to describe the notion used in the proposed 

methodology of HSI object classification. The input HSI IHS ϵR
L×K consists of pixel Px ϵR

L, where  
{ x = 1,2,3,⋯K} in columns, K denotes the number of pixels, and L refers to the number of bands. The pure 

signature ρI{ i = 1,2,3,⋯ ρ} for PU are arranged in the vector such that MϵRL×ρ. Therefore, the estimation of 

abundance or mixing ratio αxi ∀ Px and ρIϵ A is an n-dimensional vector such that: A ϵ Rρ×K. Considering 

these notions, the linear model for addressing SU can be numerically represented as (1): 

 

Px = ∑ α𝑥𝑖 ∙ Mρ + 𝑛𝑘
ρ
𝑖=1  (1) 

 

The matrix representation (1) can be given as (2), (3): 

 

IHS = AM + n  (2) 

 

Px = [

1
2
⋮
K

];A = [

α11
α21
⋮

αm1

α12
α22
⋮

αm2

⋯
⋯
⋮
⋯

αn
α2n
⋮

αmn

];             M = [

1
2
⋮
ρ

];              n = [

n1
n2
⋮
nk

]  (3) 

 

where, n ϵ RL×K denotes additive noise in the IHS. In order to accomplish the goal of determiningthe 

maximum value of the α for the corresponding characterization ofρ∀ pixel Px of IHS is carried out the 

considering constraints of the positivity such that α ≥ 0 ∀ Px, ρI as (4).  

 
(∀, ρi ∈ {1, … . , ρ})(∀ Px ∈ {1;… , K})α ≥ 0   (4) 

 

In (3), the positivity constraint will be denoted as α ≥ 0. Furthermore, considering that all 

endmembers or pure signature ρ encompassing Px spectrum in IHS are contained in the column of M, in this 

regard, the mixing pixel ratio (abundance) α𝑥𝑖 must meet the criteria of complete additivity constraint such as 

given in (5): 

 

(ρ ϵ α∀ Px ∈ {1;… , K})∑ αxi∀ x = 1
ρ
i=1   (5) 
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However, applying LSM in the pure signature (ρ) estimation process, a problem will encounter 

when the set of ρ is incomplete and if it is considered that there are n number ofρ characterize the mixed 

pixels in HSI, the target is to compute (n − 1) subspace, and remaining m-subspace can be treated as 𝑛𝑘. But 

the problem is dealing the least squares and constraints so that estimation can be done in an unbiased manner. 

Therefore, this problem can be represented as constraint optimization numerically given as (6): 

 

argmin||IHS − MA||
φ

2
 (6) 

 

where, IHS denotes HSI, M denotes column of pure signature (ρ) in the matrix, A denotes n-dimensional 

abundance (α) vector and ||  ||𝜑 is sub-multiplicative operation refers to vector-norm. Another challenge 

during HSI region classification is dealing with high dimensionality. In order to handle the imbalance 

proportion of the samples and complexities poses by the pixel mixing, the proposed study uses the proportion 

of mixing map to compute the maximum value of α∀ pixel Pxand assigning it to the associated ρ label. At the 

initial step, the proposed model requires the import of dataset (X) to the system to extract HSI intrinsic 

attributes (Fs) that reflect spectral band (L), class signature (ρ), and a number of bands (nL). However, ranges 

of wavelengths are specified in the adopted HSI dataset. The sequential procedure for classifying different 

region from HSI is discussed in the following sub-sections.  

 

2.2.  Implementation 

This section discusses the methodology implemented, followed by the algorithmic steps for 

classifying an object from HSI based on the estimation of theα vector. An algorithm is formulated that is 

capable of performing object classification on the basis of specific vector. The complete operation of this 

algorithm is carried out using matrix-based operation that simplifies the functional steps involved. Further, 

this algorithm takes the input of dataset which after processing yields to a classified object. 

 

Algorithm-1: classification of an object based on α vector 
Input: X (dataset) 

Output: CLobj 

Start 

1. [Fs, IHS] ← 𝑓1(X) 
 Fs ∈ { L, ρ, λmax, λmin} 

2. Compute: λ ∀ L 
3. Construct:Hc  → 𝑓2(L, λ) 
4. Color space transformation 

IHS to RGB: IRGB  → 𝑓3(Hc) 
5. normalize: IRGB  → 𝑓4(IRGB) 
6. Visualize: Object class 
7. plot ← class. lables(X) 
8. computation of α vector 

[α]⃗⃗ ⃗⃗  ⃗
145×145×16  ←  𝑓5(Hc, ρ) 

9. Visualize [α]⃗⃗ ⃗⃗  ⃗ 

10. compute [α]⃗⃗ ⃗⃗  ⃗
max → 𝑓max ([α]⃗⃗ ⃗⃗  ⃗) 

11. Perform: Objseg → 𝑓6 ([α]⃗⃗ ⃗⃗  ⃗
max) 

12. CLobj ← superimpose(IRGB, Objseg) 
End 

 

The above-mentioned computing steps adopt an analytical approach to perform object classification 

by characterizing the HSI's features set (Fs). The first step of the proposed algorithm is to take IHS and 

determine the feature set Fs using function f1 that takes input argument as a dataset (X). This function 

provides features of the HSI as a set of a number of bands (L), pure signature (ρ) that reflects Class, and the 

minimum and maximum wavelength (λmin) and (λmax) respectively. In the next step of the algorithm, the 

value of wavelength (λ) is computed for all number of bands (L) using the given value (λmin) and (λmax) 

numerically expressed as (7): 

 

λ =
(λmax −λmin)

L
   (7) 

 

where, λmax is equal to 2.5 𝜇𝑚, λmin is equal to 0.4 𝜇𝑚 and L is number of spectral band equal to 220.  

Figure 3 represents a sample visualization of the wavelength over 120 spectral bands. The 

characteristics of the dataset are represented in Table 1. Further, in the next step, the study computes 

hypercubic objects using function f2 that creates a hypercubic object Hc by taking input argument as L and 
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value of λ. As a result, the Hc consists of both spectral and spatial information of the HSI image with L 

bands. Further, the visualization of the image in RGB color space is carried out using function 𝑓3 that takes 

input value as Hc. This function performs colorization over the hypercubic objects and provides the image in 

the RGB color representation, which is further normalized and enhanced using function 𝑓4 that denotes 

contrast stretching mechanism numerically expressed as (8): 

 

Irgbnorm
= (Irgb − c) (

b−a

d−c
) + a   (8) 

 

where, Pout normalized and enhanced image, Pin denotes input image, a and b denotes lower and upper limit, 

where c and d are the existing lower- and upper-pixel values in the input image. The value ranges between  

[0, 255]. Figure 4 illustrates the representation of the HSI in RGB color space.  

 

 

 
 

Figure 3. Wavelength of each spectral band (Sb) 

 

 

Table 1. Characterization of hypercubic 𝐻𝑆𝐼 object 
No. of spectral band 

(nSb) 

Wavelength range 

(Wr in nm) 

Geometric resolution 

(Gr in m) 

Spatial resolution (Sr in pixel) 

dimension 

220 0.4-2.5 1.3 145x145 

 

 

 
 

Figure 4. Representation of Hc information in the RGB color space 

 

 

The visualization of the hypercubic HSI object is shown in Table 2 with a total of '16' classes and a 

corresponding number of the samples. After visualizing the class of objects in the dataset, the algorithm then 

computes theα vectoras an abundance-map using function 𝑓5 that takes input values as Hc and ρ. Here the 
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function 𝑓5 denotes a mechanism of FCLSM to estimate the α for each ρ corresponding to the HSI pixel. The 

obtained outcome is achieved in the form of a vector such that [α]⃗⃗ ⃗⃗  ⃗ with dimension 𝑚𝑥𝑛𝑥𝐶, where m denotes 

the row and n denotes column and c denotes number classes. It can be observed from Table 1 that the size of 

n and m are 145x145, and total number of class C is equal to 16. Figure 5 depicts the visualization of pixel 

mixing proportion for all pure signature of class. 

 

 

Table 2. Ground truth classes with respective samples number 
Class No. of Samples Class No. of Samples Class No. of Samples 

C1 Alfalfa-46 C7 Grass-pasture mowed 28 C13 Wheat 205 
C2 Corn-notill 1428 C8 Hay-windrowed 478 C14 Woods 1265 

C3 Corn-mintill 830 C9 Oats 20 C15 Buildings Grass Tree Drives 386 

C4 Corn 237 C10 Soybean-notill C16 Stone-Steel-Towers93 

C5 Grass-pasture 483  C11 Soybean mintill 2455 
Total Class 16 

C6 Grass-trees 730 C12 Soybean-clean 593 
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Figure 5. Pixel mixing ratio map 

 

 

From Figure 5, it can be analyzed that mixing pixel signifies the inherent features of the spectral of 

the multiclass, i.e., linearly correlated with the pure signature represents a unique class of objects. In order to 

perform object classification, the study performs the computation of the maximum value present in the 

[α]⃗⃗ ⃗⃗  ⃗
max. Therefore, a function 𝑓max is used to compute the maximum mixing ratio, i.e., [α]⃗⃗ ⃗⃗  ⃗

max, which then 

used to perform segmentation of objects from HSI using function 𝑓6. In this process, indices are computed 

corresponding to the largest mixing pixel ratio vector for every pixel that belongs to the pure signature. In 

Figure 6 heat map is shown for the pure signature identified based on the maximum value of the mixing 

pixel. Further, the function 𝑓6 is used to construct a matrix of zero having a dimension equal to the [α]⃗⃗ ⃗⃗  ⃗
max, so 

that the final version of segment or classified objected is obtained efficiently. In this process, the previously 

computed RGB image is then superimposed to Objseg. Based on the mapping function of the binary mask, 

the classified object of HSI is superimposed with the RGB image with the pure color code. 
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Figure 6. Heat map of objects or region 

 

 

3. RESULTS AND DISCUSSION 

This section discusses the outcome and performance analysis of the proposed system in terms of 

processing time. The overall design and implementation of the proposed study is carried out on the numerical 

computing environment (MATLAB). Moreover, the execution of the proposed work is carried out 

considering a typical Indian pine HIS dataset. Figure 7 illustrates the mapped classification representation 

with the HSI zones along with the class labels. 
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Figure 7. Classified region 
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Figure 7 shows the final outcome as classified objected from the HIS image based on the 

characterization of the pure signature and mixing pixel ratio map. The next analysis is carried out to justify 

the effectiveness and scope of the proposed study based on the comparative analysis considering similar 

existing research works carried out by Sun et al. [30] (Exist1) and Sun et al. [31] (Exist2). In the work of  

Sun et al. [30], the authors have considered the separability of spectral bands based on the nonnegative 

matrix factorization to preserve the quantitative spectral information spectral data. In this study, the selection 

of spectral bands is associated with uncertainties due to arbitrary initialization in the clustering operation. The 

work carried out by Sun et al. [31] presented an approach of band selection based on the sparse 

representation mechanism to hold appropriate visual information for the chosen bands. However, the 

presented approach is effective, but it lacks minimum noise band selection and is not much suitable when 

dealing with highly noisy HSI bands in the real-time scenario. From Figure 8, it can be analyzed that the 

methodology adopted in the proposed study provides better outcomes regarding object classification and has 

reduced processing time which shows its cost-efficiently in a run time environment. The proposed 

methodology involved a sophisticated procedure, unlike conventional methods to address pixel mixing 

problems. 

 

 

 
 

Figure 8. Analysis of processing time 

 

 

4. CONCLUSION  

Hyperspectral images deliver abundant evidence about the scene captured than the other imaging 

methods. However, due to intra-class variability and spatial constraint resolution, HSI pixels are most likely 

to be assorted and mixed with manifold substances. Therefore, the proposed study aimed to address pixel 

unmixing and estimation of pure signature with their mixing ratio in each pixel unique to the corresponding 

class. The execution of the current research study is carried out considering hyperspectral images from the 

Indian Pine dataset. The implementation of the methodology adopted computationally efficient strategies, 

where at beginning features of the hyperspectral dataset are computed to construct hypercube object that 

consists of both spectral and spatial visual information and the number of bands. In order to handle the high 

dimensionality problem, the study performs construction of visual scene or observation in the RGB from the 

hypercube, which is then normalized using point operation. The operations, i.e., estimation of pure signature 

and pixel mixing ration vectors, are carried out using non-iterative matrix-computation. The classified object 

is then superimposed with the RGB images to construct the final outcome. The design and implementation of 

the proposed system are carried out on the numerical computing tool (MATLAB). The simulation outcome 

exhibited that the proposed system has achieved better performance regarding object classification. The 

effectiveness and scope of the proposed system are justified based on the comparison analysis with the 

similar existing techniques in terms of processing time. Also, the methodology adopted in the proposed study 

can handle any linear constraint; therefore, it is more flexible and computationally efficient than the existing 

methods. 
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