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 There is an interest in the biological effects of exposure to low-frequency 

electromagnetic fields issued by transmission lines on animals and humans. 

The fields generated by the lines are relevant for the design and operation of 

power systems. The study of the electric and magnetic fields in the 

transmission networks implemented commercial simulators bases on the 

finite element method. These commercial simulators are characterized by 

accuracy and high hardware and software requirements. This work presents 

CEM-LT, a tool that accurately precisely the electric and magnetic field in 

the transmission lines, with simple and intuitive handling and low processing 

times, making it ideal for being implemented together with optimization 

methods. The electric and magnetic field in the servant area for two case 

studies is analyzed to evaluate the accuracy and processing times. The level 

of accuracy is characterized by comparing the results with COMSOL 

obtaining errors of less than 2.4%. The case study with the highest 

computational requirement achieved a processing time of 3,027 seconds. 
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1. INTRODUCTION 

This document aims to present software to reduce the high hardware and software requirements 

directly used by commercial simulators to calculate the electric and magnetic fields based on the finite 

element method. The implemented software is a computational tool developed in the MATLAB app designer, 

which only requires a free compiler to calculate the electric field and magnetic field in transmission lines. 

The CEM-LT software presents acceptable results compared to simulation software based on the finite 

element method such as COMSOL Multiphysics and its low computational time. Additionally, it represents 

clean and intuitive handling that does not require long hours of training. Given its most relevant 

characteristics, such as its low computational time and acceptable accuracy, it is ideal to be implemented in 

conjunction with stochastic optimization methods such as the particle swarm optimization (PSO). This 

implementation helps to determine the optimal location of transmission line conductors to minimize the electric 

field or the transmission lines to minimize the electric field or magnetic field in the easement zone [1], [2]. 

The transmission of alternating current electrical power [3], generates associated effects such as 

losses due to the corona effect, audible noise, and radio and television interference. Transmission lines are 

considered one of the principal sources of electric and magnetic fields [4]–[7]. The intensity of the fields 

emitted by these lines depends mainly on the transmitted current and their voltages. In the last two decades, 

there has been a scientific and social interest focused on the risk of the low-frequency electromagnetic fields 

low frequency electromagnetic field (LF-EMF) emitted by the lines of electrical transmission, considering 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 5697-5706 

5698 

the biological effects in animals and humans. The International Agency for Research on Cancer (IRAC) in 

2002 classified low-frequency magnetic fields as possible carcinogens for humans (Group 2B) [8]–[12]. The 

existing scientific evidence does not conclude that prolonged exposure to low-frequency magnetic fields is a 

cause of childhood leukemia [13]–[16]. However, more studies are required to explore the negative impact 

on neurobehavioral function in children due to LF-EMF exposure [17]–[19]. The research has not shown to 

date that prolonged exposure to Low levels of LF-EMF has detrimental effects on health [20], [21]. 

The International Commission for the Protection of Non-Ionizing Radiation (ICNIRP) specifies 

within its guidelines [22], the reference levels, understood as the levels of the electric and magnetic field in 

an efficient value, to which a person can be exposed without adverse effects and with an adequate safety 

factor. In particular, for a frequency of 60 Hz and occupational exposure, the reference values for electric 

field intensity and magnetic flux density correspond to 8.3 kV/m and 1 mT. In the same way, for the general 

public, the reference values for electric field intensity and magnetic flux density correspond to 4.16 kV/m and 

0.2 mT. The electric and magnetic fields generated by transmission lines play a meaningful role in the design 

and operation of electrical networks; in this way, it establishes some procedures for their measurement [23]. 

In the easement zone or the right-of-way permit along the transmission line, the electric and magnetic field 

values must be lower than the reference levels specified above. If the rates of the fields are above the 

permissible limits, the design should be revised [4], [24]. 

Through a documentary review on electric and magnetic fields in transmission lines, multiple works 

associated with software development with an interface that eases the learning process, or the 

accompaniment as a work tool, were identified. Thus, in study [4], the authors analyze the design of a 765 kV 

line in Gujarat, India. In this study, they determine the field profiles employing an interface developed in the 

MATLAB Guide application. Similarly, in [25], a study performed an analysis of electric and magnetic fields 

generated by two transmission lines (single and double circuit) of 400 kV in Romania, so the developers 

evaluate the field profiles in a program written in LabVIEW. Additionally, in [26], software developed in the 

MATLAB guide application is created, which calculates the fields generated by multi-circuit transmission 

lines, providing 2D and 3D field profiles. It evidenced that when comparing the field profiles of a 230 kV 

line in Brazil with a study conducted by the São Francisco Hydroelectric Company (CHESF). 

Without developing any interface software, Unde and Kushare [27] carried out an analysis with 

MATLAB of the electric and magnetic field in a 1,200 kV transmission line installed in Madhya Pradesh, 

India. This analysis determined the level of exposure of workers and the general public to electric and 

magnetic fields; it concluded that the calculated values were well below the limits recommended by 

international standards. However, it does not present a comparative analysis of the results with specialized 

software. Similarly, in [28], the comparative analysis of the finite element method and the image method is 

carried out with COMSOL Multiphysics and MATLAB for the 1,200 kV line Indian analysis. It evidenced 

that when comparing the results of the field profile between COMSOL Multiphysics and MATLAB. 

The software presented above presents some limitations. The results evidenced that they are not 

capable of generating, displaying, and saving the outcomes associated with different calculation process in 

diverse formats. Such as the matrix of capacitances, linear charge densities, and instantaneous and effective 

variables related to the intensity of the electric field, intensity-density of the magnetic field. Additionally, 

there is no evidence that they allow visualizing the value of the instantaneous or effective electric or 

magnetic field at particular points or changing the step used to build the profile in the easement area. 

This work is organized and presented in five sections including introduction. Section 2 describes the 

mathematical formulation (electric field and magnetic field). Section 3 presents the method that describes each 

of the modules and the sub-modules. In section 4, the results obtained for two case studies implemented are 

presented and analyzed. Finally, the section 5 establishes the general conclusions of the work. 

 

 

2. MATHEMATICAL FORMULATION  

2.1.  The electric field strength in transmission lines 

The analysis presented considers the ground like a perfectly conductive element, a completely flat 

field with infinite lines on the surface. To calculate the electric field intensity E generated by the transmission 

line, the linear charge densities ρLk (where k is the number of conductors in the system, including the guard 

conductors), associated with each of the conductors and their images based on the Maxwell coefficient matrix 

and the supply voltages of the conductors: [V] =[P][ ρLk] [29]. Once determined the vector of linear charge 

densities [ρLk], from the matrix product between the inverse of the Maxwell coefficient matrix [P] and the 

vector of phase voltages of the system [V], the electric field intensity E considering the actual conductors and 

their corresponding images. According to the mentioned, the vertical and horizontal components of the 

electric field generated by the transmission line for the single-phase case are given by (1) and (2):  
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where 𝑥 and 𝑦 coincide with the coordinates of the calculation point. xi and yi are the coordinates of the actual 

conductors and their images. For the three-phase case, considering the number of conductors in the system as 

k, the total electric field intensity will be given by (3). 

 

E = (∑ Exi

k
i=1 )𝑎𝑥 + (∑ Eyi

k
i=1 )𝑎𝑦 [

V

m
]   (3) 

 

2.2.  The magnetic field strength in transmission lines 

For this case, as in the previous one, the ground is considered as a perfectly conductive element, a 

completely flat ground with infinite lines on the ground surface, and also balanced currents for the  

three-phase case. From these conditions is determined the magnetic field strength H considering the actual 

conductors and their corresponding images that allow determining the contributions of the horizontal and 

vertical components; these expressions are represented for the case of a single conductor in the ground plane 

by (4) and (5): 

 

Hx1
= (

𝐼1

2𝜋
) (

𝑦+𝑦𝑖

(𝑥+𝑥𝑖)2+(𝑦+𝑦𝑖)2 −
𝑦+𝑦𝑖

(𝑥+𝑥𝑖)2+(𝑦−𝑦𝑖)2) 𝑎𝑥 [
A

m
] (4) 

 

Hy1
= (

𝐼1

2𝜋
) (

𝑥+𝑥𝑖

(𝑥+𝑥𝑖)2+(𝑦−𝑦𝑖)2 −
𝑥+𝑥𝑖

(𝑥+𝑥𝑖)2+(𝑦+𝑦𝑖)2)  𝑎𝑦 [
A

m
] (5) 

 

where I1 corresponds to the current in the conductor; 𝑥 and 𝑦 correspond to the coordinates of the calculation 

point. 𝑥i, 𝑦i are the coordinates of the actual conductors and their images. For the three-phase case, considering 

the number of conductors in the system as k, the total magnetic field strength is given through (6).  

 

H = (∑ Hxi

k
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A

m
]      (6) 

 

 

3. RESEARCH METHOD 

Employing the MATLAB R2020b app designer tool, the CEM-LT software was developed. It 

consists of three main modules composed of four submodules with a graphical interface, which provide the 

user with graphic convenience throughout the entire process of setting of input and output variables. This 

software allows reducing erroneous settings through informational and emergency messages. Figure 1 

presents the block diagram of the general operating process of the simulator.  
 

3.1.  Main menu module 

This module is the first that the user sees when he opens the application. In this, the user can move 

through the different modules that make up the software. In the same way, it provides information about the 

creators of the application and enables help to guide the user in the main menu interface.  

 

3.2.  Electric field module 

This module has four sub-modules that allow to parameterize initial variables, determine results for 

the electric field intensity at specific points, and generate graphs of electric field profiles of the transmission 

line in the requested easement area. Figure 2(a) presents the operation diagram for the electric field module. 

It describes the logical-mathematical process to determine the results associated with this variable. It also 

shows the process that the user must carry out when making use of the module. 

 

3.3.  Magnetic field module 

This module has four sub-modules, which help the user to parameterize initial variables, determine 

results for the intensity of the magnetic field at specific points, and generate graphs of intensity and density 

profiles of the magnetic field in the entered easement zone. Figure 2(b) presents the operation diagram for the 

magnetic field module. It describes the logical-mathematical process to determine the results associated with 

this variable. It also shows the process that the user must carry out when making use of the module. 
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3.4.  Three-phase system configuration sub-module 

The first graphical window of the electric field and magnetic field modules represents the three-

phase system configuration submodule. This sub-module parameterized the input variables, such as voltages 

for the electric field strength calculation and currents for the magnetic field strength estimation, the sequence 

of the system (positive and negative), the system frequency, the nomenclature of phase conductors and the 

reference phase. After the parameterization of the module, the transmission line geometry is configured. 

 

3.5.  Transmission line geometry submodule 

Represents the second graphic window of the electric field and magnetic field modules. Enters input 

variables that allow parameterizing the phase and guard conductors. Allows entering the value of the 

geometric mean radius (GMR). It also approves entering up to 10 conductors per bundle and the separation 

distance between them. In addition, it allows entering the location coordinates of the conductors composing 

the transmission line.  

 

3.6. Results submodule 

The results sub-module allows generating, displaying, and exporting in different formats the results 

of the matrix of capacitances, linear charge densities, instantaneous electric field intensity, effective electric 

field intensity Erms for the electric field module; spontaneous and effective magnetic field intensity and 

density (Hrms, Brms) for the magnetic field module. Additionally, for the electric field module and the 

magnetic field module, the simulator allows to graph the value of the norm or the value rms in the servitude 

zone. 

 

3.7. Graphics submodule 

The graphics submodule generates, displays, and exports in different formats the metrics of the 

electric field and magnetic field profiles in the easement zone achieved by a transmission line. This analysis 

compares with international standards the limits of exposure to low-frequency electromagnetic fields 

generated by the power grid. Thus, the simulator presents the easement metrics for the output variables: E rms, 

Hrms, Brms, and the analysis of the vertical and horizontal components for the output variables concerning 

time. 

 

 

 
 

Figure 1. Description of the CEM-LT modules 
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(a) (b) 

 

Figure 2. Flow diagram of the algorithm for (a) electric field module, and (b) magnetic field module 

 

 

4. RESULTS AND DISCUSSION 

This section aims to evaluate the accuracy and processing time characteristics that make up the 

CEM-LT application. To validate the software, two case studies are presented. The comparative analysis 

evaluates the developed software accuracy in MATLAB App Designer CEM-LT using COMSOL 

Multiphysics software. In addition, using MATLAB "Profile function" application the processing times of 

the developed software are measured. The implementation was done on a computer with an Intel(R) Core 

(TM) i5-4210U CPU @1.70 GHz 2.40-6.00 GB RAM memory with Windows 10x64 bits. 

 

4.1.  Case study 1 

The case study to be analyzed corresponds to a 500 kV single circuit transmission line that starts 

from the substation of the Coca Codo Sinclair hydroelectric project to the El Inga substation in the city of 

Quito-Ecuador. The substation of the Coca Codo Sinclair hydroelectric project to the El Inga substation in 

Quito-Ecuador. Each phase of the transmission line consists of an array of four ACAR 1100 MCM 18/19 

aluminum alloy conductors spaced 45 cm apart in the bundle, and two guard cables, one of bonus resistant 

galvanized steel and the other of OPGW fiber optic. The magnetic field study ignores the two-guard 

conductors. The electric field study considered guard conductors. The metal lattice structures, self-supporting 

cat head type, and the horizontal configuration supported the conductors [30], [31]. Figure 3 represents the 
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arrangement of the conductors in the transmission tower; Table 1 presents the characteristics of the phase 

conductors and the parameters of the transmission line San Rafael-El Inga transmission line. Figure 4 and 

Figure 5 show the profile of the electric field magnitude and the magnetic field density, respectively, for the 

horizontal configuration of the 500 kV transmission line using CEM-LT (blue plot) and COMSOL 

Multiphysics (red line). The simulation is presented at the height of 1 m above ground level and covers the  

70 m wide easement area.  

 

 

 
 

Figure 3. The geometry of a 500 kV transmission line [30] 

 

 

Table 1. Characteristics and parameters of the San Rafael-El Inga line 
Line configuration Horizontal Number of sub conductors 4 

Type of line Simple circuit Sub Conductor spacing [cm] 45 

Line r.m.s. voltage [kV] 500 Cable type and gauge Kcmil ACAR (18/19) 1100 

Maximum line current [kA] 1.8 RMG phase conductor [mm] 13.95 

 

 

 
 

Figure 4. Active electric field profile for the horizontal configuration 

 

 

 
 

Figure 5. Active magnetic field density profile for the horizontal configuration 
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Electric and magnetic field distribution: when comparing the active electric field values at specific 

points in the easement area calculated by COMSOL Multiphysics and CEM-LT software, the percentage 

difference taking COMSOL Multiphysics as a reference did not exceed 1.5%. When comparing the 

magnitude values of effective magnetic field density at specific points in the easement area, determined by 

simulation in COMSOL Multiphysics and CEM-LT software, the difference taking COMSOL Multiphysics 

as a reference did not exceed %.  

Table 2 represents the processing times for case study 1. There are determined times required by the 

CEM-LT software to perform the operations associated with the electric field and magnetic field calculations 

for two easement zones 70 m wide from the center of the line, one with steps of 0.1 m for a total of  

1,401 points, and the second with strides of 0.01 m for a total of 14,001 points. Times below 1 s are evident 

for the estimated electric and magnetic fields in the easement zone with steps of 0.1 m. However, when 

making the stride much smaller (0.01 m), the processing time does not exceed 4 s. 

 

 

Table 2. Characteristics and parameters of the San Rafael-El Inga line  
 Steps (m)  Steps (m) 

Electric field 
0.1 0.01 

Magnetic field 
0.1 0.01 

0.623 s 3.027 s 0.138 s 2.571 s 

 

 

4.2.  Case study 2 

The objective in this case, aside from determining the electric and magnetic field in the easement 

zone for a different transmission structure, is to show one of the potentialities of the software, which consists 

of simulating cases where the phase location of the conductors in the transmission line is changed. In 

particular, it proposes an analysis of the electric and magnetic field profile in a transmission line when 

changing the phases under the same configuration. The analysis corresponds to a 115 kV single circuit line 

balanced in a negative sequence. The line phases are composed of a bundle of 3 conductors in aluminum 

alloy ACAR 1100 MCM 18/19, with a maximum line current of 1,414 kA. Figure 6 shows the configuration 

of the transmission line and the different cases that vary the location of the phases in the transmission line. 

 

 

 
 

Figure 6. Geometry and phase variation of the 115 kV transmission line 

 

 

Figures 7 and 8 show the behavior of the electric field and magnetic field density profiles in a 70 m 

wide easement zone from the center of the line, simulated in the CEM-LT software. It showed that by 

varying the phase sequence in the line configuration, the rms electric field in Figure 7 and magnetic field 

density in Figure 8 profiles over the easement zone did not show any variation. While the instantaneous 

values did show variations, particularly the phase angle. When comparing the values obtained in the 

COMSOL Multiphysics and CEM-LT software, the maximum percentage difference between the electric 

field data for the configuration of study case 2 is 2.4 %. In the case of the magnetic field density profile, the 

maximum percentage difference was 1.27 %. 
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Table 3 represents the processing times for case study 2. There are determined times required by the 

CEM-LT software to perform the operations associated with the electric field and magnetic field calculations 

for two easement zones 70 m wide from the center of the line, one with steps of 0.1 m, and the second with 

strides of 0.01 m for a total of 14,001 points. The processing time does not exceed 4 s. 

 

 

 
 

Figure 7. Electric field profile CEM-LT 

 

 

 
 

Figure 8. Profile magnetic field density CEM-LT 

 

 

Table 3. Processing times case study 2 
 Steps (m)  Steps (m) 

Electric field 
0.1 0.01 

Magnetic field 
0.1 0.01 

0.146 s 3.078 s 0.180 s 2.580 s 

 

 

5. CONCLUSION  

This paper presents software that allows the calculation of electric field and magnetic field in 

overhead transmission lines as a solution to reduce the high hardware and software requirements currently 

used by commercial simulators based on the finite element method. The developed software showed reliable 

and acceptable results compared with COMSOL Multiphysics software low frequency electric and magnetic 

fields estimation in transmission lines. Additionally, it showed that CEM-LT offers inferior processing times 

with low computational load, making it ideal to be implemented in conjunction with optimization methods. 

Compared to other software designed in similar simulation environments, they present some 

limitations. Articles do not show the visualization of variables related to the calculations as capacitance 

matrix, linear charge densities, and instantaneous and adequate components of the fields at particular points 
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of the easement zone. These calculations represent a relevant issue if the software is used as a teaching tool in 

undergraduate and graduate courses. It is relevant to mention that the proposed tool only requires a 

MATLAB compiler, which is freely available for its operation, and also includes academic aids such as 

manuals and a library loaded with currently standardized conductors. Additionally, the proposed tool offers a 

simple and intuitive interface, which allows identifying the necessary electrical parameters to be entered, thus 

reducing the probability of errors. 
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