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 Continuous attempts have been made to improve the flexibility and 

effectiveness of distributed computing systems. Extensive effort in the fields 

of connectivity technologies, network programs, high processing 

components, and storage helps to improvise results. However, concerns such 

as slowness in response, long execution time, and long completion time have 

been identified as stumbling blocks that hinder performance and require 

additional attention. These defects increased the total system cost and made 

the data allocation procedure for a geographically dispersed setup difficult. 

The load-based architectural model has been strengthened to improve data 

allocation performance. To do this, an abstract job model is employed, and a 

data query file containing input data is processed on a directed acyclic graph. 

The jobs are executed on the processing engine with the lowest execution 

cost, and the system's total cost is calculated. The total cost is computed by 

summing the costs of communication, computation, and network. The total 

cost of the system will be reduced using a Swarm intelligence algorithm. In 

heterogeneous distributed computing systems, the suggested approach 

attempts to reduce the system's total cost and improve data distribution. 

According to simulation results, the technique efficiently lowers total system 

cost and optimizes partitioned data allocation. 
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1. INTRODUCTION 

The success of a distributed system is determined by how data is fragmented and distributed across 

several geographical locations [1], [2]. One of the most difficult aspects of distributed architecture is 

overcoming the growing workforce load and cutting down data allocation costs. Load implies a longer query 

completion time, which has an impact on operational costs and increases the overall system execution cost. 

To keep the overall system execution cost low, data fragments must be broken down into little sub-tasks and 

planned to be processed in parallel. The objective of this type of heuristic division is to reduce the time it 

takes to complete all jobs.  

The number of processing engines and tasks used in the execution is determined by the query file 

and the number of processing engines. Each engine has its own computing cost for calculating task execution 

costs. The execution cost is calculated by adding the lowest execution cost to the communication and 

network costs incurred during the processing engine's execution. 

To parallel execute all jobs, a directed acyclic graph (DAG) with vertices and edges as shown in 

Figure 1 was utilized. Each job is represented as a vertex or node in a DAG, and the edges between them 

https://creativecommons.org/licenses/by-sa/4.0/
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reflect the communication cost and connection between the tasks. The cost of communication is incurred 

when data is transferred between nodes. DAG is responsible for three sorts of costs: communication, 

network, and computation. Each expense factored into the total cost of system execution. Only the 

calculation cost with the shortest execution time is considered for total cost computation.  
 

 

 
 

Figure 1. Directed acyclic graph 

 
 

We consider a distributed system with heterogeneous processors and system tasks in this paper. 

P=P1, P2, ..., Pn of heterogeneous processors connected by communications links, and T=t1, t2, ...., tm of 

system tasks that collectively express a purpose, are represented by a distributed system. The execution cost 

matrix (ECM), which is an asymmetrical matrix of order m*m, represents the cost of execution of tasks on 

different processors, while the network cost matrix (NCM), which is an asymmetrical matrix of order m*m, 

represents the cost of communication between multiple tasks, as shown in Tables 1 and 2. By using both, the 

suggested artificial bee colony (ABC) algorithm may compute the best overall cost.  

 

 

Table 1. Execution cost matrix 
Query/Tasks Processors 

 P1 P2 P3 

1 0.81 0.16 0.66 

2 0.91 0.97 0.04 

3 0.13 0.96 0.85 
4 0.91 0.49 0.93 

5 0.63 0.80 0.68 

6 0.10 0.14 0.76 
7 0.28 0.42 0.74 

8 0.55 0.92 0.39 

9 0.96 0.79 0.66 
10 0.96 0.96 0.17 

 

Table 2. Network cost matrix 
Query/Tasks Processors 

 P1 P2 P3 

1 0.71 0.44 0.28 

2 0.03 0.38 0.68 

3 0.28 0.77 0.66 
4 0.05 0.80 0.16 

5 0.10 0.19 0.12 

6 0.82 0.49 0.50 
7 0.69 0.45 0.96 

8 0.32 0.65 0.34 

9 0.95 0.71 0.59 
10 0.03 0.75 0.22 

 

 

 

Delay in response, high execution time, and high completion time are the issues with data allocation 

in a distributed system [3]. It progressively boosts system costs and impacts workforce progress. The use of 

several processors increased network and communication costs during task execution, which had an impact 

on the overall system cost. Earlier techniques used by the researchers excluded network costs from overall 

system cost calculations. In this situation, the previously produced study results appear to be erroneous and 

useless in different experiments in a distributed environment. The proposed study focuses on a swarm 

intelligence-based artificial bee colony method useful for addressing and resolving current difficulties and 
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rapidly working for handling previous flaws [4]–[9] discusses previous issues. The proposed method is based 

on the learning and adaptive behavior of bees, which might be beneficial in resolving performance 

difficulties. It controls bee-degradation loss that arises as a result of the high expense of collecting the bees 

from the location. To accomplish optimization, such costs are subtracted from the overall system cost to 

balance loss. It aids in the betterment of data allocation in a distributed computing system. 

The following is a list of the topics covered in this paper. The second section goes through important 

research and findings. The third section introduces the technique we suggest. The simulation results of our 

suggested ABC method are shown in section 4. Section 5 compares and contrasts the proposed algorithm with 

existing algorithms. Finally, section 6 presents the paper's conclusion. 

 

 

2. RELATED WORK 

An energy-efficient dynamic loading and resource scheduling method includes reducing energy 

usage and decreasing application times. The method also successfully decreases energy efficiency by 

modifying the central processing unit (CPU) clock frequency of smart mobile devices to the optimum in local 

computing and adjusting the communication energy of wireless channels in cloud computing [10]. For the 

placement of virtual machines in cloud computing an energy-efficient order exchange and migration ant 

colony system (OEMACS) algorithm was created. The intended virtual machine placement was achieved 

with the fewest number of active machines and by turning off idle nodes. According to experimental 

investigations, OEMACS aimed to minimize the number of active servers, increase resource use, balance 

diverse resources, and reduce power consumption [11]. To offer energy and service-sensitive performance in 

the placement and consolidation of virtual machines, a multi-target colony optimization technique was 

presented. The results demonstrate that this technique outperforms the other ways in terms of energy 

consumption, limiting CPU waste, lowering energy communications costs caused by traffic sharing across 

virtual machines, and reducing the number of virtual migrations to system and service level agreement (SLA) 

violations [12]. To minimize all of cloud data center power consumption a platform for virtual machine 

placement was introduced. The adaptability and scalability of the platform proposed resulted in exceptional 

success in virtual machine deployment and relocation processes [13].  

An evaluation of current reliability and energy management strategies and their effect on cloud 

computing was discussed. There were debates on the classification of resource loss, failure tolerance 

mechanisms, and mechanisms for energy conservation in cloud systems. Different problems and study gaps 

have been established in the balance between energy reliability and quality [14]. A strong immune clonal 

optimization method based on the dynamic load balance approach and immune clonal selection theory in 

green cloud computing has solved the problem of high energy consumption and reduced cloud utilization. In 

terms of solution efficiency and processing costs, the experimental findings show that the method 

outperforms clonal selection techniques [15]. The need for energy management is demonstrated when 

addressing the dual position of cloud computing as a significant contributor to rising energy use and reducing 

energy waste. The research provided an in-depth analysis of current energy management methods in cloud 

computing. It also supplies taxonomies for the assessment of current work in the area of science [16]. 

Consolidation of tasks as an efficient way to maximize resource usage and minimize energy use was 

addressed. The research focused on two energy-conscious energy consolidation heuristics intended to 

optimize the use of resources and take both active and idle energy use directly into account. The heuristics 

suggested assigning each job to the resource, which minimizes the energy needs explicitly or indirectly, 

without degradation in performance [17]. An energy-efficient cloud computing architectural structure and 

concepts were suggested. The study identified open analysis problems, the provision of infrastructure as well 

as algorithms to handle cloud computing environments effectively. The conclusions indicate that the 

suggested model of cloud storage makes substantial cost savings and has a high capacity in complex 

workload environments for energy efficiency improvements [18].  

An algorithm for allocating the total energy consumption was introduced. The effects of 

simulations were also viewed on a state-of-the-art platform. The suggested solution results in tangible energy 

conservation, showing energy efficiency dominance in comparison with well-known and widely accepted 

allocation methods [19]. The research was conducted on maximizing physical and virtual machines' capacity 

and energy consumption in a cloud computing system. Findings offered a good understanding of how power 

and energy usage were affected by various workloads. The tools and structure presented can be used for 

research and improving energy efficiency in any cloud environment and of any scale [20]. A problem of 

energy optimization has been modeled whereas the task dependence, transfer of data, and some constraints 

such as response time, and cost have been considered and solved by genetic algorithms. A series of 

simulation trials have been carried out to assess the algorithm efficiency and the findings suggest that the 

proposal is more effective than the benchmark method [21]. To decrease energy usage in cloud data centers, 

an optimal paradigm for work schedules has been proposed. The proposed solution was designed as an 
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integer programming problem to reduce the energy consumption of a cloud-based data center by organizing 

activities for a small number of servers and adhering to task response time constraints. As a realistic program, 

the authors have developed the most effective initial task-programming method for the server to decrease 

energy expenses. A data center planning system with diverse tasks is modeled and simulated. The study 

findings reveal that the recommended work scheduling strategy reduces server power consumption by more 

than 70 times on average when compared to a random job scheduling system [22]. A power-aware 

scheduling approach for a heterogeneous cloud network was suggested to solve the issue of high energy 

consumption. The results show that the average power consumption in this system is 23.9-6.6% lower than in 

modern technology [23]. An abstract model was proposed that uses piecewise linear functions to handle data 

analytics workload in a distributed cluster architecture. This is responsible to reduce the makespan time to 

handle cost issues [24]. A hybrid heuristic genetic algorithm and the steepest descent methods were used to 

achieve optimal task allocation with the reduction in hardware policies to reduce system cost [25]. A latency-

aware max-min algorithm (LAM) has been developed for resource allocation in cloud infrastructures. The 

suggested method was developed to handle resource allocation challenges such as changing user 

requirements and on-demand access to infinite resources. It may allocate resources in a cloud-based 

environment to enhance infrastructure performance and increase revenue [26]. 

 

 

3. PROPOSED METHOD 

The data allocation method is based upon the processing engine. The data allocation process 

consumes a higher network cost if the cost parameter is not controlled correctly. The cost of doing activities 

on multiple processors varies in this case. When two dependent jobs are run on the same processor, the 

computing cost is the same, and communication between them is regarded as zero. The planned activities are 

repeated on the specific processing engines to compute execution costs. To calculate the task execution cost, 

the lowest cost of query execution is applied to the communication cost. The following stages are carried out 

to carry out the planned task, as illustrated in Figure 2. 

 

 

 
 

Figure 2. Proposed method flow 
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3.1.  Load the query data file  

The communication and processing costs of the tasks in a flow are utilized to compute the query 

cost. It is a flow diagram that shows the execution of queries and tasks at different levels. The lowest cost 

processing engine (PE) is chosen to determine the calculation cost. The query model flow is used to illustrate 

the details of all jobs, including their flow and associated communication and computing costs, as shown in 

Table 3. 

 

 

Table 3. Query model flow (query_data) 
Query/Tasks flow 

Communication Cost 
Computation Cost 

T1 T2 PE1 PE2 PE3 

1 2 12 12 10 14 

1 3 15 8 9 15 

1 4 17 14 18 15 

1 5 14 11 14 9 
1 6 16 12 14 17 

2 7 14 11 15 17 

2 8 15 12 17 19 
3 8 18 12 17 19 

3 9 17 17 18 13 

4 7 18 11 15 17 
5 7 17 11 15 17 

5 8 25 12 17 19 
6 9 10 17 18 13 

6 7 14 11 15 17 

7 10 12 14 15 13 

8 10 13 14 15 13 

9 10 14 14 15 13 

 

 

3.2.  Total cost estimation 

The total cost is defined as the total energy incurred during the execution of all tasks. At the node 

level, a level-wise cumulative computation is used to calculate overall costs. At each level, the load is 

measured by summing all communication, computation, and network access expenses for all jobs. The 

overall cost spent after selecting processors for task execution is represented by all three factors. All 

processors have their specifications and perform tasks without violating the priority limitations set by the 

operating system. It indicates it will not let you break the workflow sequence. Sub-tasks are executed after 

each of its parents has completed their execution. Instead of focusing on task prioritization at each node, 

preference is given to processors with lower execution costs for a task assessment. Tasks are data fragments 

that are placed on each node and vary in size. To compute the total cost at level 1 (root-level) following steps 

are executed as shown in pseudocode 1. It is responsible to compute total cost by SumUp least execution cost 

of PE with other parameters cost incurred at each level. 

 

Pseudocode 1. Pseudocode to calculate execution pattern of level 1 tasks 
Input: entry_query, query_comp_cost, myminvalue, myminpos 

Output: total_engine_value 

1 execution_pattern=[ ]; 

2 total_engine_value=zeros(1,3); 

3 [myminvalue,myminpos]=min(query_comp_cost(1,:)); 

4 execution_pattern(1,1)=entry_query; 

5 execution_pattern(1,2)=0; 

6 execution_pattern(1,3)=myminvalue; 

7 execution_pattern(1,4)=myminpos; 

8 total_engine_value(1,myminpos)=total_engine_value(1,myminpos)+myminvalue; 

 

Here, to calculate the execution pattern at level 2, it is required to count number of queries comes 

under this level, find connectivity between parent and current nodes and compute their communication cost. 

The communication cost become same in the case if tasks are executed on the same processor else not. To 

calculate the total cost incurred during the execution of individual task/queries at current level 

communication cost, and least execution cost of machines are involved. Pseudocode 2 is responsible to 

evaluate all cost parameters to compute the overall cost of level 2.  

 

Pseudocode 2. Pseudocode to calculate execution pattern of level 2 tasks  
Input: last_engine, total_query_count, lvcount2, current, parent, query_engine 

Output: comm_costt, total_cost, total_engine_value 

1 last_engine=myminpos; 
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2 total_cost=[ ]; 

3 total_query_count=2;       

4 for i=1:lvcount2          % return level-2 queries count 

5 current=level(2,i); 

6 parent=entry_query; 

7 for j=1:query_engines 

8 comp_current=query_comp_cost(current,j); 

9 if j~=last_engine 

10 comm_costt=0; 
11 sd=find(query_comm_cost(:,1)==entry_query );  % return total no. of queries related to 1 
12 for k=1:numel(sd) 
13 kp=query_comm_cost(sd(k),2); 
14 if kp==current 
15 comm_costt=query_comm_cost(k,3);    
16 end 
17 end 
18 total_cost(j)=comm_costt+comp_current+total_engine_value(1,j); 
19 else  
20 total_cost(j)=comp_current+total_engine_value(1,j);   
21 end 
22 end 

 

The pseudocode 3 estimate the level 3 tasks total execution cost. Here, all tasks are evaluated level-

wise in sequence to compute the total cost pattern. During computation cost, communication cost and 

network cost values are summed-up. 

 

Pseudocode 3. Pseudocode to calculate execution pattern of level 3 tasks  
Input: lvcounter, query_data, execution_pattern 

Output: parentcurrent, parentfinishtime, totalcost 

1 for i=1:lvcounter            % Tally execution pattern of level 3 

2 current=lv3jobs(i); 

3 parentcurrent=[ ]; 

4 parentfinishtime=[ ]; 

5 counter=0; 

6 [dp,pos]=find(query_data(:,2)==current); 

7 for j=1:numel(dp) 

8 parentcurrent(j)=query_data(dp(j),1);  

9 currentparent=parentcurrent(j); 

10 m=find(execution_pattern(:,1)==currentparent); 
11 currentparentfinishtime=execution_pattern(m,3); 
12 parentfinishtime(j)=currentparentfinishtime; 
13 parentprocessor(j)=execution_pattern(m,4); 
14 end 
15 [maxval,maxpos]=max(parentfinishtime); 
16 minstarttime=maxval; 
17 parentp=parentprocessor(maxpos); 
18 totalcost=[ ]; 
19 for j=1:3 
20 [p,k]=find(execution_pattern(:,4)==j); 
21 lasttime=execution_pattern(p(numel(p)),3); 
22 if lasttime<minstarttime 
23 lasttime=minstarttime; 
24 end 
25 totalcost(j)=lasttime;  
26 end 

 

The queries at level 4 are conducted once the parent tasks at level 3 have been completed. The size 

of the level is calculated at this level, and each task is assessed row-by-row. There is one task marked as 

current in this. According to query_data, the current task or query has three parents that are each represented 

as parentcurrent. Each parentcurrent's execution cost is calculated separately. As illustrated in pseudocode 4, 

network costs and PEs with the lowest execution costs are added to compute the overall cost during 

evaluation of tasks and queries at level 4. At the end, total execution cost of processing engines (PEs) is 

computed and the smallest execution cost of PE is picked. 

 

Pseudocode 4. Pseudocode to calculate execution pattern of level 4 tasks 
Input: lvcounter, current, parentcurrent, parentfinishtime, query_data, execution_pattern 

Output: totalcost 

1. for i=1:lvcounter 

2. current=lv4jobs(i); 

3. parentcurrent=[ ]; 
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4. parentfinishtime=[ ]; 

5. counter=0; 

6. [dp,pos]=find(query_data(:,2)==current); 

7. for j=1:numel(dp) 

8. parentcurrent(j)=query_data(dp(j),1);  

9. currentparent=parentcurrent(j); 

10. m=find(execution_pattern(:,1)==currentparent); 

11. currentparentfinishtime=execution_pattern(m,3); 

12. parentfinishtime(j)=currentparentfinishtime; 

13. parentprocessor(j)=execution_pattern(m,4); 

14. end 

15. [maxval,maxpos]=max(parentfinishtime); 

16. minstarttime=maxval; 

17. parentp=parentprocessor(maxpos); 

18. totalcost=[ ]; 

19. for j=1:3 

20. [p,k]=find(execution_pattern(:,4)==j); 

21. lasttime=execution_pattern(p(numel(p)),3); 

22. if lasttime<minstarttime 

23. lasttime=minstarttime; 

24. end 

25. totalcost(j)=lasttime;  

26. end 

 

3.2.1. Calculation of total system cost 

The system’s total cost is calculated by adding the least execution cost of all tasks using (3). The 

execution cost of the processing engine for each task is estimated using (1). The least execution cost is 

estimated using (2). The practical calculation of implementation for each processing engine is shown in  

Table 4. 

 

 

Table 4. Execution cost of each processing engine 
Query/tasks 1 2 3 4 5 6 7 8 9 10 

Computation cost 

of tasks 
9 8 7 12 10 14 8 9 15 14 18 15 11 14 9 12 14 17 11 15 17 12 17 19 17 18 13 14 15 13 

Execution cost of 
each PEs 

0 0 7 24 22 21 23 24 43 54 35 43 48 63 37 51 65 82 53 57 60 53 45 37 63 60 61 64 72 70 

Least exec. cost 7 21 23 35 37 51 53 45 60 64 
Total system cost 396 

 

 
𝑃𝐸𝑠 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 + 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 + 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑜𝑠𝑡 (1) 

 
𝐿𝑒𝑎𝑠𝑡 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑚𝑖𝑛(𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑃𝐸𝑠) (2) 

 
𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑠𝑢𝑚 𝑜𝑓 𝑙𝑒𝑎𝑠𝑡 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑎𝑠𝑘𝑠 (3) 

 

3.2.2. Calculation of execution pattern 

Execution cost matrix (ECM) and network cost matrix (NCM) results as shown in Tables 1 and 2 

respectively are used to compute execution patterns for each processing task and indicated processing engine 

task wise. In this, jobs at various levels are processed in topological order, and their associated 

communication, network, and computing costs from the communicating node are calculated and added. This 

method is used for all jobs and lies on different levels (0-nth levels) depending on directed acyclic graph 

(DAG) size.  

The results computed at each level are added to determine the overall execution cost. Information on 

the tasks that are carried out one after the other starting at the root level is provided by pseudocode 5. From 

the root level, the execution cost pattern is calculated individually for each job from 1 to 10 by noting the 

starting and ending consumption units and the processing engines involved in each task. The overall cost is 

then calculated task-by-task as shown in Table 5. Every time, the difference between the starting and ending 

consumption units is used to calculate the execution cost. For each task, the energy pattern from the ECM is 

chosen based on the corresponding processing engine ID. 

 

Pseudocode 5. Pseudocode to calculate execution cost pattern for each task with PEs ID 
Input: execution_pattern, network_cost, currentp, total_query_count, ex_pt 

Output: ecost 
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1. ex_pt=[ ]; 
2. ex_pt{1,1}='Query No'; 
3. ex_pt{1,2}='Starting Consumption Unit'; 
4. ex_pt{1,3}='Ending Consumption Unit'; 
5. ex_pt{1,4}='DB Engine ID'; 
6. total_query_count=10; 
7. for i=1:total_query_count 
8. ex_pt{i+1,1}=execution_pattern(i,1); 
9. ex_pt{i+1,2}=execution_pattern(i,2); 
10. ex_pt{i+1,3}=execution_pattern(i,3);  

11. ex_pt{i+1,4}=execution_pattern(i,4); 
12. end 
13. for i=1:total_query_count 
14. currentdiff=execution_pattern(i,3)-execution_pattern(i,2); 
15. currentp=execution_pattern(i,4); 
16. ecost=energypattern(i,currentp); 
17. ecost=ecost+networkcost(i,currentp); 

18. execution_pattern(i,5)=ecost; 
19. end 

 

 

Table 5. Execution cost pattern for each processing task 
Tasks Starting consumption unit Ending consumption unit Processing engines ID Execution cost pattern (mJ) 

1 0 7 3 6.5224 

2 7 21 3 0.7154 

3 0 23 1 0.4039 
4 0 35 2 1.2806 

5 28 37 3 0.7977 

6 23 51 1 0.9210 
7 51 53 1 0.9733 

8 37 45 2 1.5620 
9 51 60 2 1.5016 

10 60 64 1 0.9993 

 

 

3.3.  Proposed artificial bee colony 

A swarm intelligence algorithm is a step toward dealing with issues that cannot be handled by the 

traditional numerical methods. The honey bees represent a quick social collective behavior having the ability 

to adapt, learn, and update themselves. It inspired most researchers to apply it for the optimization of results. 

This algorithm is based on bee colony behavior. Here bees are of three types; employed bees (those 

responsible for food collection), onlooker bees (those responsible for food monitoring), and scout bees (those 

are in rest). ABC algorithm works here to optimize the total execution cost as shown in pseudocode 6. 

 

Pseudocode 6. Artificial bee colony (ABC) 
Input: Food Source 

Output: [scout,beedegradation] =beefitness(employed_bee, energypattern, networkcost, 

timemodel, currentprocessor, taskname) 

1. scout=0; 

2. beedegradation=0; 

3. restprocessors=[ ]; 

4. rc=1; 

5. for i=1:3 

6. if i~=currentprocessor 

7. restprocessors(rc)=i; 

8. rc=rc+1; 

9. end 

10. end 

11. for i=1:numel(restprocessors) 

12. onlooker_bee_value(i)=timemodel*(energypattern(taskname, restprocessors(i)), 
networkcost(taskname, restprocessors(i))); 

13. end 

14. selected_food_source=min(onlooker_bee_value); 

15. onlooker_bee_selection=selected_food_source; 

16. employed_bee=employed_bee*timemodel; 

17. natural_change_onlooker=rand; 

18. natural_change_employed=rand; 

19. if onlooker_bee_selection*natural_change_onlooker > employed_bee*natural_change_employed 

20. scout=0; 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

An optimized cost-based data allocation model for heterogeneous distributed … (Sashi Tarun) 

6381 

21. beedegradation=0; 

22. else 

23. scout=1; 

24. beedegradation=((employed_bee*natural_change_employed) - 
(onlooker_bee_selection*natural_change_onlooker)) /timemodel; 

25. end 

26. end  

 

3.4.  Fitness function checking 

Fitness function aids in validating the overall execution cost in distributed systems to accomplish 

data allocation at a minimal cost. It compares and verifies the outcomes, as well as cover the bee degradation 

part to reach to the optimal state. The code lines 19-25 of proposed ABC pseudocode 6 depicts that if the 

results after multiplication of onlooker_bee_selection*natural_change_onlooker is greater than the results of 

employed_bee*natural_change_employed, in such case there is no occurrence of scout and beedegradation 

loss otherwise scout and beedegradation occurs. This can be accomplished by subtracting the cost of 

beedegradation from the total system cost. This is the expense of collecting nectar from various sites, 

including the time spent traveling back and forth. 

 

3.5.  Re-analyze with upgraded threshold to get optimized result 

Table 6 illustrates the results of the ABC algorithm's calculations. It shows the measurements 

between different variables involves to achieve optimal results. Finally, it calculates optimal results in mJ, 

which show the system's total execution cost in pseudocode 7. This can be achieved by setting threshold 

value in which optimal results is further subtracted by time spent by bees during the collection of nectar from 

flowers in different location indicated as beedegradation. The measurement in Table 6 shows the calculations 

carried out to justify the effectiveness of ABC algorithm. It shows total system cost estimated after 

reanalyzing the cost discovered.  Here, all variables are interpreted in view to achieve the results.  

 

Pseudocode 7. Pseudocode to re-analyze with upgraded threshold 
Input: scout, beed, timemodal 

Output: Optimal 

1. if scout>0 
2. optimal(i,5)=abs(optimal(i,5)-beed/timemodel); 
3. end 

 
 

Table 6. Fitness value and re-analyze process for optimal result 
Tasks Current 

Processor 

Rest 

Processor 

0nlooker_ 

bee value 

onlooker

_ bee_ 
selection 

(A) 

natural_ 

change_ 
onlooker 

(B) 

employed_ 

bee (C) 

natural_ 

change _ 
employed 

(D) 

If A*B >      

C*D 

Scout beed Optimal Result 

After re-analyze 
(total system cost 

in mJ) 

1 3 1 10.6454 4.1745 0.7513 45.6565 0.2551 False 1 1.21
58 

6.3487 
2 4.1745 

2 3 1 13.1267 13.1267 0.5060 140.2212 0.6991 False 1 6.52

74 

9.5496 

2 18.9301 
3 1 2 39.6217 34.5972 0.8909 213.6683 0.9593 False 1 7.5716 8.9607 

3 34.5972 

4 2 1 33.5842 38.3812 0.5472 44.8201 0.1386 False 1 5.6881 44.6576 
3 38.3812 

5 3 1 6.5654 6.5654 0.1493 64.6164 0.2575 False 1 1.7399 6.9863 

2 8.8844 
6 1 2 17.6862 17.6862 0.8407 722.0626 0.2543 False 1 6.0264 25.5727 

3 35.1709 

7 1 2 1.7347 1.7347 0.8143 3.8933 0.2435 True 0 0 1.9467 
3 3.4058 

8 2 1 6.9118 5.8609 0.9293 99.9711 0.3500 False 1 3.6927 12.0348 

3 5.8609 
9 2 1 17.1696 11.1667 0.1966 121.6273 0.2511 False 1 3.1493 13.1642 

3 11.1667 

10 1 2 6.8567 1.5800 0.6160 15.9894 0.4733 False 1 1.6486 3.5852 
3 1.5800 

 

 

4. SIMULATION RESULTS AND DISCUSSION 

The ABC method is implemented in MATLAB and executed on an Intel Core i3 processor 11 

generations with a clock speed of 3.00 GHz and 4 GB of RAM. Megajoules (mJ) are units of measurement 

for the amount of energy consumed. In Table 7, the proposed work is compared to existing approaches. It 

was discovered that previously suggested approaches did not account for network costs in their calculations, 
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and anomalies were discovered that impacted overall system costs. To obtain the optimal least cost, all 

parameters such as communication cost, computation cost, network cost, as well as bee degradation are 

applied in the suggested work.  

All activities are executed in parallel on processing engines, which improves performance and 

strengthens distributed task allocation. Processing units with low execution costs can complete jobs in large 

numbers and in a short amount of time. As indicated in Table 8, the total incurred cost on task execution is 

utilized to determine system cost. The suggested work is compared to other current techniques with concerns, 

and it is discovered that the ABC algorithm helps to obtain optimal system cost to construct a resilient 

distributed environment, as shown in Table 9.  

Table 10 compares the before and after results of total energy consumption during task execution. It 

shows that total cost is reduced by the proposed ABC algorithm. The simulation results of before and after 

optimization are shown graphically in Figure 3. 

 

 

Table 7. Comparative study of projected work with existing approaches 
Existing 

Approaches 
References Purpose Assumption Drawbacks 

Artificial 

intelligence 

[4] This used list-based heterogeneous 

earliest finish time (HEFT) algorithm to 
reduce cost by minimizing energy 

consumption rate. 

Assume to reduce system 

cost 

Network cost is not used during 

the computation of cost 

Communication 
link sum (CLS) 

[19] To reduce the inter-processor 
communication to minimize the system 

cost for task allocation in distributed 

computing systems 

Assume to reduce system 
cost 

Network cost is not used 
during the computation of 

system cost. On the other 

side, this approach follows a 
static task allocation policy 

Enhanced PSO [27] Proposed a load balancing mutation 

particle swarm optimization (LBMPSO) 
to allocate the best resources to tasks for 

maintaining execution time, transmission 

cost, and makespan. 

Assume to improve 

efficiency by allocating 
data with all resources at a 

low cost 

network cost parameter is 

avoided here in the data 
allocation perspective 

Proposed 

Approach 

 Work to reduce overall system cost 

using artificial bee colony approach for 

DAG 

Assume to reduce system 

cost by learning, adapting, 

and updating behavior to 
achieve performance in 

distributed computing 

does not consider fault 

tolerance part to adjust the 

load 

 

 

Table 8. Optimal task allocation 
Optimal allocation Total execution cost System cost 

Tasks Processing engines 

t3, t6, t7, t10 PE1 191 396 

t4, t8, t9 PE2 140 

t1, t2, t5 PE3 65 

 

 

Table 9. Assessment of system cost parameter with other methods 
Proposed algorithm 

System cost 
Hamed algorithm [28] 

System cost 
Yadav algorithm [27] 

System cost 
Tasks Processing engines Tasks Processing engines Tasks Processing engines 

t3, t6, t7, t10 PE1 396 t4, t7 PE1 459 t5,t7 PE1 528 
t4, t8, t9 PE2 t2, t3, t8, t9 PE2 t2, t3, t8, t9 PE2 

t1, t2, t5 PE3 t1, t5, t6 PE3 t1, t4, t6 PE3 

 

 

Table 10. Earlier and subsequent total cost results in mJ 
Query/Tasks Total Cost Before Optimization in mJ Total Cost After Optimization in mJ 

1 6.5224 6.3487 

2 10.0158 9.5496 

3 9.2899 8.9607 
4 44.8201 44.6576 

5 7.1796 6.9863 

6 25.7880 25.5727 
7 1.9467 1.9467 

8 12.4964 12.0348 

9 13.5141 13.1642 
10 3.9973 3.5852 

Average Cost of Tasks 13.56 13.28 
 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

An optimized cost-based data allocation model for heterogeneous distributed … (Sashi Tarun) 

6383 

 

 

 

Figure 3. Energy consumption with and without optimization 

 

 

In Table 11, the results are compared with a list-based task scheduling algorithm that employs 

artificial intelligence [4], and a task allocation model for system cost analysis that employs communication 

link sum (CLS) [27]. These techniques consider all indicators except network cost. In comparison to prior 

techniques, the proposed work saves 13.28 in overall costs, as shown in Figure 4. This method can easily 

allocate large data fragments and perform them fast and inexpensively. With this method, there are no 

extended waits, delays, or completion times, which lowers the performance of the distributed system. 

 

 

Table 11. Comparison with existing techniques 
Research technique used Reduced total execution 

cost (%age) 

Proposed work using artificial bee colony (ABC) 13.28 
Existing work using AI [4] 60.6 

Existing work using communication link sum (CLS) [27] 24 
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Figure 4. Comparative representation of techniques 

 

 

5. CONCLUSION  

We present a swarm intelligence-based artificial bee colony (ABC) method to reduce system 

execution costs and enhance data allocation in distributed systems in this study. It also makes it easier to 

trace the degradation loss of bees by subtracting equivalent cost units from the overall cost. When compared 

to previous approaches, the ABC algorithm was found to considerably lower total execution costs and 

improve system efficiency. Network expenses are not utilized to calculate system costs, according to 

previous studies. As a result, past results used to perform tests are inaccurate. This cost allocation model 

takes into account all expenses incurred during data processing in a distributed system. In the future, attempts 

might be made to bring new approaches to enhance data allocation by focusing more on fault tolerance in 

distributed computing systems. 
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