
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 12, No. 6, December 2022, pp. 6373~6386

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i6.pp6373-6386  6373

Journal homepage: http://ijece.iaescore.com

An optimized cost-based data allocation model for

heterogeneous distributed computing systems

Sashi Tarun1, Mithilesh Kumar Dubey1, Ranbir Singh Batth1, Sukhpreet Kaur2
1School of Computer Science Engineering, Lovely Professional University, Phagwara, India

2Department of Computer Science Engineering, Chandigarh Engineering College, Chandigarh, India

Article Info ABSTRACT

Article history:

Received Jun 25, 2021

Revised Jun 11, 2022

Accepted Jul 7, 2022

 Continuous attempts have been made to improve the flexibility and

effectiveness of distributed computing systems. Extensive effort in the fields

of connectivity technologies, network programs, high processing

components, and storage helps to improvise results. However, concerns such

as slowness in response, long execution time, and long completion time have

been identified as stumbling blocks that hinder performance and require

additional attention. These defects increased the total system cost and made

the data allocation procedure for a geographically dispersed setup difficult.

The load-based architectural model has been strengthened to improve data

allocation performance. To do this, an abstract job model is employed, and a

data query file containing input data is processed on a directed acyclic graph.

The jobs are executed on the processing engine with the lowest execution

cost, and the system's total cost is calculated. The total cost is computed by

summing the costs of communication, computation, and network. The total

cost of the system will be reduced using a Swarm intelligence algorithm. In

heterogeneous distributed computing systems, the suggested approach

attempts to reduce the system's total cost and improve data distribution.

According to simulation results, the technique efficiently lowers total system

cost and optimizes partitioned data allocation.

Keywords:

Communication cost

Computation cost

Data allocation

Execution time

Network cost

Total cost

This is an open access article under the CC BY-SA license.

Corresponding Author:

Sashi Tarun

School of Computer Science Engineering, Lovely Professional University

Phagwara, India

Email: sashitarun79@gmail.com

1. INTRODUCTION

The success of a distributed system is determined by how data is fragmented and distributed across

several geographical locations [1], [2]. One of the most difficult aspects of distributed architecture is

overcoming the growing workforce load and cutting down data allocation costs. Load implies a longer query

completion time, which has an impact on operational costs and increases the overall system execution cost.

To keep the overall system execution cost low, data fragments must be broken down into little sub-tasks and

planned to be processed in parallel. The objective of this type of heuristic division is to reduce the time it

takes to complete all jobs.

The number of processing engines and tasks used in the execution is determined by the query file

and the number of processing engines. Each engine has its own computing cost for calculating task execution

costs. The execution cost is calculated by adding the lowest execution cost to the communication and

network costs incurred during the processing engine's execution.

To parallel execute all jobs, a directed acyclic graph (DAG) with vertices and edges as shown in

Figure 1 was utilized. Each job is represented as a vertex or node in a DAG, and the edges between them

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6373-6386

6374

reflect the communication cost and connection between the tasks. The cost of communication is incurred

when data is transferred between nodes. DAG is responsible for three sorts of costs: communication,

network, and computation. Each expense factored into the total cost of system execution. Only the

calculation cost with the shortest execution time is considered for total cost computation.

Figure 1. Directed acyclic graph

We consider a distributed system with heterogeneous processors and system tasks in this paper.

P=P1, P2, ..., Pn of heterogeneous processors connected by communications links, and T=t1, t2,, tm of

system tasks that collectively express a purpose, are represented by a distributed system. The execution cost

matrix (ECM), which is an asymmetrical matrix of order m*m, represents the cost of execution of tasks on

different processors, while the network cost matrix (NCM), which is an asymmetrical matrix of order m*m,

represents the cost of communication between multiple tasks, as shown in Tables 1 and 2. By using both, the

suggested artificial bee colony (ABC) algorithm may compute the best overall cost.

Table 1. Execution cost matrix
Query/Tasks Processors

 P1 P2 P3

1 0.81 0.16 0.66

2 0.91 0.97 0.04

3 0.13 0.96 0.85
4 0.91 0.49 0.93

5 0.63 0.80 0.68

6 0.10 0.14 0.76
7 0.28 0.42 0.74

8 0.55 0.92 0.39

9 0.96 0.79 0.66
10 0.96 0.96 0.17

Table 2. Network cost matrix
Query/Tasks Processors

 P1 P2 P3

1 0.71 0.44 0.28

2 0.03 0.38 0.68

3 0.28 0.77 0.66
4 0.05 0.80 0.16

5 0.10 0.19 0.12

6 0.82 0.49 0.50
7 0.69 0.45 0.96

8 0.32 0.65 0.34

9 0.95 0.71 0.59
10 0.03 0.75 0.22

Delay in response, high execution time, and high completion time are the issues with data allocation

in a distributed system [3]. It progressively boosts system costs and impacts workforce progress. The use of

several processors increased network and communication costs during task execution, which had an impact

on the overall system cost. Earlier techniques used by the researchers excluded network costs from overall

system cost calculations. In this situation, the previously produced study results appear to be erroneous and

useless in different experiments in a distributed environment. The proposed study focuses on a swarm

intelligence-based artificial bee colony method useful for addressing and resolving current difficulties and

1

2

3

4

5

6

7

8

9

10

Int J Elec & Comp Eng ISSN: 2088-8708 

An optimized cost-based data allocation model for heterogeneous distributed … (Sashi Tarun)

6375

rapidly working for handling previous flaws [4]–[9] discusses previous issues. The proposed method is based

on the learning and adaptive behavior of bees, which might be beneficial in resolving performance

difficulties. It controls bee-degradation loss that arises as a result of the high expense of collecting the bees

from the location. To accomplish optimization, such costs are subtracted from the overall system cost to

balance loss. It aids in the betterment of data allocation in a distributed computing system.

The following is a list of the topics covered in this paper. The second section goes through important

research and findings. The third section introduces the technique we suggest. The simulation results of our

suggested ABC method are shown in section 4. Section 5 compares and contrasts the proposed algorithm with

existing algorithms. Finally, section 6 presents the paper's conclusion.

2. RELATED WORK

An energy-efficient dynamic loading and resource scheduling method includes reducing energy

usage and decreasing application times. The method also successfully decreases energy efficiency by

modifying the central processing unit (CPU) clock frequency of smart mobile devices to the optimum in local

computing and adjusting the communication energy of wireless channels in cloud computing [10]. For the

placement of virtual machines in cloud computing an energy-efficient order exchange and migration ant

colony system (OEMACS) algorithm was created. The intended virtual machine placement was achieved

with the fewest number of active machines and by turning off idle nodes. According to experimental

investigations, OEMACS aimed to minimize the number of active servers, increase resource use, balance

diverse resources, and reduce power consumption [11]. To offer energy and service-sensitive performance in

the placement and consolidation of virtual machines, a multi-target colony optimization technique was

presented. The results demonstrate that this technique outperforms the other ways in terms of energy

consumption, limiting CPU waste, lowering energy communications costs caused by traffic sharing across

virtual machines, and reducing the number of virtual migrations to system and service level agreement (SLA)

violations [12]. To minimize all of cloud data center power consumption a platform for virtual machine

placement was introduced. The adaptability and scalability of the platform proposed resulted in exceptional

success in virtual machine deployment and relocation processes [13].

An evaluation of current reliability and energy management strategies and their effect on cloud

computing was discussed. There were debates on the classification of resource loss, failure tolerance

mechanisms, and mechanisms for energy conservation in cloud systems. Different problems and study gaps

have been established in the balance between energy reliability and quality [14]. A strong immune clonal

optimization method based on the dynamic load balance approach and immune clonal selection theory in

green cloud computing has solved the problem of high energy consumption and reduced cloud utilization. In

terms of solution efficiency and processing costs, the experimental findings show that the method

outperforms clonal selection techniques [15]. The need for energy management is demonstrated when

addressing the dual position of cloud computing as a significant contributor to rising energy use and reducing

energy waste. The research provided an in-depth analysis of current energy management methods in cloud

computing. It also supplies taxonomies for the assessment of current work in the area of science [16].

Consolidation of tasks as an efficient way to maximize resource usage and minimize energy use was

addressed. The research focused on two energy-conscious energy consolidation heuristics intended to

optimize the use of resources and take both active and idle energy use directly into account. The heuristics

suggested assigning each job to the resource, which minimizes the energy needs explicitly or indirectly,

without degradation in performance [17]. An energy-efficient cloud computing architectural structure and

concepts were suggested. The study identified open analysis problems, the provision of infrastructure as well

as algorithms to handle cloud computing environments effectively. The conclusions indicate that the

suggested model of cloud storage makes substantial cost savings and has a high capacity in complex

workload environments for energy efficiency improvements [18].

An algorithm for allocating the total energy consumption was introduced. The effects of

simulations were also viewed on a state-of-the-art platform. The suggested solution results in tangible energy

conservation, showing energy efficiency dominance in comparison with well-known and widely accepted

allocation methods [19]. The research was conducted on maximizing physical and virtual machines' capacity

and energy consumption in a cloud computing system. Findings offered a good understanding of how power

and energy usage were affected by various workloads. The tools and structure presented can be used for

research and improving energy efficiency in any cloud environment and of any scale [20]. A problem of

energy optimization has been modeled whereas the task dependence, transfer of data, and some constraints

such as response time, and cost have been considered and solved by genetic algorithms. A series of

simulation trials have been carried out to assess the algorithm efficiency and the findings suggest that the

proposal is more effective than the benchmark method [21]. To decrease energy usage in cloud data centers,

an optimal paradigm for work schedules has been proposed. The proposed solution was designed as an

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6373-6386

6376

integer programming problem to reduce the energy consumption of a cloud-based data center by organizing

activities for a small number of servers and adhering to task response time constraints. As a realistic program,

the authors have developed the most effective initial task-programming method for the server to decrease

energy expenses. A data center planning system with diverse tasks is modeled and simulated. The study

findings reveal that the recommended work scheduling strategy reduces server power consumption by more

than 70 times on average when compared to a random job scheduling system [22]. A power-aware

scheduling approach for a heterogeneous cloud network was suggested to solve the issue of high energy

consumption. The results show that the average power consumption in this system is 23.9-6.6% lower than in

modern technology [23]. An abstract model was proposed that uses piecewise linear functions to handle data

analytics workload in a distributed cluster architecture. This is responsible to reduce the makespan time to

handle cost issues [24]. A hybrid heuristic genetic algorithm and the steepest descent methods were used to

achieve optimal task allocation with the reduction in hardware policies to reduce system cost [25]. A latency-

aware max-min algorithm (LAM) has been developed for resource allocation in cloud infrastructures. The

suggested method was developed to handle resource allocation challenges such as changing user

requirements and on-demand access to infinite resources. It may allocate resources in a cloud-based

environment to enhance infrastructure performance and increase revenue [26].

3. PROPOSED METHOD

The data allocation method is based upon the processing engine. The data allocation process

consumes a higher network cost if the cost parameter is not controlled correctly. The cost of doing activities

on multiple processors varies in this case. When two dependent jobs are run on the same processor, the

computing cost is the same, and communication between them is regarded as zero. The planned activities are

repeated on the specific processing engines to compute execution costs. To calculate the task execution cost,

the lowest cost of query execution is applied to the communication cost. The following stages are carried out

to carry out the planned task, as illustrated in Figure 2.

Figure 2. Proposed method flow

Int J Elec & Comp Eng ISSN: 2088-8708 

An optimized cost-based data allocation model for heterogeneous distributed … (Sashi Tarun)

6377

3.1. Load the query data file

The communication and processing costs of the tasks in a flow are utilized to compute the query

cost. It is a flow diagram that shows the execution of queries and tasks at different levels. The lowest cost

processing engine (PE) is chosen to determine the calculation cost. The query model flow is used to illustrate

the details of all jobs, including their flow and associated communication and computing costs, as shown in

Table 3.

Table 3. Query model flow (query_data)
Query/Tasks flow

Communication Cost
Computation Cost

T1 T2 PE1 PE2 PE3

1 2 12 12 10 14

1 3 15 8 9 15

1 4 17 14 18 15

1 5 14 11 14 9
1 6 16 12 14 17

2 7 14 11 15 17

2 8 15 12 17 19
3 8 18 12 17 19

3 9 17 17 18 13

4 7 18 11 15 17
5 7 17 11 15 17

5 8 25 12 17 19
6 9 10 17 18 13

6 7 14 11 15 17

7 10 12 14 15 13

8 10 13 14 15 13

9 10 14 14 15 13

3.2. Total cost estimation

The total cost is defined as the total energy incurred during the execution of all tasks. At the node

level, a level-wise cumulative computation is used to calculate overall costs. At each level, the load is

measured by summing all communication, computation, and network access expenses for all jobs. The

overall cost spent after selecting processors for task execution is represented by all three factors. All

processors have their specifications and perform tasks without violating the priority limitations set by the

operating system. It indicates it will not let you break the workflow sequence. Sub-tasks are executed after

each of its parents has completed their execution. Instead of focusing on task prioritization at each node,

preference is given to processors with lower execution costs for a task assessment. Tasks are data fragments

that are placed on each node and vary in size. To compute the total cost at level 1 (root-level) following steps

are executed as shown in pseudocode 1. It is responsible to compute total cost by SumUp least execution cost

of PE with other parameters cost incurred at each level.

Pseudocode 1. Pseudocode to calculate execution pattern of level 1 tasks
Input: entry_query, query_comp_cost, myminvalue, myminpos

Output: total_engine_value

1 execution_pattern=[];

2 total_engine_value=zeros(1,3);

3 [myminvalue,myminpos]=min(query_comp_cost(1,:));

4 execution_pattern(1,1)=entry_query;

5 execution_pattern(1,2)=0;

6 execution_pattern(1,3)=myminvalue;

7 execution_pattern(1,4)=myminpos;

8 total_engine_value(1,myminpos)=total_engine_value(1,myminpos)+myminvalue;

Here, to calculate the execution pattern at level 2, it is required to count number of queries comes

under this level, find connectivity between parent and current nodes and compute their communication cost.

The communication cost become same in the case if tasks are executed on the same processor else not. To

calculate the total cost incurred during the execution of individual task/queries at current level

communication cost, and least execution cost of machines are involved. Pseudocode 2 is responsible to

evaluate all cost parameters to compute the overall cost of level 2.

Pseudocode 2. Pseudocode to calculate execution pattern of level 2 tasks
Input: last_engine, total_query_count, lvcount2, current, parent, query_engine

Output: comm_costt, total_cost, total_engine_value

1 last_engine=myminpos;

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6373-6386

6378

2 total_cost=[];

3 total_query_count=2;

4 for i=1:lvcount2 % return level-2 queries count

5 current=level(2,i);

6 parent=entry_query;

7 for j=1:query_engines

8 comp_current=query_comp_cost(current,j);

9 if j~=last_engine

10 comm_costt=0;
11 sd=find(query_comm_cost(:,1)==entry_query); % return total no. of queries related to 1
12 for k=1:numel(sd)
13 kp=query_comm_cost(sd(k),2);
14 if kp==current
15 comm_costt=query_comm_cost(k,3);
16 end
17 end
18 total_cost(j)=comm_costt+comp_current+total_engine_value(1,j);
19 else
20 total_cost(j)=comp_current+total_engine_value(1,j);
21 end
22 end

The pseudocode 3 estimate the level 3 tasks total execution cost. Here, all tasks are evaluated level-

wise in sequence to compute the total cost pattern. During computation cost, communication cost and

network cost values are summed-up.

Pseudocode 3. Pseudocode to calculate execution pattern of level 3 tasks
Input: lvcounter, query_data, execution_pattern

Output: parentcurrent, parentfinishtime, totalcost

1 for i=1:lvcounter % Tally execution pattern of level 3

2 current=lv3jobs(i);

3 parentcurrent=[];

4 parentfinishtime=[];

5 counter=0;

6 [dp,pos]=find(query_data(:,2)==current);

7 for j=1:numel(dp)

8 parentcurrent(j)=query_data(dp(j),1);

9 currentparent=parentcurrent(j);

10 m=find(execution_pattern(:,1)==currentparent);
11 currentparentfinishtime=execution_pattern(m,3);
12 parentfinishtime(j)=currentparentfinishtime;
13 parentprocessor(j)=execution_pattern(m,4);
14 end
15 [maxval,maxpos]=max(parentfinishtime);
16 minstarttime=maxval;
17 parentp=parentprocessor(maxpos);
18 totalcost=[];
19 for j=1:3
20 [p,k]=find(execution_pattern(:,4)==j);
21 lasttime=execution_pattern(p(numel(p)),3);
22 if lasttime<minstarttime
23 lasttime=minstarttime;
24 end
25 totalcost(j)=lasttime;
26 end

The queries at level 4 are conducted once the parent tasks at level 3 have been completed. The size

of the level is calculated at this level, and each task is assessed row-by-row. There is one task marked as

current in this. According to query_data, the current task or query has three parents that are each represented

as parentcurrent. Each parentcurrent's execution cost is calculated separately. As illustrated in pseudocode 4,

network costs and PEs with the lowest execution costs are added to compute the overall cost during

evaluation of tasks and queries at level 4. At the end, total execution cost of processing engines (PEs) is

computed and the smallest execution cost of PE is picked.

Pseudocode 4. Pseudocode to calculate execution pattern of level 4 tasks
Input: lvcounter, current, parentcurrent, parentfinishtime, query_data, execution_pattern

Output: totalcost

1. for i=1:lvcounter

2. current=lv4jobs(i);

3. parentcurrent=[];

Int J Elec & Comp Eng ISSN: 2088-8708 

An optimized cost-based data allocation model for heterogeneous distributed … (Sashi Tarun)

6379

4. parentfinishtime=[];

5. counter=0;

6. [dp,pos]=find(query_data(:,2)==current);

7. for j=1:numel(dp)

8. parentcurrent(j)=query_data(dp(j),1);

9. currentparent=parentcurrent(j);

10. m=find(execution_pattern(:,1)==currentparent);

11. currentparentfinishtime=execution_pattern(m,3);

12. parentfinishtime(j)=currentparentfinishtime;

13. parentprocessor(j)=execution_pattern(m,4);

14. end

15. [maxval,maxpos]=max(parentfinishtime);

16. minstarttime=maxval;

17. parentp=parentprocessor(maxpos);

18. totalcost=[];

19. for j=1:3

20. [p,k]=find(execution_pattern(:,4)==j);

21. lasttime=execution_pattern(p(numel(p)),3);

22. if lasttime<minstarttime

23. lasttime=minstarttime;

24. end

25. totalcost(j)=lasttime;

26. end

3.2.1. Calculation of total system cost

The system’s total cost is calculated by adding the least execution cost of all tasks using (3). The

execution cost of the processing engine for each task is estimated using (1). The least execution cost is

estimated using (2). The practical calculation of implementation for each processing engine is shown in

Table 4.

Table 4. Execution cost of each processing engine
Query/tasks 1 2 3 4 5 6 7 8 9 10

Computation cost

of tasks
9 8 7 12 10 14 8 9 15 14 18 15 11 14 9 12 14 17 11 15 17 12 17 19 17 18 13 14 15 13

Execution cost of
each PEs

0 0 7 24 22 21 23 24 43 54 35 43 48 63 37 51 65 82 53 57 60 53 45 37 63 60 61 64 72 70

Least exec. cost 7 21 23 35 37 51 53 45 60 64
Total system cost 396

𝑃𝐸𝑠 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 + 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 + 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑜𝑠𝑡 (1)

𝐿𝑒𝑎𝑠𝑡 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑚𝑖𝑛(𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑃𝐸𝑠) (2)

𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑠𝑢𝑚 𝑜𝑓 𝑙𝑒𝑎𝑠𝑡 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑎𝑠𝑘𝑠 (3)

3.2.2. Calculation of execution pattern

Execution cost matrix (ECM) and network cost matrix (NCM) results as shown in Tables 1 and 2

respectively are used to compute execution patterns for each processing task and indicated processing engine

task wise. In this, jobs at various levels are processed in topological order, and their associated

communication, network, and computing costs from the communicating node are calculated and added. This

method is used for all jobs and lies on different levels (0-nth levels) depending on directed acyclic graph

(DAG) size.

The results computed at each level are added to determine the overall execution cost. Information on

the tasks that are carried out one after the other starting at the root level is provided by pseudocode 5. From

the root level, the execution cost pattern is calculated individually for each job from 1 to 10 by noting the

starting and ending consumption units and the processing engines involved in each task. The overall cost is

then calculated task-by-task as shown in Table 5. Every time, the difference between the starting and ending

consumption units is used to calculate the execution cost. For each task, the energy pattern from the ECM is

chosen based on the corresponding processing engine ID.

Pseudocode 5. Pseudocode to calculate execution cost pattern for each task with PEs ID
Input: execution_pattern, network_cost, currentp, total_query_count, ex_pt

Output: ecost

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6373-6386

6380

1. ex_pt=[];
2. ex_pt{1,1}='Query No';
3. ex_pt{1,2}='Starting Consumption Unit';
4. ex_pt{1,3}='Ending Consumption Unit';
5. ex_pt{1,4}='DB Engine ID';
6. total_query_count=10;
7. for i=1:total_query_count
8. ex_pt{i+1,1}=execution_pattern(i,1);
9. ex_pt{i+1,2}=execution_pattern(i,2);
10. ex_pt{i+1,3}=execution_pattern(i,3);

11. ex_pt{i+1,4}=execution_pattern(i,4);
12. end
13. for i=1:total_query_count
14. currentdiff=execution_pattern(i,3)-execution_pattern(i,2);
15. currentp=execution_pattern(i,4);
16. ecost=energypattern(i,currentp);
17. ecost=ecost+networkcost(i,currentp);

18. execution_pattern(i,5)=ecost;
19. end

Table 5. Execution cost pattern for each processing task
Tasks Starting consumption unit Ending consumption unit Processing engines ID Execution cost pattern (mJ)

1 0 7 3 6.5224

2 7 21 3 0.7154

3 0 23 1 0.4039
4 0 35 2 1.2806

5 28 37 3 0.7977

6 23 51 1 0.9210
7 51 53 1 0.9733

8 37 45 2 1.5620
9 51 60 2 1.5016

10 60 64 1 0.9993

3.3. Proposed artificial bee colony

A swarm intelligence algorithm is a step toward dealing with issues that cannot be handled by the

traditional numerical methods. The honey bees represent a quick social collective behavior having the ability

to adapt, learn, and update themselves. It inspired most researchers to apply it for the optimization of results.

This algorithm is based on bee colony behavior. Here bees are of three types; employed bees (those

responsible for food collection), onlooker bees (those responsible for food monitoring), and scout bees (those

are in rest). ABC algorithm works here to optimize the total execution cost as shown in pseudocode 6.

Pseudocode 6. Artificial bee colony (ABC)
Input: Food Source

Output: [scout,beedegradation] =beefitness(employed_bee, energypattern, networkcost,

timemodel, currentprocessor, taskname)

1. scout=0;

2. beedegradation=0;

3. restprocessors=[];

4. rc=1;

5. for i=1:3

6. if i~=currentprocessor

7. restprocessors(rc)=i;

8. rc=rc+1;

9. end

10. end

11. for i=1:numel(restprocessors)

12. onlooker_bee_value(i)=timemodel*(energypattern(taskname, restprocessors(i)),
networkcost(taskname, restprocessors(i)));

13. end

14. selected_food_source=min(onlooker_bee_value);

15. onlooker_bee_selection=selected_food_source;

16. employed_bee=employed_bee*timemodel;

17. natural_change_onlooker=rand;

18. natural_change_employed=rand;

19. if onlooker_bee_selection*natural_change_onlooker > employed_bee*natural_change_employed

20. scout=0;

Int J Elec & Comp Eng ISSN: 2088-8708 

An optimized cost-based data allocation model for heterogeneous distributed … (Sashi Tarun)

6381

21. beedegradation=0;

22. else

23. scout=1;

24. beedegradation=((employed_bee*natural_change_employed) -
(onlooker_bee_selection*natural_change_onlooker)) /timemodel;

25. end

26. end

3.4. Fitness function checking

Fitness function aids in validating the overall execution cost in distributed systems to accomplish

data allocation at a minimal cost. It compares and verifies the outcomes, as well as cover the bee degradation

part to reach to the optimal state. The code lines 19-25 of proposed ABC pseudocode 6 depicts that if the

results after multiplication of onlooker_bee_selection*natural_change_onlooker is greater than the results of

employed_bee*natural_change_employed, in such case there is no occurrence of scout and beedegradation

loss otherwise scout and beedegradation occurs. This can be accomplished by subtracting the cost of

beedegradation from the total system cost. This is the expense of collecting nectar from various sites,

including the time spent traveling back and forth.

3.5. Re-analyze with upgraded threshold to get optimized result

Table 6 illustrates the results of the ABC algorithm's calculations. It shows the measurements

between different variables involves to achieve optimal results. Finally, it calculates optimal results in mJ,

which show the system's total execution cost in pseudocode 7. This can be achieved by setting threshold

value in which optimal results is further subtracted by time spent by bees during the collection of nectar from

flowers in different location indicated as beedegradation. The measurement in Table 6 shows the calculations

carried out to justify the effectiveness of ABC algorithm. It shows total system cost estimated after

reanalyzing the cost discovered. Here, all variables are interpreted in view to achieve the results.

Pseudocode 7. Pseudocode to re-analyze with upgraded threshold
Input: scout, beed, timemodal

Output: Optimal

1. if scout>0
2. optimal(i,5)=abs(optimal(i,5)-beed/timemodel);
3. end

Table 6. Fitness value and re-analyze process for optimal result
Tasks Current

Processor

Rest

Processor

0nlooker_

bee value

onlooker

_ bee_
selection

(A)

natural_

change_
onlooker

(B)

employed_

bee (C)

natural_

change _
employed

(D)

If A*B >

C*D

Scout beed Optimal Result

After re-analyze
(total system cost

in mJ)

1 3 1 10.6454 4.1745 0.7513 45.6565 0.2551 False 1 1.21
58

6.3487
2 4.1745

2 3 1 13.1267 13.1267 0.5060 140.2212 0.6991 False 1 6.52

74

9.5496

2 18.9301
3 1 2 39.6217 34.5972 0.8909 213.6683 0.9593 False 1 7.5716 8.9607

3 34.5972

4 2 1 33.5842 38.3812 0.5472 44.8201 0.1386 False 1 5.6881 44.6576
3 38.3812

5 3 1 6.5654 6.5654 0.1493 64.6164 0.2575 False 1 1.7399 6.9863

2 8.8844
6 1 2 17.6862 17.6862 0.8407 722.0626 0.2543 False 1 6.0264 25.5727

3 35.1709

7 1 2 1.7347 1.7347 0.8143 3.8933 0.2435 True 0 0 1.9467
3 3.4058

8 2 1 6.9118 5.8609 0.9293 99.9711 0.3500 False 1 3.6927 12.0348

3 5.8609
9 2 1 17.1696 11.1667 0.1966 121.6273 0.2511 False 1 3.1493 13.1642

3 11.1667

10 1 2 6.8567 1.5800 0.6160 15.9894 0.4733 False 1 1.6486 3.5852
3 1.5800

4. SIMULATION RESULTS AND DISCUSSION

The ABC method is implemented in MATLAB and executed on an Intel Core i3 processor 11

generations with a clock speed of 3.00 GHz and 4 GB of RAM. Megajoules (mJ) are units of measurement

for the amount of energy consumed. In Table 7, the proposed work is compared to existing approaches. It

was discovered that previously suggested approaches did not account for network costs in their calculations,

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6373-6386

6382

and anomalies were discovered that impacted overall system costs. To obtain the optimal least cost, all

parameters such as communication cost, computation cost, network cost, as well as bee degradation are

applied in the suggested work.

All activities are executed in parallel on processing engines, which improves performance and

strengthens distributed task allocation. Processing units with low execution costs can complete jobs in large

numbers and in a short amount of time. As indicated in Table 8, the total incurred cost on task execution is

utilized to determine system cost. The suggested work is compared to other current techniques with concerns,

and it is discovered that the ABC algorithm helps to obtain optimal system cost to construct a resilient

distributed environment, as shown in Table 9.

Table 10 compares the before and after results of total energy consumption during task execution. It

shows that total cost is reduced by the proposed ABC algorithm. The simulation results of before and after

optimization are shown graphically in Figure 3.

Table 7. Comparative study of projected work with existing approaches
Existing

Approaches
References Purpose Assumption Drawbacks

Artificial

intelligence

[4] This used list-based heterogeneous

earliest finish time (HEFT) algorithm to
reduce cost by minimizing energy

consumption rate.

Assume to reduce system

cost

Network cost is not used during

the computation of cost

Communication
link sum (CLS)

[19] To reduce the inter-processor
communication to minimize the system

cost for task allocation in distributed

computing systems

Assume to reduce system
cost

Network cost is not used
during the computation of

system cost. On the other

side, this approach follows a
static task allocation policy

Enhanced PSO [27] Proposed a load balancing mutation

particle swarm optimization (LBMPSO)
to allocate the best resources to tasks for

maintaining execution time, transmission

cost, and makespan.

Assume to improve

efficiency by allocating
data with all resources at a

low cost

network cost parameter is

avoided here in the data
allocation perspective

Proposed

Approach

 Work to reduce overall system cost

using artificial bee colony approach for

DAG

Assume to reduce system

cost by learning, adapting,

and updating behavior to
achieve performance in

distributed computing

does not consider fault

tolerance part to adjust the

load

Table 8. Optimal task allocation
Optimal allocation Total execution cost System cost

Tasks Processing engines

t3, t6, t7, t10 PE1 191 396

t4, t8, t9 PE2 140

t1, t2, t5 PE3 65

Table 9. Assessment of system cost parameter with other methods
Proposed algorithm

System cost
Hamed algorithm [28]

System cost
Yadav algorithm [27]

System cost
Tasks Processing engines Tasks Processing engines Tasks Processing engines

t3, t6, t7, t10 PE1 396 t4, t7 PE1 459 t5,t7 PE1 528
t4, t8, t9 PE2 t2, t3, t8, t9 PE2 t2, t3, t8, t9 PE2

t1, t2, t5 PE3 t1, t5, t6 PE3 t1, t4, t6 PE3

Table 10. Earlier and subsequent total cost results in mJ
Query/Tasks Total Cost Before Optimization in mJ Total Cost After Optimization in mJ

1 6.5224 6.3487

2 10.0158 9.5496

3 9.2899 8.9607
4 44.8201 44.6576

5 7.1796 6.9863

6 25.7880 25.5727
7 1.9467 1.9467

8 12.4964 12.0348

9 13.5141 13.1642
10 3.9973 3.5852

Average Cost of Tasks 13.56 13.28

Int J Elec & Comp Eng ISSN: 2088-8708 

An optimized cost-based data allocation model for heterogeneous distributed … (Sashi Tarun)

6383

Figure 3. Energy consumption with and without optimization

In Table 11, the results are compared with a list-based task scheduling algorithm that employs

artificial intelligence [4], and a task allocation model for system cost analysis that employs communication

link sum (CLS) [27]. These techniques consider all indicators except network cost. In comparison to prior

techniques, the proposed work saves 13.28 in overall costs, as shown in Figure 4. This method can easily

allocate large data fragments and perform them fast and inexpensively. With this method, there are no

extended waits, delays, or completion times, which lowers the performance of the distributed system.

Table 11. Comparison with existing techniques
Research technique used Reduced total execution

cost (%age)

Proposed work using artificial bee colony (ABC) 13.28
Existing work using AI [4] 60.6

Existing work using communication link sum (CLS) [27] 24

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10To
ta

l C
o

st
 B

e
fo

re
 O

p
ti

m
iz

at
io

n
 in

 m
J

Query/Tasks

Total Cost Before Optimization in mJ

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10

To
ta

l C
o

st
 A

ft
e

r
O

p
ti

m
iz

at
io

n
 in

 m
J

Query/Tasks

Total Cost After Optimization in mJ

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6373-6386

6384

Figure 4. Comparative representation of techniques

5. CONCLUSION

We present a swarm intelligence-based artificial bee colony (ABC) method to reduce system

execution costs and enhance data allocation in distributed systems in this study. It also makes it easier to

trace the degradation loss of bees by subtracting equivalent cost units from the overall cost. When compared

to previous approaches, the ABC algorithm was found to considerably lower total execution costs and

improve system efficiency. Network expenses are not utilized to calculate system costs, according to

previous studies. As a result, past results used to perform tests are inaccurate. This cost allocation model

takes into account all expenses incurred during data processing in a distributed system. In the future, attempts

might be made to bring new approaches to enhance data allocation by focusing more on fault tolerance in

distributed computing systems.

REFERENCES
[1] S. Tarun, R. S. Batth, and S. Kaur, “A novel fragmentation scheme for textual data using similarity-based threshold segmentation

method in distributed network environment,” International Journal of Computer Networks and Applications, vol. 7, no. 6, 231,
Dec. 2020, doi: 10.22247/ijcna/2020/205322.

[2] S. Tarun, R. S. Batth, and S. Kaur, “A review on fragmentation, allocation and replication in distributed database systems,” in

International Conference on Computational Intelligence and Knowledge Economy, Dec. 2019, pp. 538–544., doi:
10.1109/ICCIKE47802.2019.9004233.

[3] A. Osman, A. Sagahyroon, R. Aburukba, and F. Aloul, “Optimization of energy consumption in cloud computing datacenters,”

International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 1, pp. 686–698, Feb. 2021, doi:
10.11591/ijece.v11i1.pp686-698.

[4] Akanksha, “List-based task scheduling algorithm for distributed computing system using artificial intelligence,” in Advances in

Intelligent Systems and Computing, vol. 941, Springer International Publishing, 2020, pp. 1006–1014, doi: 10.1007/978-3-030-
16660-1_98.

[5] A. Gandomi, A. Movaghar, M. Reshadi, and A. Khademzadeh, “Designing a MapReduce performance model in distributed

heterogeneous platforms based on benchmarking approach,” The Journal of Supercomputing, vol. 76, no. 9, pp. 7177–7203, Sep.
2020, doi: 10.1007/s11227-020-03162-9.

[6] N. Lotfi, “Data allocation in distributed database systems: a novel hybrid method based on differential evolution and variable

neighborhood search,” SN Applied Sciences, vol. 1, no. 12, Dec. 2019, doi: 10.1007/s42452-019-1787-3.
[7] R. Tariq, F. Aadil, M. F. Malik, S. Ejaz, M. U. Khan, and M. F. Khan, “Directed acyclic graph based task scheduling algorithm

for heterogeneous systems,” in Advances in Intelligent Systems and Computing, vol. 869, Springer International Publishing, 2019,

pp. 936–947., doi: 10.1007/978-3-030-01057-7_69.
[8] S. Sandokji and F. Eassa, “Communication and computation aware task scheduling framework toward exascale computing,”

International Journal of Advanced Computer Science and Applications, vol. 10, no. 7, pp. 119–128, 2019, doi:

10.14569/IJACSA.2019.0100718.
[9] I. O. Hababeh and N. Bowring, “A method for fragment allocation design in the distributed database systems,” The Sixth Annual

UAE, pp. 4–12, 2005

[10] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-efficient dynamic computation offloading and cooperative task scheduling in
mobile cloud computing,” IEEE Transactions on Mobile Computing, vol. 18, no. 2, pp. 319–333, Feb. 2019, doi:

10.1109/TMC.2018.2831230.
[11] X.-F. Liu, Z.-H. Zhan, J. D. Deng, Y. Li, T. Gu, and J. Zhang, “An energy efficient ant colony system for virtual machine

placement in cloud computing,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 1, pp. 113–128, Feb. 2018, doi:

10.1109/TEVC.2016.2623803.
[12] M.-H. Malekloo, N. Kara, and M. El Barachi, “An energy efficient and SLA compliant approach for resource allocation and

consolidation in cloud computing environments,” Sustainable Computing: Informatics and Systems, vol. 17, pp. 9–24, Mar. 2018,

doi: 10.1016/j.suscom.2018.02.001.

Int J Elec & Comp Eng ISSN: 2088-8708 

An optimized cost-based data allocation model for heterogeneous distributed … (Sashi Tarun)

6385

[13] S. Vakilinia, B. Heidarpour, and M. Cheriet, “Energy efficient resource allocation in cloud computing environments,” IEEE
Access, vol. 4, pp. 8544–8557, 2016, doi: 10.1109/ACCESS.2016.2633558.

[14] Y. Sharma, B. Javadi, W. Si, and D. Sun, “Reliability and energy efficiency in cloud computing systems: survey and taxonomy,”

Journal of Network and Computer Applications, vol. 74, pp. 66–85, Oct. 2016, doi: 10.1016/j.jnca.2016.08.010.
[15] Z. Long and W. Ji, “Power-efficient immune clonal optimization and dynamic load balancing for low energy consumption and

high efficiency in green cloud computing,” Journal of Communications, vol. 11, no. 6, pp. 558–563, 2016, doi:

10.12720/jcm.11.6.558-563.
[16] T. Kaur and I. Chana, “Energy efficiency techniques in cloud computing: a survey and taxonomy,” ACM Computing Surveys,

vol. 48, no. 2, pp. 1–46, Nov. 2015, doi: 10.1145/2742488.

[17] Y. C. Lee and A. Y. Zomaya, “Energy efficient utilization of resources in cloud computing systems,” The Journal of
Supercomputing, vol. 60, no. 2, pp. 268–280, May 2012, doi: 10.1007/s11227-010-0421-3.

[18] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics for efficient management of data centers

for cloud computing,” Future Generation Computer Systems, vol. 28, no. 5, pp. 755–768, May 2012, doi:
10.1016/j.future.2011.04.017.

[19] A. Scionti, K. Goga, F. Lubrano, and O. Terzo, “Towards energy efficient orchestration of cloud computing infrastructure,” in

Advances in Intelligent Systems and Computing, vol. 772, Springer International Publishing, 2019, pp. 172–183, doi:
10.1007/978-3-319-93659-8_15.

[20] N. Khan and R. Shrestha, “Optimizing power and energy efficiency in cloud computing,” in 9th International Conference on

Cloud Computing and Services Science, 2019, pp. 380–387., doi: 10.5220/0007723503800387.
[21] C. Tang, S. Xiao, X. Wei, M. Hao, and W. Chen, “Energy efficient and deadline satisfied task scheduling in mobile cloud

computing,” in 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), Jan. 2018, pp. 198–205, doi:

10.1109/BigComp.2018.00037.
[22] N. Liu, Z. Dong, and R. Rojas-Cessa, “Task scheduling and server provisioning for energy-efficient cloud-computing data

centers,” in IEEE 33rd International Conference on Distributed Computing Systems Workshops, Jul. 2013, pp. 226–231, doi:

10.1109/ICDCSW.2013.68.
[23] H. Zhao, G. Qi, Q. Wang, J. Wang, P. Yang, and L. Qiao, “Energy-efficient task scheduling for heterogeneous cloud computing

systems,” in IEEE 21st International Conference on High Performance Computing and Communications, Aug. 2019,

pp. 952–959, doi: 10.1109/HPCC/SmartCity/DSS.2019.00137.
[24] R. Li, N. Mi, M. Riedewald, Y. Sun, and Y. Yao, “A case for abstract cost models for distributed execution of analytics

operators,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), vol. 10440, Springer International Publishing, 2017, pp. 149–163., doi: 10.1007/978-3-319-64283-3_11.
[25] C.-C. Hsieh and Y.-C. Hsieh, “Reliability and cost optimization in distributed computing systems,” Computers and Operations

Research, vol. 30, no. 8, pp. 1103–1119, Jul. 2003, doi: 10.1016/S0305-0548(02)00058-8.

[26] K. A. Shakil, M. Alam, and S. Khan, “A latency-aware max-min algorithm for resource allocation in cloud,” International
Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 1, pp. 671–685, Feb. 2021, doi:

10.11591/ijece.v11i1.pp671-685.

[27] P. K. Yadav, M. P. Singh, and K. Sharma, “An optimal task allocation model for system cost analysis in heterogeneous
distributed computing systems: a heuristic approach,” International Journal of Computer Applications, vol. 28, no. 4, pp. 30–37,

Aug. 2011, doi: 10.5120/3374-4664.

[28] A. Y. Hamed, “Task allocation for maximizing reliability of distributed computing systems using genetic algorithms,”
International Journal of Computer Networks and Wireless Communications (IJCNWC), vol. 2, no. 5, pp. 560–569, 2012.

BIOGRAPHIES OF AUTHORS

Sashi Tarun is a Ph.D. Research Scholar in the School of Computer Science

and Engineering at Lovely Professional University, Punjab, India. He has completed

M.Tech. Computer Science from Jamia Hamdard University, New Delhi. His research

interests are distributed systems, cloud systems, database systems, computer networks,

artificial intelligence, and machine learning. He has several papers on his credit. He has

7 years of teaching experience as an Assistant Professor. He can be contacted by email:

sashitarun79@gmail.com.

Mithilesh Kumar Dubey is working as a Professor in the School of Computer

Application of Lovely Professional University Jalandhar Punjab India. He has handsome

experience in the software industry as well as in Research development. He has published

many articles at international level in reputed journals. He can be contacted by email:

mithilesh.21436@lpu.co.in

mailto:sashitarun79@gmail.com
https://orcid.org/0000-0002-2342-4733
https://scholar.google.co.in/citations?user=XX5V5VQAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57213687934
https://orcid.org/0000-0002-1492-7857
https://scholar.google.com/citations?user=UsR_USsAAAAJ&hl=en&authuser=1
https://www.scopus.com/authid/detail.uri?authorId=57209976545

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6373-6386

6386

Ranbir Singh Batth is working as an associate professor in the School of

Computer Science and Engineering and also serves as a coordinator for international

relations at Lovely Professional University, Punjab, India. In 2018, he received his Ph.D. in

computer science and engineering from Punjab Technical University, India. His research

interests include wireless sensor networks, cloud computing, network security, ad-hoc

networks, machine learning, deep learning, wireless communications, and mobile

computing. He is a senior member of IEEE and faculty coordinator of the ACM research

chapter. He can be contacted by email: ranbir.21123@lpu.co.in.

Sukhpreet Kaur is working as Associate Professor in the CSE department at

Chandigarh Engineering College, Landran, Mohali. She has in total 15 years of vast

experience in teaching and research. She has done a Ph.D. in CSE from I.K Gujral Punjab

Technical University, Jalandhar, and has done her Masters in Technology in CSE from

GNDEC, Ludhiana. The various research areas in which she worked include image

processing, artificial intelligence, and computer vision. She can be contacted by email:

sukhpreet.4479@cgc.edu.in.

mailto:ranbir.21123@lpu.co.in
mailto:sukhpreet.4479@cgc.edu.in
https://orcid.org/0000-0002-8655-7613
https://scholar.google.com/citations?user=57LENlIAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57201743939
https://orcid.org/0000-0002-8689-4214
https://scholar.google.com/citations?user=ENl0g9MAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57215553679

