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 This study focuses on two heuristic algorithms for the graph vertex coloring 

problem: the sequential (greedy) coloring algorithm (SCA) and the Welsh–

Powell algorithm (WPA). The code of the algorithms is presented and 
discussed. The methodology and conditions of the experiments are presented. 

The execution time of the algorithms was calculated as the average of four 

different starts of the algorithms for all analyzed graphs, taking into 

consideration the multitasking mode of the operating system. In the graphs 
with less than 600 vertices, in 90% of cases, both algorithms generated the 

same solutions. In only 10% of cases, the WPA algorithm generates better 

solutions. However, in the graphs with more than 1,000 vertices, in 35% of 

cases, the WPA algorithm generates better solutions. The results show that the 
difference in the execution time of the algorithms for all graphs is acceptable, 

but the quality of the solutions generated by the WPA algorithm in more than 

20% of cases is better compared to the SC algorithm. The results also show 

that the quality of the solutions is not related to the number of iterations 

performed by the algorithms. 
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1. INTRODUCTION  

A graph vertex coloring is an assignment of a certain color on each of the vertices of a given graph. 

Each color is exactly one element of a predefined set of colors, such as S. The vertices of a graph that are 

colored the same color form a color class. If there are exactly k elements in the set S, then the coloring of the 

vertices of the graph is called k-coloring. Integers from 1 to k are usually used to denote elements in S (i.e., 

colors). It is assumed that one coloring is proper if every two adjacent vertices in a graph are colored differently. 

The following formulation can be made that a graph is k-colorable if it has k-coloring that is proper. It is easily 

established that such a coloring exists if the set S is initialized with |V| number of elements, i.e., as is the number 

of vertices in the graph G. In this case, if a different color is assigned to each vertex corresponding to exactly 

one element of S, then an acceptable (proper) coloring will certainly be obtained. In this coloring, there will 

certainly not be two vertices that are colored the same color [1], [2]. 

The optimal coloring of a graph G is denoted by 𝑥(𝐺). If graph G is not a complete graph, then 𝑥(𝐺) 
is less than |V|. If for graph G it is found that 𝑥(𝐺) = 𝑘, then for this graph it can be said that it is k-chromatic. 

Each color class is stable if the coloring of a graph is proper. Thus (proper) coloring a graph with k number of 

colors actually represents the grouping of the vertices of this graph in k number of disjoint sets. When a graph 

is k-colorable, it is called a k-partite graph. That is why a 2-colorable graph is also called a bipartite graph. If 

two graphs G and G' are given, and if the graph G' is a subgraph of graph G, then each proper coloring of G is 

https://creativecommons.org/licenses/by-sa/4.0/
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the proper coloring of G'. In addition, the chromatic number of graph G’ is less than or equal to the chromatic 

number of graph G [3], [4]. 

The vertex coloring problem (in graph theory) is an NP-hard problem [5] and it is still being examined 

[6], [7]. Different aspects of this problem are discussed in scientific literature. For instance, the rainbow vertex 

coloring problem [8], the adjacent vertex-distinguishing edge coloring [9], and the maximal independent set 

for the vertex-coloring problem on planar graphs [10]. Distinct aspects of the problem use various techniques 

[11]–[13], algorithms [14], [15] and approaches [16], [17]. Other algorithms and approaches are used to solve 

similar problems in graphs [18], [19]. Other in-depth analyses of this problem are presented in [20]–[22]. 

A complete graph Kn can be colored with exactly n number of colors, because each vertex is adjacent 

to all other vertices, i.e., for a complete Kn, the chromatic number coincides with the number of vertices n, i.e., 

χ(Kn)=n. From this it can also be concluded that if in a graph G there exists a complete subgraph of it, then the 

chromatic number of G (i.e., 𝑥(𝐺)) will be a value greater than or at least equal to the number of vertices 

forming the complete subgraph (clique number) of G, i.e., 𝑥(𝐺) ≥ 𝜔(𝐺). It has also been found that a graph 

can have a larger chromatic number than the power of the set of vertices forming a complete subgraph of a 

given graph [23], [24]. 

Some bounds on the chromatic number have been obtained in the development of algorithms for 

coloring the vertices of a graph. A commonly used greedy algorithm for the approximate coloring of graph 

vertices is based on the use of vertex degrees [25]. The vertices are colored sequentially in descending order 

of their degrees. In this situation, the coloring of any vertex will not require more colors than the degree of the 

vertex and another color for the vertex itself. This is because even if all vertices adjacent to a given vertex are 

colored differently (i.e., a different color is used for each adjacent vertex), in the worst case it will be necessary 

at most more than one color for the current vertex. As a consequence of the development and use of this greedy 

algorithm for graph vertex coloring, the bound 𝑥(𝐺)≤∆(G)+1 is obtained, where ∆(G) is the largest degree of 

a vertex in G [26], [27]. 

The coloring of a graph with ∆(G)+1 colors is the worst possible result that can be generated by the 

greedy algorithm. If the same algorithm is used, but the order of the vertices is different, then the generated 

result may be better than the last one found. There can be no worse result than ∆(G)+1. However, finding the 

“right” ordinance to generate the optimal solution requires |V|! checks. This is due to the fact that finding the 

chromatic number of a graph is an NP-hard problem [5]. 

In this paper, two heuristic algorithms for the graph vertex coloring problem will be presented and 

analyzed-the sequential coloring algorithm (SCA) [25] and the Welsh–Powell algorithm (WPA) [28]. These 

algorithms are approximate and they do not always find optimal solutions. This type of algorithm is used when 

the problem is NP-hard and when the input data is large (in terms of the number of vertices and edges in a 

graph). In addition, there are other algorithms for the graph vertex coloring problem [29], [30]. 

 

 

2. RESEARCH METHOD 

This section presents detailed implementations of the SCA and WPA algorithms. Both algorithms are 

heuristic and are used to approximately solve the graph vertex coloring problem. For both algorithms, some 

global variables and data structures need to be declared in advance. They are shown in Figure 1. 

 

 

 
 

Figure 1. Code of the global declarations 

 

 

The VertexCount variable (line 2) stores the number of vertices in the graph. The VertexColor dynamic 

array of type TColor, which is declared on line 3, is used by both algorithms. Each element of this array contains 

a color with which the corresponding vertex of the graph is colored. Coloring algorithms change the values of 

these elements. The MinColors variable (declared on line 4) is aggregate and is used by coloring algorithms in 

the solution search process. Each graph is represented by an adjacency matrix, which is declared on line 5. Each 

element [i, j] of the matrix indicates whether the vertices with indices i and j are adjacent or not. 

The sequential coloring method implements the first heuristic algorithm for coloring graph vertices. 

The code of this algorithm is presented in Figure 2. It uses additional (local) variables: Color, Index, and 
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IsFeasible. The Color variable contains the index of one of the colors used so far. The variable index is used 

when searching for the adjacent of the current vertex. The IsFeasible variable (of type Boolean) indicates 

whether the current vertex can be colored with one of the available colors or not.  

 

 

 

 

Figure 2. Code of the sequential coloring algorithm 

 

 

The global variables MinColors, ExternalCounter, MiddleCounter, and Counter are initialized to 0 in 

the body of the sequential coloring method (lines 6-9). The traversal of the vertices is realized by a for-loop 

(line 10). The algorithm checks which of the available colors can be used to color the current vertex. The color 

to be chosen should be as small as possible. This check is realized by a repeat loop (lines 14-28). Immediately 

before the loop, the local variable Color is initialized to 0 (line 13). At the beginning of the loop, the value of 

the local variable Color is incremented by 1 (line 16), which in the first iteration means that this variable will 

be set to 1. The current vertex can be colored with the current color only if none of its adjacents is colored with 

this color. This check is performed via the for-loop (lines 18-27). For each adjacent vertex of the current vertex, 

check that it is not colored with a color stored as a number in the Color variable. If a vertex colored with this 

color is found, the loop is immediately interrupted (line 25), but the local variable IsFeasible is first set to False 

(line 24). This means that the current vertex cannot be colored with the current color. Since the value of the 

local variable IsFeasible is False, the end of loop condition (line 28) will not be met and therefore a new 

iteration will be performed. When the new iteration starts, the color number is increased by one (line 16). In 

this way, the algorithm starts checking whether the current vertex can be colored with a color number Color+1. 

The repeat loop (lines 14-28) ends only when a suitable color is found for the current vertex. In this situation, 

the variable IsFeasible will be equal to True (set on line 17 at the beginning of the current iteration). The 

current color (the value of the variable Color) will be stored in the dynamic array VertexColor in the element 

indicated by the variable Index, i.e. the current vertex (line 29). If the value of the local variable Color is greater 

than the value of the global variable MinColors, then this value is also set to the global variable MinColors 

(line 30). This means that a new color has been added to the existing ones because coloring the current vertex 

with one of the available colors was not possible. Once all the vertices of the graph are colored, i.e. the 

execution of the external for-loop (lines 10-31) is completed, the minimum number of required colors and the 

number of iterations performed by the three nested loops will be stored in the variables MinColors, 

ExternalCounter, MiddleCounter, and Counter. 

The Welsh–Powell method implements the second heuristic algorithm for coloring graph vertices. 

The code of this algorithm is presented in Figure 3. Local variables: Col, Index, Color, and IsFeasible have the 

same meaning as those declared in the sequential coloring method. 
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Figure 3. Code of the WPA 

 

 

The local variable ColoredVertices (of type Integer) shows the current number of colored vertices in 

the graph. In the body of the Welsh–Powell method, the global variables MinColors, ExternalCounter, 

MiddleCounter, and Counter, as well as the local variables Color and ColoredVertices (lines 6-7) are set to 0. 

The process of coloring vertices is performed until all vertices of the graph are colored (line 8-the condition 

for the end of the while loop). Once the next color is selected (line 10) the algorithm traverses all vertices of 

the graph (through a for loop, which starts at line 11). Then, only for uncolored vertices, the algorithm checks 

whether any vertex adjacent to the current vertex is not colored with the current color (line 14). This check is 

done through the loop implemented between lines 17-23. This “for” loop iterates through all vertices and 

checks those of them that are adjacent to the current vertex. Once all adjacent vertices of the current vertex are 

checked and there is no one that is colored with the current color (the value of the local variable Color), the 

value of the Boolean variable IsFeasible will not be changed and will be equal to True. In this situation, the 

current vertex will be assigned the current color (line 26). The code of line 27 checks whether the value of the 

local variable Color is greater than the value of the global variable MinColor. If this is true, then the number 

of colors used is greater than the last registered one and the value of the global variable MinColors will be 

updated (line 27). The computational complexity of both heuristic algorithms (SCA and WPA) is quadratic 

and depends on the number of vertices of the graph-VertexCount). 

 

 

3. RESULTS AND DISCUSSION 

The results of the experiment will be shown and discussed. A comparative analysis between heuristic 

algorithms, in terms of the quality of the generated solutions and the time for their finding, will be presented 

and analyzed as well. For this research, 40 graphs, respectively with 30, ..., and 20000 vertices were created. 

These graphs were divided into two sets, the first one contained 20 graphs, and the second one the remaining 

20 graphs. In this distribution, the first set included the graphs with 30÷600 vertices, and the second set, the 

graphs with 1000÷20000 vertices. These graphs are presented in Tables 1 and 2. Up to 20% of the possible 

edges are used in each graph. The experimental conditions are 32-bit Win 10 OS and hardware configuration: 

Processor: Intel (R) Core (TM) i5-1135G7 at 2.40-4.20 GHz; RAM: 16GB DDR4. Both sets of graphs are used 

to conduct experiments with both heuristic algorithms. All graphs are generated randomly, and for each graph, 

the specific information is shown in Tables 1 and 2. 

In Tables 3 and 4, the “External”, “Middle”, and “Internal” columns show the number of iterations 

that the algorithms have made to find the solutions for all graphs. These solutions show the number of different 

colors needed to color the vertices of the graphs and arrange these vertices into chromatic classes. These values 

are shown in the Colors columns below the SC and WP columns in Table 3, and below the SCA and the WPA 

columns in Table 4. The execution time of both algorithms for the graphs of the first set is very short and 

therefore it is not presented. The times of both algorithms for the second set of graphs are shown in the “Time 

(ms)” columns in Table 4. 
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Table 1. The first set of graphs 

Graph abbr. Vertex count Edge count 
Vertices degree  

Graph caption Vertex count Edge count 
Vertices degree 

Min Max Avg  Min Max Avg 

G01 30 87 2 12 6  G11 330 10 857 46 86 66 

G02 60 354 4 20 12  G12 360 12 924 50 94 72 

G03 90 801 10 25 18  G13 390 15 171 56 100 78 

G04 120 1 428 11 35 24  G14 420 17 598 63 112 84 

G05 150 2 235 16 42 30  G15 450 20 205 63 116 90 

G06 180 3 222 22 49 36  G16 480 22 992 74 121 96 

G07 210 4 389 27 55 42  G17 510 25 959 74 135 102 

G08 240 5 736 33 66 48  G18 540 29 106 80 132 108 

G09 270 7 263 36 71 54  G19 570 32 433 87 143 114 

G10 300 8 970 44 80 60  G20 600 35 940 94 153 120 

 

 

Table 2. The second set of graphs 

Graph abbr. Vertex count Edge count 
Vertices degree  

Graph caption Vertex count Edge count 
Vertices degree 

Min Max Avg  Min Max Avg 

G21 1 000 99 900 152 237 200  G31 11 000 12 098 900 2 040 2 361 2 200 

G22 2 000 399 800 332 464 400  G32 12 000 14 398 800 2 233 2 549 2 400 

G23 3 000 899 700 524 674 600  G33 13 000 16 898 700 2 427 2 778 2 600 

G24 4 000 1 599 600 710 895 800  G34 14 000 19 598 600 2 599 3 012 2 800 

G25 5 000 2 499 500 897 1 098 1 000  G35 15 000 22 498 500 2 816 3 212 3 000 

G26 6 000 3 599 400 1 088 1 326 1 200  G36 16 000 25 598 400 3 018 3 382 3 200 

G27 7 000 4 899 300 1 261 1 518 1 400  G37 17 000 28 898 300 3 184 3 603 3 400 

G28 8 000 6 399 200 1 465 1 747 1 600  G38 18 000 32 398 200 3 376 3 841 3 600 

G29 9 000 8 099 100 1 646 1 964 1 800  G39 19 000 36 098 100 3 583 4 029 3 800 

G30 10 000 9 999 000 1 871 2 158 2 000  G40 20 000 39 998 000 3 780 4 248 4 000 

 
 

Table 3. Results of the heuristic algorithms for the first set of graphs 

Graph abbr. 
Colors External Middle Internal  

Graph abbr. 
Colors External Middle Internal 

SC WP SC WP SC WP SC WP  SC WP SC WP SC WP SC WP 

G01 5 5 30 5 82 150 1 191 1 191  G11 23 23 330 23 3 357 7 590 300 091 300 091 

G02 7 7 60 7 220 420 5 212 5 212  G12 24 23 360 23 3 841 8 280 366 272 369 394 

G03 9 9 90 9 398 810 13 596 13 596  G13 25 25 390 25 4 557 9 750 475 789 475 789 

G04 12 12 120 12 633 440 26 230 26 230  G14 27 27 420 27 5 170 11 340 566 661 566 661 

G05 13 13 150 13 917 1 950 45 185 45 185  G15 28 28 450 28 5 827 12 600 676 423 676 423 

G06 14 14 180 14 1 183 2 520 65 695 65 695  G16 28 28 480 28 6 276 13 440 752 864 752 864 

G07 16 16 210 16 1 533 3 360 98 083 98 083  G17 31 31 510 31 7 249 15 810 953 025 953 025 

G08 17 17 240 17 1 922 4 080 134 376 134 376  G18 33 32 540 32 7 825 17 280 1 083 227 1 062 262 

G09 20 20 270 20 2 360 5 400 176 384 176 384  G19 34 34 570 34 8 640 19 380 1 265 291 1 265 295 

G10 20 20 300 20 2 733 6 000 229 929 229 929  G20 35 35 600 35 9 394 21 000 1 432 981 1 432 981 

 
 

Table 4. Results of the heuristic algorithms for the second set of graphs 
Graph 

abbr. 

 Sequential coloring algorithm  Welsh–Powell algorithm 

 Colors External Middle Internal Time (ms)  Colors External Middle Internal Time (ms) 

G21  52 1 000 23 543 5 695 311 47  52 52 52 000 5 695 311 47 

G22  89 2 000 80 727 39 605 006 375  89 89 178 000 39 605 207 672 

G23  123 3 000 168 091 124 699 884 1 438  123 123 369 000 124 700 070 2 671 

G24  154 4 000 284 184 278 084 547 3 922  154 154 616 000 278 086 086 6 719 

G25  189 5 000 432 340 539 491 573 10 859  189 189 945 000 539 493 041 14 609 

G26  219 6 000 601 324 908 936 870 20 172  218 218 1 308 000 906 350 187 26 579 

G27  249 7 000 805 175 1 431 247 938 34 078  249 249 1 743 000 1 431 249 009 43 141 

G28  279 8 000 1 025 821 2 077 723 571 52 234  278 278 2 224 000 2 080 168 718 65 531 

G29  307 9 000 1 273 997 2 923 844 144 76 578  306 306 2 754 000 2 911 093 949 93 703 

G30  334 10 000 1 540 075 3 938 157 114 110 750  334 334 3 340 000 3 938 161 248 127 828 

G31  363 11 000 1 843 987 5 204 754 435 144 141  363 363 3 993 000 5 204 760 013 173 437 

G32  394 12 000 2 176 084 6 758 608 019 192 453  392 392 4 704 000 6 748 580 090 235 563 

G33  419 13 000 2 520 491 8 459 404 351 261 156  419 419 5 447 000 8 459 412 267 290 937 

G34  448 14 000 2 901 825 10 582 260 636 315 891  446 446 6 244 000 10 568 032 443 365 625 

G35  474 15 000 3 302 805 12 935 704 083 378 203  474 474 7 110 000 12 929 018 308 442 796 

G36  503 16 000 3 728 281 15 623 115 566 473 375  503 503 8 048 000 15 623 125 926 542 063 

G37  526 17 000 4 154 223 18 391 259 590 571 781  526 526 8 942 000 18 391 268 176 645 859 

G38  554 18 000 4 620 350 21 770 668 415 698 156  554 554 9 972 000 21 826 875 897 780 984 

G39  582 19 000 5 125 921 25 720 545 690 833 906  582 582 11 058 000 25 699 056 417 942 562 

G40  607 20 000 5 638 245 29 716 918 660 917 922  606 606 12 120 000 29 715 576 882 1 073 500 
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Tables 3 and 4 and the charts in Figures 4 and 5 show the results of the algorithms for the number of 

chromatic classes (colors) generated for the two sets of graphs (G01-G20 and G21-G40). The results also show 

that in the first set of graphs (G01-G20) only in two cases (G12 and G18) the WP algorithm has found better 

solutions compared to the SC algorithm. In these two cases, the number of internal iterations performed by the 

algorithms is different. For all other cases, both algorithms generated the same solutions. For graph G12, the 

WPA algorithm performed 3 122 more iterations than the SCA algorithm. For graph G18, the opposite is true. 

Although the WPA algorithm has generated a better solution for this graph, the iterations performed by it are 

20 965 less than those performed by the SCA algorithm. The results for the graphs of set 1 show that the WPA 

algorithm generates in some cases better solutions than the SCA algorithm, but the quality of these solutions 

is not necessarily related to a greater number of iterations performed by the WPA algorithm. In addition, even 

with a different number of internal iterations performed by the algorithms, the generated solutions may be 

equal, as in graph G19. 

 

 

 
 

Figure 4. The number of colors generated from the algorithms for the graphs of set 1 

 

 

 
 

Figure 5. Difference between the number of colors generated from both algorithms for 

the graphs of set 2 

 

 

 

The results of the second set of graphs (G20-G40) show that in six cases (G26, G28, G29, G32, G34, 

and G40) the WPA algorithm has found better solutions compared to the SCA algorithm. Table 4 and the chart 

in Figure 5 show that in 14 cases both algorithms generated identical solutions. In 4 cases (G26, G28, G29, and 

G40) the WPA algorithm found solutions differing by only one color from those generated by the SCA 

algorithm. However, in 2 cases (G32 and G34) the WPA algorithm found solutions differing by two colors 

from those generated by the SCA algorithm. This improvement is significant for the graph vertex coloring 

problem in cases where the generated solutions are close to the optimal solution. 
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The chart in Figure 6 shows the differences between the internal iterations of the two algorithms (for 

all graphs in set 2). Although there is no direct relationship between the number of these iterations and the 

quality of the solutions generated by the algorithms, it can be noted that in 5 out of 6 cases of different solutions 

(graphs G26, G29, G32, G34, and G40) the number of performed internal iterations of the SCA algorithm is 

significantly larger than those performed of the WPA algorithm. The generated solutions by the SC algorithm 

are worse in these graphs, which is not the case only in graph G28. 

 

 

 
 

Figure 6. Difference between the number of internal iterations generated from two algorithms 

 

 

The chart in Figure 7 shows the effect of increasing the size of the graphs (increasing the number of 

vertices and edges) on the execution time of both algorithms. The execution time of the WPA algorithm is 

longer than that of the SCA algorithm, but the difference is in minutes. For example, for graph G39, the 

execution time of the SCA algorithm is 13 minutes and 54 seconds, and the execution time of the WPA 

algorithm for the same graph is 15 minutes and 43 seconds. The difference between the times is 1 minute and 

49 seconds. For graph G40, the execution time of the SCA algorithm is 15 minutes and 18 seconds, and the 

execution time of the WPA algorithm for the same graph is 17 minutes and 54 seconds. The difference between 

the times is 2 minutes and 36 seconds. 

 

 

 
 

Figure 7. Comparison of the execution times of both algorithms for the graphs of set 2 

 

 

4. CONCLUSION 

In this paper, a study related to the graph coloring problem was presented. Various scientific 

publications discussing this problem and related different approaches and methods for solving it were also 

presented. Two heuristic algorithms for solving the problem: the Sequential coloring algorithm (SCA) and the 

WPA were implemented and analyzed. The global declarations of data structures used by the algorithms 

(variables, arrays, and matrices) were shown. The source code of the heuristic algorithms was implemented, 

presented, and analyzed in detail. Taking into account the multitasking mode of the operating system, the 
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execution time of the algorithms was calculated as the average of four different starts of the two algorithms for 

each of the 40 analyzed graphs (of the two sets). 

The results show that the WPA algorithm generates in some cases better solutions than the SCA 

algorithm, but the quality of these solutions is not necessarily related to a greater number of iterations 

performed by the WPA algorithm. In the first set of graphs, in 18 out of 20 cases, both algorithms generated 

the same solutions. In only 2 of these 20 cases, the WPA algorithm generates better solutions compared to the 

SCA algorithm. In the second set of graphs, in 13 out of 20 cases, both algorithms generated the same solutions, 

but in the remaining 7 cases, the WPA algorithm generated better solutions compared to the SCA algorithm. 

In addition, in 2 of these 7 cases, the improvement was two chromatic classes less than one, as in the other 5 

cases. In summary, for the second set of graphs the WPA algorithm generated in 35% of cases better solutions 

compared to the SCA algorithm. Finally, the results show that the difference in the execution time of the 

algorithms for all graphs is acceptable, but the quality of the solutions generated by the WPA algorithm in 

some cases is better. Further research is also needed on whether the performance of both algorithms can be 

improved if other graph data representations are used. For example, if adjacency lists are used to represent 

graphs, the required memory is 2 m, instead of using an adjacency matrix where the required memory is 

constant and equal to n2 (n is the number of vertices in the graph, and m is the number of edges). 
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