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 With the growth of the internet of things (IoT) smart objects, managing these 

objects becomes a very important challenge, to know the total number of 

interconnected objects on a heterogeneous network, and if they are 

functioning correctly; the use of IoT objects can have advantages in terms of 

comfort, efficiency, and cost. In this context, the identification of IoT objects 
is the first step to help owners manage them and ensure the security of their 

IoT environments such as smart homes, smart buildings, or smart cities. In 

this paper, to meet the need for IoT object identification, we have deployed an 

intelligent environment to collect all network traffic traces based on a diverse 
list of IoT in real-time conditions. In the exploratory phase of this traffic, we 

have developed learning models capable of identifying and classifying 

connected IoT objects in our environment. We have applied the six supervised 

machine learning algorithms: support vector machine, decision tree (DT), 
random forest (RF), k-nearest neighbors, naive Bayes, and stochastic gradient 

descent classifier. Finally, the experimental results indicate that the DT and 

RF models proved to be the most effective and demonstrate an accuracy of 

97.72% on the analysis of network traffic data and more particularly 
information contained in network protocols. Most IoT objects are identified 

and classified with an accuracy of 99.21%. 
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1. INTRODUCTION 

Nowadays, the telecommunications market is experiencing a significant boom in the use of smart 

connected objects. This object is a hardware component equipped with a sensor that allows data to be generated, 

exchanged, and consumed with minimal human intervention [1]. They have an increasingly important presence 

in our daily life, whether in our ways of consuming or in our ways of producing. In particular, these smart 

objects make it possible to create a mass of available data, thanks to the collection and processing of the traffic 

sent and received by each connected object on an IoT network, to make our environment smarter, in particular, 

smart homes, smart buildings, smart traffic, and smart cities [2]. 

In our previous work [3], we presented the IoT system model of a smart building, to allow users to 

control, identify and access smart devices, thanks to the shared and exchanged data by different network 

protocols. It, therefore, becomes necessary to be able to secure these various objects. The identification of the 

https://creativecommons.org/licenses/by-sa/4.0/
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intelligent objects which evolves in a network constitutes is an essential component of the network management 

tools because it provides important information allowing, in particular, to ensure the legitimacy of the traffic 

exchanged.  

Unfortunately, this modeling has demonstrated limitations related to the detection of physical objects 

connected in a heterogeneous network. The main limitation is that all objects cannot be detected through a 

single gateway due to a variety of IoT protocols. Recently, some researchers have presented techniques for 

identifying IoT objects that rely on learning methods to characterize the attributes of various objects. 

Sivanathan et al. [4] developed an algorithm for classifying IoT devices based on machine learning, which is 

based on various network traffic characteristics to identify and classify the behavior of IoT objects on a 

network. Ammar et al. [5] used supervised learning techniques based on flow attributes of traffic sent and 

received by connected objects as well as textual data. Meidan et al. [6] are the first to demonstrate the feasibility 

of identifying IoT objects based on network traces using machine learning. In the first step, a system that 

analyzes TCP sessions is presented to differentiate network traffic generated by non-IoT and IoT objects, and 

in the second step, their identification is proceed. Snehi and Bhandari [7] proposed a new framework for IoT 

traffic classification based on Stack-Ensemble, by exploiting the behavioral attributes of real-time high-volume 

IoT device traffic. Bezawada et al. [8] proposed a complementary identification system that leads to the 

behavioral identification of IoT objects based on their activity within the network. In addition, Miettinen et al. 

[9] presented a system for automatically identifying IoT objects and enforcing security that executes an 

appropriate action plan to restrict or authorize their communications within a network. Sneh and Bhandari [10] 

provided the taxonomy of the techno functional application domains of the IoT classification, by inferences on 

the attributes of IoT traffic and the exploitation of an Australian dataset collected from 28 IoT objects. 

In this paper, we present an implementation of a model for classifying connected objects by an 

identification system through network protocols and traffic flow statistics, using the packet analysis tools 

executed in the gateway (to see all incoming and outgoing traffic from connected objects). The discipline of 

traffic flow analysis provides a means of collecting and exporting data that infer attributes of packets.  

This article is organized as follows. Section 2 describes the problem of the work citing relevant 

previous work. Presenting the literature concerning machine learning algorithms with the state of the art in 

section 3. IoT traffic parameters in section 4, and in section 5 develop classification models to identify IoT 

objects. The paper is concluded in section 6. 

 

 

2. BACKGROUND 

The growing number of devices connected to the internet capable of communicating with each other 

continues to increase at a steady pace [2]. This trend tends to increase with the proliferation of actors, both 

manufacturers and suppliers. The IoT based on traditional networks to which so-called “intelligent” objects are 

connected, raises new issues around the detection of connected objects on heterogeneous networks involved in 

intelligent environments, and also around the security [11] of these networks and the information passing 

through them. 

The identification of connected objects poses a great challenge given a large number of heterogeneous 

protocols [12], the networks used and few consensual standards. Recent approaches to object identification 

based on behavioral analysis of computing devices have emerged [13]. The basic idea is to scrutinize the traffic 

crossing the network, using either active or passive measurement techniques, and to extract unique patterns 

that are sufficiently discriminating in order to individually identify the objects present within our network. 

There are a wide variety of methods for analyzing device traffic flow, that can be broadly classified into two 

categories depending on the type of network surveillance considered: active surveillance or passive 

surveillance. 

The principle of active surveillance is to generate traffic in the network and observe any reactions to 

the stimulus. As such, it creates additional traffic in the network. Conversely, in the case of passive surveillance, 

it is an approach considered less intrusive, consisting in capturing the traffic crossing the network and studying 

its properties at one or more points of the network. Usually, this approach requires software tools for traffic 

capture or analysis like Wireshark [14], tcpdump, NetworkMiner, and WinDump. 

Sivanathan et al. [15] have conducted tests to determine the feasibility of identifying the type of an 

IoT device by probing its open ports. Nmap [16] is used to scan the ports of 19 IoT devices from their  

test bench, in order to build a knowledge base of IoT device port number combinations thus forming their 

signature. Snehi and Bhandari [7] have proposed a new Stack-Ensemble framework for IoT traffic 

classification that characterizes traffic ingress based on statistical and functional attributes of IoT devices. This 

proposed framework is capable of managing network traffic in real time. The authors have performed  

a comparative analysis between the stack-Ensemble model and other classification models such as XGBoost 

stacks, distributed random forest, gradient boosting machine, and general linear machine algorithms.  
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Through this analysis, their framework demonstrated the highest values of accuracy compared to other 

classification models. 

Miettinen et al. [9] proposed a system called IoT sentinel which identifies types of IoT devices and 

executes an appropriate course of action to restrict or allow their communications within a network. So that 

any device, or attack vectors, are not used to compromise the entire network. The system relies on the random 

forest classification model to identify the type of object. According to the authors, two devices are said to be 

of the same type if they share the same model and the same software version. When a new device is introduced 

into the network for the first time, when a new MAC address is discovered, and then the latter begins its 

installation and configuration phase (first moments of communication with the gateway). In this case, the 

system initiates a packet capture process using tcpdump with filtering by the MAC address of the new device. 

Bezawada et al. [8] propose a complementary system called IoTSense which performs behavioral identification 

of IoT devices based on their activity within the network by analyzing ethernet, IP, and transport headers. Each 

device is assigned a behavioral profile, so as to detect possible deviations from the initial behavior of the device, 

due to malicious activities for example. The abbreviations used in the literature are defined in Table 1. 

 

 
 

Table 1. Abbreviations used in the literature 
Abbreviation Description 

ARP Address resolution protocol 

DNS Domain name system 

DRF Distributed random forest 

DT Decision tree 

EMSI Moroccan School of Engineering Sciences 

GBM Gradient boost machine 

GLM Generalized linear model 

HTTP Hypertext transfer protocol 

HTTPS Hypertext transfer protocol secure 

ICMP Internet control message protocol 

IoT Internet of things 

IP Internet protocol 

KNN K-nearest neighbors 

LPRI Multidisciplinary Research and Innovation Laboratory 

MAC Media access control 

MDNS Multicast domain name system 

ML Machine learning 

NB Naive Bayes 

NTP Network time protocol 

RF Random forest 

SGDC Stochastic gradient descent classifier 

SSDP Simple service discovery protocol 

SSL Secure socket layer 

SVM Support vector machine 

TCP Transmission control protocol 

TLS Transport layer security 

UDP User datagram protocol 

 

 

3. MACHINE LEARNING: STATE-OF-ART 

Machine learning is part of one of the approaches to artificial intelligence [17], which consists of 

creating algorithms capable of improving automatically with experience. It is increasingly integrated into  

most of the technologies we use on a daily basis. The machine “learns” prior data and adapts its responses. 

Utilizing machine learning involves using datasets of different sizes to identify correlations, similarities, and 

differences [18]. 

Furthermore, ML makes extensive use of tools and concepts from statistics and is part of a larger 

discipline called “data science”. There are three main types of ML, Supervised learning aims to establish rules 

of behavior from a dataset containing examples of already labeled cases [19]. Unsupervised learning, unlike 

supervised learning; unsupervised learning deals with the case where we only have the inputs, without first 

having the outputs. The goal of unsupervised learning is to find hidden shapes in an unlabeled dataset [19]. 

Reinforcement learning is a type of ML in which a model has no training data at the start. The objective is for 

an agent to evolve in an environment and learn from its own experience. For a reinforcement learning algorithm 

to work, the environment in which it operates must be computable and have a function that evaluates the quality 

of an agent [19]. 

The identification of IoT objects presented in this work is based on supervised learning. More 

precisely, it is treated as a supervised classification problem. To this end, we focus on six classification 

algorithms, their finer details on each model are given as follows. 
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3.1.  Support vector machine 

SVM are algorithms that separate data based on classes or separators [20]. The SVM algorithm is 

ideal for identifying simple classes which are separated by vectors called hyperplanes, and which distinguish 

data based on training class labels. It is also possible to program the algorithm for nonlinear data, which cannot 

be clearly separated by vectors. Principally, an SVM is all about finding the hyperplanes that best separate data 

classes. The predicted classes in model SVM are made based on the side of the hyperplane where the data point 

falls. SVM is a kind of supervised learning algorithm based on structural risk minimization [21]. As a popular 

machine learning algorithm, SVM is widely used in many fields, such as finance and information retrieval, it 

provides high accuracy on current and future data. The functional part of the solution to the SVM problem is 

written as a linear combination of the kernel functions taken at the support points: 
 

𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝑘(𝑥, 𝑥𝑖)

𝑖∈𝐴

 

 

where A denotes the set of active constraints and the αi the solutions of the following quadratic program: 
 

{
𝑚𝑖𝑛   
𝛼∈ℝ𝑛

1

2
𝛼𝑇𝐺𝛼 − ⅇ𝑇𝛼

𝑎𝑣ⅇ𝑐      𝑦𝑇𝛼 = 0
0 ≤ 𝛼𝑖 ≤ 𝐶 

 

 

where G is the matrix 𝑛 × 𝑛 with general term 𝐺𝑖𝑗 = 𝑦𝑖𝑦𝑗𝑘(𝑥𝑖, 𝑥𝑗). The bias b to the value of the Lagrange 

multiplier of the equality constraint at the optimum [22]. 

 

3.2.  Decision tree 

A DT is a supervised learning algorithm primarily used to graph data in branches to show possible 

outcomes of various actions. Classification and prediction use response variables based on past decisions [23]. 

DT forms a flowchart like a tree, where each node represents the test on the attribute, and each branch denotes 

the result of the test. The leaf node owns the class label. However, decision trees become difficult to read when 

associated with large volumes of data and complex variables. A DT is a type of learning algorithm that can be 

applied to many contexts: finance, pharmaceuticals, and agriculture. 

In the case of classification, the classification and regression trees (CART) algorithm uses the Gini 

diversity index to measure the classification error [24]. Practically, if we suppose that the class takes a value 

in the set 1, 2, …, m, and if 𝑓𝑖 denotes the fraction of the elements of the set with label 𝑖 in the set, we have: 
 

𝐼𝐺(𝑓) = ∑ 𝑓𝑖(1 − 𝑓𝑖)

𝑚

𝑖=1

= ∑(𝑓𝑖 − 𝑓𝑖
2)

𝑚

𝑖=1

=  ∑ 𝑓𝑖 −

𝑚

𝑖=1

 ∑ 𝑓𝑖
2

𝑚

𝑖=1

= 1 − ∑ 𝑓𝑖
2

𝑚

𝑖=1

𝑣 

 

3.3.  Random forest  

RF is a supervised learning technique that uses ensemble learning algorithms that combines an 

aggregation technique, “Bagging”, and a particular decision tree induction technique. It creates a strong 

classifier based on weak classifiers [25]. As the name suggests, RFs are formed by simply assembling multiple 

decision trees, usually ranging from a few tens to thousands of trees. This bagging method forms patterns, 

which are responsible for increased performance [21]. In addition, the random process in the construction of 

the trees makes it possible to ensure a low correlation between them. RF is also known for its accuracy and 

ability to process datasets composed of few observations and many features. It is used in crop classification 

and prediction of crop yield corresponding to current climatic and biophysical changes [26]. 

Let ℎ̂(. , 𝜃1), … , ℎ̂(. , 𝜃𝑞) be a collection of tree predictors, with 𝜃1, … , 𝜃𝑞 q random variables i.i.d. 

independent of 𝐿𝑛 [27]. The RF predictor ℎ̂𝑅𝐹 is obtained by aggregating this collection of random trees as 

follows. 
 

ℎ̂𝑅𝐹(𝑥) =
1

𝑞
∑ ℎ̂(𝑥1, 𝜃𝑙)

𝑞

𝑙=1

 

 

ℎ̂𝑅𝐹(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 ∑ 𝕝ℎ̂(𝑥1,𝜃𝑙)

𝑞

𝑙=1

 = 𝑘     𝑎𝑣ⅇ𝑐 1 ≤ 𝑘 ≤ 𝐾 
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3.4.  K-nearest neighbor 

KNN is a supervised learning method [28]. It is used for regression and classification. To make a 

prediction, the KNN will be based on the datasets. The datasets are trained according to their class. The KNN 

algorithm needs a distance calculation function between observations, it must be predicted to calculate the 

distance with the nearest “K" points [21]. Using the formulas, there are several distance calculation methods 

including, Minkowski distance, Manhattan distance, Euclidean distance, and Hamming distance. We choose 

the distance method according to the types of data we are handling. The choice of the highest number of K to 

make a prediction with the KNN algorithm, varies depending on the dataset. In agriculture, the KNN is very 

effective for the classification of different cereals-cultivars of cereals [21]. There are different distance 

calculations used in the comparison step of the KNN algorithm such as: 

a. Euclidean distance, which has been used in several identification systems based on the KNN algorithm 

[29]. The Euclidean distance ⅆ𝐸(𝑋, 𝑌) between the two vectors 𝑋 and 𝑌 is given by 

 

ⅆ𝐸(𝑋, 𝑌) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑚

𝑖=1

 

 

b. Distance from city block, which is defined as follows. 

 

ⅆ𝐸(𝑋, 𝑌) = ∑|𝑥𝑖 − 𝑦𝑖|

𝑚

𝑖=1

 

 

c. Cosine distance, which is also called angular distance and is derived from cosine similarity which measures 

the angle between two vectors. This distance is defined as follows. 

 

ⅆ𝑐𝑜𝑠(𝑋, 𝑌) = 1 −
∑ 𝑋𝑖𝑌𝑖

𝑚
𝑖=1

√∑ 𝑋𝑖
2𝑚

𝑖=1

1

√∑ 𝑌𝑖
2𝑚

𝑖=1

 

 

d. Correlation distance, which is given by the following formula. 

 

ⅆ𝑐𝑜𝑟(𝑋, 𝑌) = 1 −
∑ (𝑥𝑖 − �̅�𝑖)𝑚

𝑖=1

√∑ (𝑥𝑖 − �̅�𝑖)2𝑚
𝑖=1

(𝑥𝑖 − �̅�𝑖)

√∑ (𝑥𝑖 − �̅�𝑖)2𝑚
𝑖=1

 

 

3.5.  Naive Bayes classifier 

NB classifier is a supervised machine learning algorithm [30], it is a classification method that is 

mainly based on Bayes' theorem. The latter is particularly useful for text classification issues. Bayes' theorem 

is based on conditional probability theory [31]. The NB algorithm defines rules that allow it to classify a set of 

observations, thus defining its classification rules from a dataset in order to apply them to the classification of 

predictive data. Its main function is that it makes a strong priori hypothesis of the independence of the 

characteristics considered, thus ignoring the correlations that may exist between them. NB algorithms are 

widely used in the creation of Anti-Spam filters, recommendation systems, and digital marketing. The 

probabilistic model for a classifier is the conditional model [32]. 

 

𝑝(𝐶|𝐹1, … , 𝐹𝑛) 

 

where C is a dependent class variable whose instances or classes are few, conditioned by serval characteristic 

variables 𝐹1, … , 𝐹𝑛. Using Bayes’ theorem, we write: 

 

𝑝(𝐶|𝐹1, … , 𝐹𝑛) =
𝑝(𝐶)𝑝(𝐹1, … , 𝐹𝑛|𝐶)

𝑝(𝐹1, … , 𝐹𝑛)
 

 
3.6.  Stochastic gradient descent classifier 

Stochastic gradient descent classifier (SGDC) is a supervised predictive learning algorithm [33], 

which will allow to minimize the objective function which is written as a sum of differentiable functions. The 

process is then performed iteratively on randomly drawn datasets. Each objective function minimized in this 
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way is an approximation of the global objective function. The SGDC is widely used for training many families 

of models in machine learning, including support vector machines, logistic regression and graphical models 

[34]. In the SGD algorithm, the true value of the gradient of 𝑄(𝑤) is approximated by the gradient of a single 

component of the sum. 

 

𝑄(𝑤) =
1

𝑛
∑ 𝑄𝑖(𝑤)

𝑛

𝑖=1

 

 

In pseudo-code, the SGD method can be represented. 

a. Choose an initial parameter vector w and a learning rate η. 

b. Repeat until an approximate minimum is obtained: i) randomly shuffle the samples from the training set, 

and ii) for 𝑖 = 1, 2, … , 𝑛 , do: 

 

𝑤 ≔ 𝑤 − 𝜂∇𝑄(𝑤) = 𝑤 −
𝜂

𝑛
 ∑ ∇𝑄𝑖(𝑤)

𝑛

𝑖=1

 

 

 

4. INTERNET OF THINGS TRAFFIC PARAMETERS 

Understanding the nature and characteristics of the traffic generated by IoT objects is a crucial  

step for implementing effective network policy and resource management in an IoT infrastructure.  

However, studies focusing exclusively on characterizing IoT traffic are still in their infancy. A challenge that 

Sivanathan et al. [35] attempted to address by empirically analyzing network traffic under conditions 

simulating a smart city and smart campus environment in order to uncover the characteristics and behavioral 

patterns of IoT devices. 

To do this, they collected network traffic from a heterogeneous range of 30 devices, both 28 IoT 

devices and 2 non-IoT devices, over a continuous period spanning several months. IoT traffic includes both 

traffic generated by devices autonomously and traffic generated as a result of user interactions with devices. 

The raw data collected consists of the TCP packet data header and payload information. 

The authors are primarily interested in the distribution of 4 traffic flow characteristics: duration, 

ratio, throughput, and the duration of inactivity of traffic flows. It is explained that for each of the 

characteristics there are disparities that exhibit a distinct pattern. Sivanathan et al. [35] explained that each 

of the IoT devices uses less than 10 distinct ports to communicate and that some devices use non-standard 

port numbers. Moreover, some of them from the same manufacturer share some port numbers. Similarly, in 

terms of DNS queries, certain domain names are invoked by devices from the same manufacturer. The 

authors have also pointed out that with respect to the NTP protocol, some devices exhibit an identifiable 

pattern at the NTP request sending interval. Finally, they noticed that 17 of the 28 IoT devices in the test 

bed use TLS/SSL to communicate. Also, at the list of cipher suites [36] issued when establishing a TLS 

connection. 

In our object identification process based on machine learning techniques, we have conducted tests to 

determine the feasibility of detecting smart objects by probing their network traffic. We have used Wireshark 

[14] to scan our network traffic of 75 devices, in order to build a knowledge base of combinations of IP 

addresses, MAC addresses, port numbers, and packet sizes. Firstly, we have analyzed the protocol sessions to 

distinguish the network traffic generated by the IoT objects, and secondly, to proceed to their identification. 

Our work describes an experimental environment in which network traffic data was collected from 75 objects 

of 13 different types of devices. Over a period of several months, traffic capture was recorded as packets in 

PCAP files. This collected data is then transformed into protocol sessions (ARP, SSDP, mDNS, DNS, NTP, 

HTTP, HTTPS, TCP, and UDP), each session is identified by a unique triplet (source address, destination 

address, type of protocol). 

In this study, using supervised learning, classification models such as the RF model, DT, and KNN 

model were used. to train a classifier that predicts the probability that a given session originates from an object 

belonging to the set of known IoT objects. Initially, the results show an average rate of 89% of sessions 

correctly classified as being part of our list of objects. Then to improve these results, we have put an additional 

step in the classification process using the balancing on the network traffic coming from each connected object 

in our environment. The result shows an improvement of around 8%. In this regard, we have chosen the 

classification models of supervised machine learning, to proceed with the identification of IoT objects. Due to 

the heterogeneity of the protocols and devices of the latter, the classification model which presents a rate of 

97.72% is the decision tree. 
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5. DISCUSSION 

A smart building uses technology to share information between different systems [37], it is happening 

in the building in order to optimize the performance of the latter. This information is then used to automate 

various processes, from heating to ventilation, or air conditioning for security. When we talk about smart 

buildings, the general public thinks first of all, of a building that intelligently monitors its energy consumption 

and is able to control this consumption, because it relies above all on connectivity. It is made up of connected 

objects and applications with which the user interacts in real time. But the concept is much broader than that. 

A smart building also has advantages in the areas of living comfort, health and safety, among others [38]. 

The most fundamental characteristics of the smart building are its systems that are connected to each 

other. This system consists of smart objects, such as fire alarms, lighting, motion detectors, cameras; they are 

all connected. The use of smart objects is an integral part of a smart building, and they play a very important 

role in collecting data for collection and analysis by automated systems that can identify and control throughout 

the building. In the present work, the IoT environment is discussed through the prism of connected objects 

evolving in a similar intelligent building has been set up within the framework of the LPRI as shown in  

Figure 1 at EMSI, one involving IoT devices in Table 2, gas sensors, cameras, smart speakers, temperature 

sensors, IP phones, smart TVs, smartphones are connected to the internet. 
 

 

 
 

Figure 1. Architecture of the IoT environment of the LPRI lab 
 

 

Table 2. List of devices used in our lab 
Devices Number of devices Number of flows generated 

Smart TV (Samsung) 4 36793 

Printer (Tokyo Electric CO., LTD) 3 37154 

Smart Speaker (JBL) 4 36473 

WebCam (Hangzhou Hikvision) 9 37429 

Hotspot WIFI (Ubiquiti Access Point) 6 37940 

Gas Sensor 4 36396 

Temperature Sensor 3 33150 

Smart Phone  6 32454 

Laptop 6 36328 

Personal Computer 10 37944 

IP Phone (Aastra) 10 34048 

Modulator DVB-C 4 37333 

Tablet (Samsung) 6 34412 
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On the other hand, studies focusing exclusively on characterizing IoT traffic are still in their infancy. 

To do our job, we collected network traffic from a diverse range of devices, over a continuous period of time 

spanning multiple times. IoT traffic includes both traffic generated by devices autonomously and traffic 

generated as a result of user interactions with devices. 

Figure 2 represents the operating principle of our system for identifying IoT objects in our 

environment, starting from the capture of network traffic to the development of classification and prediction 

models. Firstly, this system collects the network traffic from the start of the object to be identified. Then, a step 

of extracting parameters characterizing the different classes is carried out from the traces of IoT traffic. The 

next step is to classify all the extracted parameters to obtain the identity of the considered object using one or 

more classifiers such as SVM, KNN, RF, and DT. This classification takes into account the models of the 

different classes, previously trained in a phase called the learning phase. 

 

 

 
 

Figure 2. General view of the operation of an identification system 

 

 

The raw data collected consists of the TCP packet data header and payload information. We are first 

interested in the distribution of traffic flow characteristics such as throughput, duration, and idle time of traffic 

flows. We will explain that for each of the characteristics where we find disparities that exhibit a distinct pattern. 

Capturing network traffic is a relatively easy process that can be accomplished by placing a tool such 

as Wireshark or t-shark on a host through which network traffic is routed. In our case, all network traffic 

entering and leaving the local network was observed and collected manually using the Wireshark tool as in 

Figure 3. During this observation phase, all traces were collected several times from a computer (Microsoft 

Windows 10) connected to the same network. The distribution of packet volume per IoT object generally shows 

variations in magnitude when there are no interactions with third parties. Figure 4 illustrates the distribution of 

packets of IoT objects in our lab. In particular, we can notice the absence of network activity with regard to the 

gas sensor and the temperature sensor. However, if one interacts with these latter sensors, then their network 

activity is multiplied by a variable factor. 

We have described the data collection process. Once we have all the traces, we need to convert them 

into a format usable by the machine learning algorithms. To do this, a python script has been implemented to 

allow the extraction of the characteristics from the network flow. A network stream can be defined as one or 

more packets traveling between two computer addresses using a particular protocol (TCP, UDP, ICMP, ...). 

Most IoT objects regularly exchange traffic with servers that are often identifiable by their domain 

names corresponding to their manufacturers/suppliers. In addition, these exchanges can occur periodically, 

such as the use of the NTP protocol for time-stamping services, or DNS requests at the initiative of IoT objects. 

Most IoT objects exhibit a recognizable pattern in the use of certain TCP/IP protocols [35].  

After the stage of feature extraction based on PCAP files and their transformation into a dataset, this 

was processed using the Scikit-learn library to develop models capable of predicting/identifying the type of 
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IoT objects using the machine learning technique. There are multiple different classification algorithms suitable 

for a problem like this. Many of them inherently support multiclass data (e.g., NB, decision trees, nearest-K), 

and for others like the SVM which only supports two classes by definition, there are still several methods for 

adapting SVMs to multiclass problems [39]. 

 

 

 
 

Figure 3. Wireshark capture 

 

 

 
 

 
 

Figure 4. Packet distribution of IoT objects in 1-minute intervals 
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Scikit-learn includes a wide range of supervised and unsupervised machine learning algorithms. In 

this work, six different classification algorithms were used: RF, SVM, KNN, SGDC, DT, and NB as in  

Figure 5. To do this, the algorithms were executed in a web application called Jupyter Notebook [40] chosen 

for its intelligible interface. As mentioned above, the approach proposed in this paper is based on multiclass 

supervised learning in the sense that we treat the identification of IoT objects as a supervised classification 

problem. Our dataset contains a set of values where each value is associated with a feature and an observation. 

 

 

 
 

Figure 5. Performance of classification models 

 

 

Our dataset includes 467,854 observations. It was divided into two subsets (training and test set) 

during the supervised learning phase. Once the models were trained on the training set, we checked their 

performance on the test set using metrics from the Scikit-learn library. 

Just like on our own dataset, we trained the algorithms on the first subset of data and then evaluated 

their performance on the second. As a result, the DT and RF models proved to be the most efficient in view of 

the metric results shown in Figure 4. In addition, their learning time is quite fast compared to others. 

To evaluate the performance of the classification of IoT objects, Figures 6 and 7 show the resulting 

confusion matrices of the two learning algorithms, respectively the decision tree model and the Random Forest 

model, of this classification. Each given cell of the confusion matrix indicates the precision that receives a 

positive output from the model in the corresponding row. From the raw outputs of Figures 6 and 7, it can be 

seen that these two matrices have almost the same values, and all models of the objects correctly detect most 

instances of their own class, with the exception of objects like hotspot Wi-Fi which have a true positive rate of 

less than 94%. On the other hand, the other objects show more than 95% up to 100% of correct detection, 

which is to say true positives, for example, the models of smart TV (Samsung), tablet, and laptop objects have 

the greatest confidence. At the same time, one can also see the other models incorrectly detecting instances of 

objects from other classes, i.e., false positives, as shown by the non-diagonal elements in the confusion matrices. 

The hotspot Wi-Fi object is more impacted compared to other objects by experiencing a drop in its 

true positive rate. Focusing on the models of the objects like gas sensor and temperature sensor, we found that 

their clusters overlapped with each other and with other IoT objects by a certain number of clusters, and 

therefore they resulted in false positives. We do not forget that these overlaps in the models of IoT objects are 

expected, especially when we want to classify a large number of different objects. IoT traffic overlaps can be 

due to various reasons such as actions triggered by events, or the use of common services, such as objects from 

the same manufacturer. 

The final discussion of model performance concerns the details of the critical performance metric 

(accuracy). Table 3 shows the comparative analysis of the accuracy of IoT objects for the following models 

DT, RF, and KNN, the higher values of accuracy complement the overall accuracy of each model. Table 4 

presents the comparison of the proposed work with state-of-art in the field of IoT classification. 
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Figure 6. Decision tree model confusion matrix 
 

 

 
 

Figure 7. Random forest model confusion matrix 
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Table 3. Comparison of learning model performance metrics 
Devices Decision Tree Random Forest K-Nearest Neighbors 

Smart TV (Samsung) 1 1 0.988317757 

Smart Speaker (JBL) 0.990300317 0.982652490 0.996662340 

Temperature Sensor 0.970267592 0.982652490 0.996662340 

Smart Phone  0.979044933 0.979044933 0.953516820 

Laptop 1 1 1 

IP Phone (Aastra) 0.995714007 0.994350282 1 

Modulator DVB-C 0.996612587 0.996612587 1 

Tablet (Samsung) 0.994969040 0.995743034 1 

 

 

Table 4. Comparison of the state of the art in the field of IoT classification 
References Objective Methods Testbed Configuration Performance 

[4] Classifying IoT 

devices 

NB, RF Smart Lab 

environment  

(28 devices) 

Port Numbers: Accuracy: 92.13% 

Domain Names: Accuracy: 79.48% 

Cipher Suite: Accuracy: 36.15% 

The final accuracy: 99.88% 

[5] Classification of 

Connected objects 

DT, SVM, NB, RF, 

KNN 

33 connected objects Traffic flow attributes: accuracy 

72% 

Text attributes: accuracy 93% 

The accuracy of the DT: 99% 

The accuracy of the SVM: 88% 

The accuracy of the NB: 98% 

The accuracy of the KNN: 94% 

The accuracy of the RF: 94% 

[6] Classify IoT devices GBM, eXtreme 

Gradient Boosting 

(XGB), RF 

9 IoT devices The total accuracy of the 

different models used: 99.281% 

[7] IoT/Non-IoT 

Classification in real-

time 

Stack-Ensemble, 

DRF, XGB, GBM, 

GLM 

Packet captures from 

[4] 

The Stack-Ensemble model 

outperformed with an accuracy 

of 99.94% 

[8] Fingerprint 

Classification 

KNN, DT, GBM 14 IoT devices Not specified 

[9] Fingerprint 

Classification 

RF 27 devices Accuracy: 95% 

[41] IoT Classification DT Smart Home setup  

(5 IoT devices) 

Accuracy: 97% 

Our 

proposed 

work 

IoT Classification in 

real-time 

DT, RF, NB, KNN 75 IoT devices from 

Smart environment 

(living Lab LPRI in 

EMSI) 

The accuracy of the DT: 97.72% 

The accuracy of the RF: 97.65% 

The accuracy of the KNN: 95.15% 

The accuracy of the NB: 85.09 

The final accuracy: 99.21% (80% in 

all IoT objects) 

 

 

6. CONCLUSION AND PERSPECTIVES 

The main objective of this work was to propose a method for identifying IoT objects by analyzing 

network traffic data. These were collected and analyzed manually using the Wireshark tool to extract the 

characteristics of the network flow, which allows us to build our base of exploitable characteristics by learning 

algorithms. To this end, an infrastructure of connected objects simulating an intelligent environment has been 

deployed to collect network traffic in real conditions of use. 

During the exploratory phase of network traffic, we have developed learning models capable of 

classifying and identifying connected IoT objects in our work environment. Regarding supervised learning, we 

subjected our dataset to six different classification algorithms (SVM, KNN, DT, RF, NB, and SGDC). As a 

result, the DT and RF models proved to be the most efficient in view of the metric results, they achieved 

97.72% accuracy in identifying and classifying each IoT object from the IoT dataset (most IoT objects are 

identified and classified with an accuracy of 99.21%). 

Although this approach makes it easier for us to identify and detect smart objects in our environment, 

it lacks the security of these objects that are connected and interconnected to the internet with its high 

cybersecurity risk in IoT networks. Currently, the smart environment has increasingly become a target for 

emerging cyberattacks that will impact user privacy and potential security. In future work, we will study the 

securing chapter of the IoT, which is a major and important challenge in our daily life, to define the main 

security problems caused by IoT objects. 

 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Machine learning for Internet of things classification using network traffic parameters (Loubna Elhaloui) 

3461 

REFERENCES 
[1] T. Sapkta, “A general survey on internet of things (IoT),” Indian Journal of Natural Sciences, vol. 12, no. 66, pp. 32077–32081, 

2021. 

[2] M. Lombardi, F. Pascale, and D. Santaniello, “Internet of things: A general overview between architectures, protocols and 

applications,” Information, vol. 12, no. 2, Feb. 2021, doi: 10.3390/info12020087. 

[3] L. Elhaloui, S. Elfilali, M. Tabaa, and E. H. Benlahmer, “Toward a monitoring system based on IoT devices for smart buildings,” 

in Advances on Smart and Soft Computing, 2021, pp. 285–293. doi: 10.1007/978-981-15-6048-4_25. 

[4] A. Sivanathan et al., “Classifying IoT devices in smart environments using network traffic characteristics,” IEEE Transactions on 

Mobile Computing, vol. 18, no. 8, pp. 1745–1759, Aug. 2019, doi: 10.1109/TMC.2018.2866249. 

[5] N. Ammar, L. Noirie, and S. Tixeuil, “ Improved identification of the type of connected objects by supervised classification,” (In 

French), CORES2019-Rencontres Francophones sur la Conception de Protocoles, l’Évaluation de Performance et 

l’Expérimentation des Réseaux de Communication., pp. 1–5, 2019. 

[6] Y. Meidan et al., “ProfilIoT: a machine learning approach for IoT device identification based on network traffic analysis,” in 

Proceedings of the Symposium on Applied Computing, Apr. 2017, pp. 506–509. doi: 10.1145/3019612.3019878. 

[7] M. Snehi and A. Bhandari, “A novel distributed stack ensembled meta-learning-based optimized classification framework for real-

time prolific IoT traffic streams,” Arabian Journal for Science and Engineering, vol. 47, no. 8, pp. 9907–9930, Aug. 2022, doi: 

10.1007/s13369-021-06472-z. 

[8] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and I. Ray, “Behavioral fingerprinting of IoT devices,” in Proceedings of 

the 2018 Workshop on Attacks and Solutions in Hardware Security, Jan. 2018, pp. 41–50. doi: 10.1145/3266444.3266452. 

[9] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and S. Tarkoma, “IoT SENTINEL: Automated device-type 

identification for security enforcement in IoT,” in 2017 IEEE 37th International Conference on Distributed Computing Systems 

(ICDCS), Jun. 2017, pp. 2177–2184. doi: 10.1109/ICDCS.2017.283. 

[10] M. Sneh and A. Bhandari, “Empirical investigation of IoT traffic in smart environments: characteristics, research gaps and 

recommendations,” in 2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART), Dec. 

2021, pp. 176–181. doi: 10.1109/SMART52563.2021.9676298. 

[11] S. Naik and V. Maral, “Cyber security — IoT,” in 2017 2nd IEEE International Conference on Recent Trends in Electronics, 

Information & Communication Technology (RTEICT), May 2017, pp. 764–767. doi: 10.1109/RTEICT.2017.8256700. 

[12] L. Atzori, A. Iera, and G. Morabito, “Understanding the internet of things: definition, potentials, and societal role of a fast evolving 

paradigm,” Ad Hoc Networks, vol. 56, pp. 122–140, Mar. 2017, doi: 10.1016/j.adhoc.2016.12.004. 

[13] P. Krishnan, K. Jain, K. Achuthan, and R. Buyya, “Software-defined security-by-contract for blockchain-enabled MUD-aware 

industrial IoT edge networks,” IEEE Transactions on Industrial Informatics, vol. 18, no. 10, pp. 7068–7076, Oct. 2022, doi: 

10.1109/TII.2021.3084341. 

[14] “Wireshark.” https://www.wireshark.org (accessed May 17, 2021). 

[15] A. Sivanathan, H. H. Gharakheili, and V. Sivaraman, “Can we classify an IoT device using TCP port scan?,” in 2018 IEEE 

International Conference on Information and Automation for Sustainability (ICIAfS), Dec. 2018, pp. 1–4. doi: 

10.1109/ICIAFS.2018.8913346. 

[16] “Nmap.” https://nmap.org/ (accessed May 17, 2021). 

[17] E. Blasch et al., “Machine learning/artificial intelligence for sensor data fusion–opportunities and challenges,” IEEE Aerospace and 

Electronic Systems Magazine, vol. 36, no. 7, pp. 80–93, Jul. 2021, doi: 10.1109/MAES.2020.3049030. 

[18] M. Aria, C. Cuccurullo, and A. Gnasso, “A comparison among interpretative proposals for Random Forests,” Machine Learning 

with Applications, vol. 6, Dec. 2021, doi: 10.1016/j.mlwa.2021.100094. 

[19] B. Mahesh, “Machine learning algorithms -A review,” International Journal of Science and Research (IJSR), vol. 9, no. 1, 

pp. 381–386, 2020, doi: 10.21275/ART20203995. 

[20] U. Barman and R. D. Choudhury, “Soil texture classification using multi class support vector machine,” Information Processing in 

Agriculture, vol. 7, no. 2, pp. 318–332, Jun. 2020, doi: 10.1016/j.inpa.2019.08.001. 

[21] M. Waleed, T.-W. Um, T. Kamal, and S. M. Usman, “Classification of agriculture farm machinery using machine learning and 

internet of things,” Symmetry, vol. 13, no. 3, Mar. 2021, doi: 10.3390/sym13030403. 

[22] G. Lebrun, C. Charrier, O. Lezoray, and H. Cardot, “Construction of efficient and low-complexity decision functions with SVMs,” 

(In French), in RJCIA, 2005, pp. 1–14. 

[23] Q. Dai, C. Zhang, and H. Wu, “Research of decision tree classification algorithm in data mining,” International Journal of Database 

Theory and Application, vol. 9, no. 5, pp. 1–8, May 2016, doi: 10.14257/ijdta.2016.9.5.01. 

[24] N. Ben Amor, S. Benferhat, and Z. Elouedi, “Naive Bayesian networks and decision trees in intrusion detection systems,”(In 

French), TSI-Technique et Science Informatiques, vol. 25, no. 2, pp. 167–196, 2006. 

[25] J. Ali, R. Khan, N. Ahmad, and I. Maqsood, “Random forests and decision trees,” IJCSI International Journal of Computer Science 

Issues, vol. 9, no. 5, pp. 272–278, 2012. 

[26] A. O. Ok, O. Akar, and O. Gungor, “Evaluation of random forest method for agricultural crop classification,” European Journal of 

Remote Sensing, vol. 45, no. 1, pp. 421–432, Jan. 2012, doi: 10.5721/EuJRS20124535. 

[27] D. Zhao et al., “Using random forest for the risk assessment of coal-floor water inrush in Panjiayao Coal Mine, northern China,” 

Hydrogeology Journal, vol. 26, no. 7, pp. 2327–2340, Nov. 2018, doi: 10.1007/s10040-018-1767-5. 

[28] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “KNN model-based approach in classification,” in OTM 2003: On The Move to 

Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, 2003, pp. 986–996. doi: 10.1007/978-3-540-39964-3_62. 

[29] H. A. Abu Alfeilat et al., “Effects of distance measure choice on K-nearest neighbor classifier performance: A review,” Big Data, 

vol. 7, no. 4, pp. 221–248, Dec. 2019, doi: 10.1089/big.2018.0175. 

[30] R. Mirtorabi, “Automating water capital activities using Naïve Bayes classifier with supervised learning algorithm,” University of 

Waterloo, 2021. 

[31] G. Gültekin and O. Bayat, “A Naïve Bayes prediction model on location-based recommendation by integrating multi-dimensional 

contextual information,” Multimedia Tools and Applications, vol. 81, no. 5, pp. 6957–6978, Feb. 2022, doi: 10.1007/s11042-021-

11676-4. 

[32] A. Salvail-Berard, “Les arbres de décision hybrides,” Cahier de Mathématique de l’Université de Sherbrooke, vol. 2, pp. 34–58, 

2012. 

[33] T. Zhang, “Solving large scale linear prediction problems using stochastic gradient descent algorithms,” in Proceedings of the 

twenty-first international conference on Machine learning, 2004, pp. 116–123. 

[34] B. Gaye, D. Zhang, and A. Wulamu, “Sentiment classification for employees reviews using regression vector- stochastic gradient 

descent classifier (RV-SGDC),” PeerJ Computer Science, vol. 7, Sep. 2021, doi: 10.7717/peerj-cs.712. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 3449-3463 

3462 

[35] A. Sivanathan et al., “Characterizing and classifying IoT traffic in smart cities and campuses,” in 2017 IEEE Conference on 

Computer Communications Workshops (INFOCOM WKSHPS), May 2017, pp. 559–564. doi: 10.1109/INFCOMW.2017.8116438. 

[36] O. Cheikhrouhou, M. B. Jemaa, and M. Laurent-Maknavicius, “New authentication method EAP-EHash,” (In French), CFIP 

2006/Francophone Conference on Protocol Engineering. Hermes, 2006.  

[37] A. Latifah, S. H. Supangkat, and A. Ramelan, “Smart building: A literature review,” in 2020 International Conference on ICT for 

Smart Society (ICISS), Nov. 2020, pp. 1–6. doi: 10.1109/ICISS50791.2020.9307552. 

[38] S. J. Rashid, A. M. Alkababji, and A. M. Khidhir, “Communication and network technologies of IoT in smart building: A survey,” 

NTU Journal of Engineering and Technology, vol. 1, no. 1, pp. 1–18, 2021. 

[39] R. Sangeetha and B. Kalpana, “Identifying efficient kernel function in multiclass support vector machines,” International Journal 

of Computer Applications, vol. 28, no. 8, pp. 18–23, 2011. 

[40] “Jupyter notebook.” https://jupyter.org/ (accessed Oct. 20, 2021). 

[41] N. Ammar, L. Noirie, and S. Tixeuil, “Autonomous identification of IoT device types based on a supervised classification,” in ICC 

2020 - 2020 IEEE International Conference on Communications (ICC), Jun. 2020, pp. 1–6. doi: 10.1109/ICC40277.2020.9148821. 

 

 

BIOGRAPHIES OF AUTHORS   

 

 

Loubna Elhaloui     received a specialized master's degree in computer networks 

and systems from the Faculty of Sciences Ben M’sik, Hassan II University of Casablanca, 
Morocco. She is a teacher and researcher in computer networks at the EMSI Rabat, Morocco. 

she is a member of the laboratory of information technologies and modeling. She can be 

contacted at l.elhaloui@gmail.com. 

 

  

 

Sanaa El Filali     is currently a full professor of computer science in the Department 

of Mathematics and Computer Science at Faculty of Science Ben M’Sik, Hassan II University 

of Casablanca. She received her Ph.D. in computer science from the Faculty of Science Ben 

M’sik in 2006. Her research interests include computer training, the Internet of things, and 

information processing. She can be contacted at elfilalis@gmail.com. 

  

 

El Habib Benlahmer     is currently a full professor of computer science in the 

Department of Mathematics and Computer Science at Faculty of Science Ben M’Sik, Hassan 

II University of Casablanca since 2008. He received his Ph.D. in computer science from 

ENSIAS in 2007. His research interests span both web semantic, NLP, mobile platforms, and 
data science. He can be contacted at h.benlahmer@gmail.com. 

  

 

Mohamed Tabaa     received a degree of engineer in telecommunication and 

networking from the Moroccan school of engineering science of Casablanca, Morocco in 

2011. He received a master's in radiocommunication, and embedded electronic systems  
from University of Paul Verlaine of Metz, France. He received his Ph.D. and H.D.R.  

diploma in electronics systems from University of Lorraine Metz, France in 2014 and 2020 

respectively. Since 2015, he has been the Director of the LPRI private Laboratory attached to 

the EMSI. His research interests include an array of digital signal processing for wireless 
communications, IoT, digitalization, renewable energy, and embedded systems. He has served 

on the organizing committees and technical program committees of several international 

conferences, including IEEE International Conference on Microelectronics ICM, Innovation 

and New Trends in Information Systems INTIS, IEEE Renewable Energies, Power Systems 
and Green Inclusive Economy REPS & GIE, IEEE International Conference on Control and 

Fault-Tolerant Systems SysToL. He can be contacted at m.tabaa@emsi.ma.  

https://orcid.org/0000-0003-1645-6961
https://orcid.org/0000-0002-8933-1564
https://www.scopus.com/authid/detail.uri?authorId=56899078200
https://orcid.org/0000-0001-7098-4621
https://www.scopus.com/authid/detail.uri?authorId=56027165800
https://orcid.org/0000-0003-3938-3566
https://www.scopus.com/authid/detail.uri?authorId=14068103000


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Machine learning for Internet of things classification using network traffic parameters (Loubna Elhaloui) 

3463 

 

Youness Tace     holds a bachelor’s degree in mathematics and computer science, a 

master’s in big data & data science (DSBD). He is a doctoral student in science and technology 

and has acquired several certificates and professional skills. He currently teaches at the 

Moroccan School of Engineering Sciences (EMSI) and did a few visits to Ben M'Sik Faculty 
of Sciences to supervise and teach master’s students. He is a member of the Center for 

Innovation and Technology Transfer (CITT). He has a penchant for the fields of the Internet 

of things, artificial intelligence, and web development. He can be contacted at email:  

youness.tace.pro@gmail.com. 

  

 

Nouha Rida     got her Ph.D. degree in computer science from the University 

Mohamed V of Rabat- Morocco. She is a full professor in Computer Science at the EMSI 

Rabat, Morocco. She is a member of the smartiLab, and she is a member of a Network and 
Intelligent Systems Group and has many research contributions. She can be contacted at email: 

nou-harida@gmail.com. 

 

https://orcid.org/0000-0003-1377-0314
https://orcid.org/0000-0002-7593-4129
https://www.scopus.com/authid/detail.uri?authorId=57205408147

