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 It is known that a shunted nonlinear resistive-capacitive-inductance 

Josephson-junction (RCLSJ) model has a chaotic attractor. This attractor is 

created as a result of Hopf bifurcation that occurs when a certain direct 

current (DC) applied to one of the junction terminals. This chaotic attractor 

prevents the system from reaching the phase-locked state and hence degrade 

the performance of the junction. This paper aims at controlling and taming 

this chaotic attractor induced in this model and pulling the system to the 

phase-locked state. To achieve this task, a sliding mode controller is 

proposed. The design procedures involve two steps. In the first one, we 

construct a suitable sliding surface so that the dynamic of the system follows 

the sliding manifolds in order to meet design specifications. Secondly, a 

control law is created to force the chaotic attractor to slide on the sliding 

surface and hence stabilizes system trajectory. The RCLSJ model under 

consideration is simulated with and without the designed controller. Results 

demonstrate the validity of the designed controller in taming the induced 

chaos and stabilizing the system under investigation. 
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1. INTRODUCTION 

Josephson-junction (JJ) is a strongly nonlinear device used in many applications that required low 

power consumption such as the construction of quantum bits and microwave photonics [1], [2]. It consists of 

two superconductors that are weakly coupled by an insulator. When the insulator (metal) becomes thin and 

without applying any voltage across the junction, a super current flow from one superconductor to the other 

and produces what is known in literature as Josephson effect. Because of this phenomenon, scientists used 

Josephson-junction in superconducting quantum interference device (SQUID) to measure very low magnetic 

fields [3]. Moreover, Josephson junction can switch at a very high rate when operating at zero absolute 

temperature. Additionally, Josephson junctions are used in sensitive instruments such as microwave 

detectors, superconducting qubits and magnetometers [4]. Figure 1 represents a schematic diagram of a JJ. 

The main equations that model the dynamic of the junction supercurrent and voltage are: 

 

𝐼(𝑡)   = 𝐼𝑐  𝑠𝑖𝑛( 𝜃(𝑡) (1) 

 

𝑑𝜃(𝑡)/𝑑𝑡  = 2𝜋𝑒𝑣(𝑡)/ℎ (2) 

https://creativecommons.org/licenses/by-sa/4.0/
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Here Ic is known as the junction critical current (the maximum current the junction can have with no 

dissipation, (𝑡) = 
1

(𝑡) − 
2

(𝑡) is the phase difference between the two sides, e is the electronic charge,  

h is Planck’s constant. Without any external voltage,  is constant and a super current proportional to the 

phase difference flows through the junction and this phenomenon is known as the DC-Josephson effect. On 

the other hand, when the external applied voltage is constant, (t) oscillates and generate a sinusoidal super 

current across the junction (AC-Josephson effect), with a fundamental frequency proportional to the external 

voltage. Many models of Josephson-junction were investigated in literature such as shunted linear resistive 

models (RSJ), shunted linear resistive-capacitive models (RCSJ), and shunted nonlinear resistive-capacitive-

inductance models (RCLSJ). It is worth mentioning that different models of Josephson-junction generate 

chaotic signals in different ways. For example, in shunted linear RCSJ, one can generate chaos by injecting 

an external periodic current into the junction. Meanwhile, in the shunted RCLSJ, chaos is induced by a 

constant current. As one of many nonlinear systems, chaos can be induced in Josephson-junction for certain 

circuit’s parameters and hence affects its operation. One of the most widely investigated Josephson-junction 

system is the radio frequency (RF) current driven junction where many researchers have studied the induced 

chaotic behavior and its effects on the dynamic of the system [5]. The nonlinear equation that describes the 

dynamic of the Josephson-junction describes other well-known physical systems such as phased-locked loops 

and the forced pendulum. 

 

 

 
 

Figure 1. Schematic diagram of a JJ 

 

 

Many researchers studied the chaotic behavior of Josephson junction theoretically and 

experimentally [6]–[10]. Dana et al. [11] showed that chaotic Josephson junction can be utilized to generate a 

chaotic carrier to build secure communication systems. Nayak and Kuriakose [12] studied the chaotic 

behavior of mutually coupled Josephson-junctions. In [13], spatiotemporal chaotic behaviors were identified 

which are induced due to the diffusive coupling between the array junctions. Even though chaos in 

Josephson-junction can be useful in certain applications, most of the time it is undesirable and affect the 

operation of the system and in this case, one should eliminate this chaotic behavior to prevent the degradation 

in system performance. Recent studies have been directed to control and eliminate chaotic behavior in 

Josephson-junction as well as other nonlinear systems [14]–[16]. In recent years, Roohi et al. [17] proposed a 

switching sliding mode controller to suppress chaos in fractional order power system with external 

disturbances. Abadi and Balochian [18] designed a sliding mode controller based on fuzzy supervisor to 

eliminate chaotic oscillations that affect the stabilization of a power system. Harb et al. [19] proposed a 

nonlinear sliding mode controller to eliminate chaos in a third order phase locked loop so that the loop pulls-

in. Khooshehmehri et al. [20] proposed a nonlinear robust adaptive controller to synchronize two Josephson-

junction models with slightly different parameters by using the slave-master technique which can be used in 

THz wave generators.  

One of the pioneer research in controlling chaos is the work by Ott et al. [21]. In their research, they 

developed the OGY method, named for Ott, Gebogy and York, to suppress chaos by stabilizing unstable 

periodic orbit embedded in the chaotic attractor. Later, Hunt [22] developed an occasional proportional 

feedback method (OPF) to eliminate chaos in diode resonator. The method considers to be a modification of 

the OGY method where unstable high periodic orbits as well as low periodic orbits are stabilized. This 

technique is very fast and it is used in many applications. Recently, Harb and Harb [14] proposed a nonlinear 

controller based on backstepping technique to eliminate chaos in Josephson-junction and other nonlinear 

systems. In this research paper, we propose a sliding mode nonlinear controller to control chaos in shunted 

nonlinear RCLSJ Josephson-junction. The designed process starts by constructing a suitable sliding surface 

so that the dynamic of the system follows the sliding manifolds in order to meet our design specifications. 

Secondly, we design a control law to force the chaotic attractor to the sliding surface and hence stabilizes 

system trajectory.  
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The organization of the paper is as: in section 2, we derive the nonlinear ordinary differential 

equation for different models of Josephson-junction with emphasis on the RCLSJ model. Section 3 includes 

both analysis and simulation of the uncontrolled model. Section 4 includes the steps for designing the sliding 

mode nonlinear controller. Finally, a summary for paper conclusions is presented in section 5. 

 

 

2. RESEARCH METHOD  

2.1.  Derivation of mathematical models 

In this paper, we start with the RCSJ model shown in Figure 2 where  represents the phase 

difference across the junction, the resistor R and capacitor C are the junction resistance and junction 

capacitance, respectively [10], as shown in Figure 2. In general, the external current (Iext) consists of the DC 

and AC currents, whereas, V represents the external voltage across the junction. Due to the external voltage, 

the I-V characteristics depicted by Figure 3 shows a hysteresis at an external critical current, Ic, at a given 

temperature T0 K [10] as shown in Figure 3. Rn represents the junction resistance in the normal state and Rsg 

is the sub-gap resistance. Using the model depicted in Figure 2 and applying Kirchhoff’s laws, we obtain the 

(3) and (4): 

 

𝐶. 𝑑𝑣/𝑑𝑡 + 𝑉/𝑅 +   𝐼𝐶 . 𝑠𝑖𝑛 𝜃   = 𝐼𝑒𝑥𝑡 = 𝐼𝑂   +   𝐼1 𝑠𝑖𝑛( 𝜔𝑡) (3) 

 
ℎ

2𝜋𝑒
. 𝑑𝜃/𝑑𝑡 = 𝑉 (4) 

 

Substitute (4) into (3) to get:  

 

𝑑2𝜃/𝑑𝑡2   + 𝛽𝑑𝜃/𝑑𝑡   +   𝛺0
2 𝑠𝑖𝑛 𝜃 =   𝐴0 + 𝐴1 𝑠𝑖𝑛( 𝜔𝑡) (5) 

 

where =1/RC, is the damping factor; o=(2eIc/hC)1/2 represents the plasma frequency, A0=2eI0/hc and 

A1=2eI1/hC. 

Previous results showed that when the external current was purely DC, no chaotic solution was 

observed [11], but when an AC external current was injected, chaotic motion was induced at certain critical 

value, Ic. This chaotic motion is induced because of the hysteresis in the I-V characteristics of the junction at 

I=Ic. Later Whan et al. [10], as shown in Figure 3 modified. the RCSJ model by replacing R by a nonlinear 

resistance R(V) and proposed the new mode RCSLJ model as shown in Figure 4 [10] as shown in Figure 4 

where R(V) is given by: 

 

𝑹(𝑽)   =   |
𝑹𝒏     𝒊𝒇  | 𝑽 |   >   𝑽𝒈

𝑹𝒔𝒈     𝒊𝒇 | 𝑽 |   ≤   𝑽𝒈
 (6) 

 

where, 𝑉𝑔 is gap junction voltage.  

 

 

  
  

Figure 2. RCSJ model Figure 3. Hysteresis behavior of the I-V characteristics 
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Applying Kirchhoff laws for the new model, the (7)-(9) are obtained [19]: 

 

𝐶
𝑑𝑉

𝑑𝑡
  +

𝑉

𝑅(𝑉)
+  𝐼𝐶 𝑠𝑖𝑛( 𝜃)   +   𝐼𝑠 = 𝐼0   +  𝐼1 𝑠𝑖𝑛( 𝜔𝑡) (7) 

 
ℎ

2𝜋𝑒

𝑑𝜃

𝑑𝑡
=  𝑉 (8) 

 

𝐿
𝑑𝐼𝑠

𝑑𝑡
  +   𝐼𝑠𝑅𝑠   =  𝑉 (9) 

 

the (7)-(9) can be written in a dimensionless form as: 

 

𝛽𝐶𝜃
..

+ 𝑔(𝑣)𝜃
.

+ 𝑠𝑖𝑛 𝜃 + 𝑖𝑠 = 𝑖𝑜 + 𝑖1 𝑠𝑖𝑛(
𝜔

𝜔𝑜
𝜏) (10) 

 

𝜃
.

= 𝑣 (11) 

 

𝛽𝐿𝑖
.

𝑠 + 𝑖𝑠 = 𝑣 (12) 

 

where τ=ωo t; 𝑣 =
𝑉

𝐼𝑐𝑅𝑠
; o=2eIc.Rs/h; c=2eIc.Rs2 C/h; l=2eIc.L/h; g(v)=Rs/R(v) as shown in Figure 5 

[10] as shown in Figure 5; is=Is/Ic; io=Io/Ic; i1=I1/Ic and  is the frequency of the external AC current.  

 

 

  
  

Figure 4. RCLSJ model Figure 5. Approximate junction characteristics 

 

 

The system equations can be represented in the state apace representation by substituting  𝑥1 = 𝜃, 

𝑥2 = 𝑣, and  𝑥3 = 𝑖𝑠 into (8)-(10) to get: 
 

𝑥
.

1 = 𝑥2 (13) 

 

𝑥
.

2 =
1

𝛽𝑐
[𝑖𝑜 + 𝑖1 𝑠𝑖𝑛(

𝜔

𝜔𝑜
𝜏) − 𝑔(𝑥2)𝑥2 − 𝑠𝑖𝑛( 𝑥1) − 𝑥3] (14) 

 

𝑥
.

3 =
1

𝛽𝐿
[𝑥2 − 𝑥3] (15) 

 

where 𝑔(𝑥2) = {
0.061    𝑖𝑓    |𝑥2| ≤ 2.9

0.366    𝑖𝑓    |𝑥2| > 2.9
. 

 

2.2.  Simulation of the uncontrolled system 

The uncontrolled system for the RCLSJ model was simulated in previous studies as shown below 

[11], [14]. The result is depicted by Figure 6 where chaotic solution is observed due to Hopf bifurcation at 

the control parameter i0=1.72. As a result of this bifurcation, a periodic solution and a limit cycle are formed. 

Increasing the bifurcation parameter further, the system approaches a chaotic state as a result of periodic 

doubling. This chaotic state will prevent the system from reaching the phase-locked state and the system 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 3540-3548 

3544 

enters the out-of-lock state. To eliminate this chaotic state, a chaos controller is developed to retain the 

normal operation of the system under consideration. Figure 6 shows both, state space and time history of the 

chaotic oscillation. To eliminate this chaotic attractor and regain the normal operation of the system, i.e., 

phase-locked state, a sliding mode nonlinear controller is designed as shown in the following section. 

 

 

  
  

Figure 6. Chaotic solution at the control parameter io=1.72 

 

 

2.3.  Sliding mode nonlinear controller design 

Sliding mode control (SMC) is a well-known method in control theory used for controlling 

nonlinear systems since it is very robust and simple to implement. It is based on the variable structure control 

which was utilized by many scientists [23], [24]. SMC is a robust nonlinear control that utilizes a high 

frequency switching control law to change the dynamics of a nonlinear system in a certain manner. Such 

control law forces the system trajectory to follow a known sliding surface and stays there. Many researchers 

used such a controller, for example; Qiao and Zhang [25], Yan et al. [26], Nguyen et al. [27], Haddad and 

Akkar [28]. The controller provides a feature that when the system slides on the surface, the system is 

insensitive to plant parameter variation and external disturbances such that the controller performance is 

determined by the design of the sliding manifolds [29]. Such advantage made the sliding mode controller 

attractive for the control of many nonlinear systems and hence has gained researchers interest [30]–[32]. As 

an example, Utkin [33] introduced the discrete-time sliding mode (DSMC) to implement sliding mode 

controller in discrete time systems. Su et al. [34] used the DSMC for disturbance rejection and chattering 

attenuation. Moreover, Li and Wikander [35] used the DSMC in the compensation of unknown friction in 

positioning systems. In what follows, the design of sliding mode controller is presented in two steps. Firstly, 

the sliding surface is designed where the sliding motion meets specified design parameters. Secondly, we 

select a control law to force system trajectory to reach the designed sliding surface. Rewrite the (13)-(15) and 

adding the control signal u to get: 

 

𝑥
.

1 = 𝑥2 (16) 

 

𝑥
.

2 =
1

𝛽𝑐
[𝑖𝑜 + 𝑖1 𝑠𝑖𝑛(

𝜔

𝜔𝑜
𝜏) − 𝑔(𝑥2)𝑥2 − 𝑠𝑖𝑛( 𝑥1) − 𝑥3] + 𝑢  (17) 

 

𝑥
.

3 =
1

𝛽𝐿
[𝑥2 − 𝑥3] (18) 

 

where 𝑔(𝑥2) = {
0.061    𝑖𝑓    |𝑥2| ≤ 2.9

0.366    𝑖𝑓    |𝑥2| > 2.9
. 

 

To design the control signal u, the following two steps are taken: 

− Step 1: The main task here is to design a sliding surface and stabilizes the system under consideration 

such that it yields the desired performance. Let S, the switching surface, be defined as:  
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𝑠 = 𝐾(𝑥1 − 𝑥1𝑟𝑒𝑓) + (𝑥2 − 𝑥2𝑟𝑒𝑓) + (𝑥3 − 𝑥3𝑟𝑒𝑓) (19) 

 

where K is a tuning parameter.  

− Step 2: Now, the sliding-reachability condition is defined as (20): 

 

�̇�   =   −𝐾𝑐𝑠  −  𝐾𝑑𝑠𝑖𝑔𝑛(𝑠) (20) 

 

where Kc and Kd are positive constant design parameters. Now, we construct the control law to force the 

system trajectories on the sliding surface. To find the control law u, we differentiate the sliding surface 

given by (19) and equate this with the sliding reachability condition given by (20) and use the result in 

(16)-(18). By doing so, we solve for u to get (21). 

 

𝑢 = −𝐾𝑐𝑠 − 𝐾𝑑𝑠𝑖𝑔𝑛(𝑠) − 𝐾𝑥2 − (1/𝛽𝑐)(𝑖𝑜 + 𝑖1 𝑠𝑖𝑛 𝜔 𝑡 − 𝑐1𝑥2 − 𝑠𝑖𝑛 𝑥1 − 𝑥3) 
       − (1/𝛽𝑙)(𝑥2 − 𝑥3) (21) 

 

Then, the control signal u defined by (21) is substituted into (17), and by integrated the resulted system, 

we obtain the results shown in Figures 7 and 8. So, for Kd<−K, the designed controller signal u in (21) 

can drive the uncontrolled system given by (13)-(15) to reach the sliding mode surface S=0. To ensure the 

stability of the solution, we consider the Lyapunov function V=½ s2 which isa positive definite function 

on Rn. Differentiating V along the equivalent dynamics (20), we get (22): 

 

�̇� = 𝑠 �̇�   =   −𝐾𝑐𝑠2   −  𝐾𝑑 𝑠𝑔𝑛( 𝑠)𝑠 (22) 

 

Which is a negative definite function on Rn, thus the solution of the system is globally stable according to 

Lyapanov stability theory. Note that both Kc and Kd are positive. 

 

 

  
  

Figure 7. Time history of the state variable x2 of the 

controlled system 

Figure 8. Time history of the state variable x2 after 

delaying the controller for 100 sec 

 

 

3. RESULTS AND DISCUSSION  

The system dynamics described by (16)-(18) and with the control law given by (21) is simulated 

using MATLAB and the results are depicted in Figures 7, 8, and 9. Time history of the state variable x2 of the 

controlled system is shown in Figure 7 while Figure 8 shows the time history of the state variable x2 after 

delaying the controller for 100 sec. By comparing Figures 6 and 7, it is clear that the designed controller 

eliminates the chaotic solution and drives the system to the phase-locked state by utilizing one control signal. 

Note that the control law depends on the parameters Kc, Kd, and the tuning parameter K. This dependency 

gives the designer the flexibility to design a controller to meet a desired transient performance. Figures 9(a) 

and 9(b) show the time history and state space of the system with and without the controller. The results 

demonstrate the effectiveness of the designed sliding mode controller. 
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(a) 

 

 
(b) 

 

Figure 9. Time history and phase plane for the two cases (with and without controller) (a) state space plot and 

(b) phase plane plot 

 

 

4. CONCLUSION  

In previous studies, we have showed that shunted nonlinear RCLSJ Josephson-junction revealed a 

Hopf bifurcation for certain external injected current. This type of bifurcation drives the system to a chaotic 

state that prevent the system from approaching the phase-lock state and hence degrade the performance of the 

junction. In this case, taming this behavior becomes a must. In this paper, a sliding mode controller has been 

designed eliminate this chaotic behavior. Firstly, a sliding surface was designed. Secondly, a control signal 

was designed to force the trajectory of the system to slide on the sliding surface and stay there. Results of the 

simulations demonstrates the effectiveness of the designed controller in taming the chaotic solution and 

pulling the system to the phase-lock state. As future work, this method can be applied to different type of 

Josephson junction as well as other nonlinear chaotic systems. 
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