
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 13, No. 3, June 2023, pp. 2972~2980

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i3.pp2972-2980  2972

Journal homepage: http://ijece.iaescore.com

An analysis between different algorithms for the graph vertex

coloring problem

Velin Kralev, Radoslava Kraleva
Department of Informatics, South-West University “Neofit Rilski”, Blagoevgrad, Bulgaria

Article Info ABSTRACT

Article history:

Received May 14, 2022

Revised Sep 5, 2022

Accepted Oct 1, 2022

 This research focuses on an analysis of different algorithms for the graph

vertex coloring problem. Some approaches to solving the problem are

discussed. Moreover, some studies for the problem and several methods for
its solution are analyzed as well. An exact algorithm (using the backtracking

method) is presented. The complexity analysis of the algorithm is discussed.

Determining the average execution time of the exact algorithm is consistent

with the multitasking mode of the operating system. This algorithm
generates optimal solutions for all studied graphs. In addition, two heuristic

algorithms for solving the graph vertex coloring problem are used as well.

The results show that the exact algorithm can be used to solve the graph

vertex coloring problem for small graphs with 30-35 vertices. For half of the
graphs, all three algorithms have found the optimal solutions. The

suboptimal solutions generated by the approximate algorithms are identical

in terms of the number of colors needed to color the corresponding graphs.

The results show that the linear increase in the number of vertices and edges

of the analyzed graphs causes a linear increase in the number of colors

needed to color these graphs.

Keywords:

Chromatic number

Computational complexity

Graph coloring

Graph theory

Vertex coloring

This is an open access article under the CC BY-SA license.

Corresponding Author:

Velin Kralev

Department of Informatics, Faculty of Mathematics and Natural Science, South-West University

66 Ivan Michailov str., 2700 Blagoevgrad, Bulgaria

Email: velin_kralev@swu.bg

1. INTRODUCTION

Graph theory has been studied extensively in recent decades [1]. Graph structures are used to

represent, study and analyze processes in many different real objects and therefore they are very useful

[2]–[4]. Many complex, significant and important problems can be presented and studied with graphs. Most

often, these types of problems are analyzed and solved by software that executes specific algorithms [5]. This

is one of the reasons why many researchers are researching and improving different algorithms for solving

certain classes of problems, related and presented directly and indirectly through graph structures [6]–[8].

This also includes the development of various software products (applications). This process is usually done

through integrated development environments and event-oriented programming. These environments allow

the use of different programming languages and different compilers for different target platforms [9].

Structurally, each graph is represented by two sets-one for vertices V and one for edges E. The set of

vertices V cannot be empty and must have at least one element (vertex). In contrast, the set of edges E may be

empty and not contain even a single element. This is usually not the case, because the edges actually

represent connections between pairs of vertices, thus realizing the basic idea of the graph structure. In a given

graph the edges can be unoriented. In this case, it does not matter which of the two incident vertices is the

starting one and which is the final one. When the edge is oriented, one vertex is called the initial vertex and

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708 

An analysis between different algorithms for the graph vertex coloring problem (Velin Kralev)

2973

the other vertex is called the final vertex. In this case, the edge is called an arc [10]. If a numerical value is set

for each edge, then the graph is called a weighted [11], [12]. Once these definitions have been presented, the

graph vertex coloring problem can also be presented as well.

The graph vertex coloring problem is an NP-complete problem [13]. This problem is still being

actively studied [14], [15]. Scientific publications have described many variants of this problem. For

instance, the reconfiguration graph for vertex colorings of weakly chordal graphs [16], the facial

unique-maximum colorings of plane graphs with restriction on big vertices [17], the vertex coloring with

communication constraints in synchronous broadcast networks [18], and other. Different variants use

different approaches [19], [20], techniques [21], [22] and algorithms [23], [24]. Similar approaches have been

used to solve other problems in graph theory [25]. Detailed reviews of the specifics of the graph vertex

coloring problem are discussed in [26], [27].

The most important feature of a graph vertex coloring algorithm is its computational complexity. In

fact, it has to do with determining the chromatic number of a graph. A graph can be colored with only one

color when it is composed of only vertices, and the set of edges is an empty set, i.e. the graph is empty. The

graphs that can be colored exactly with two colors are the so-called bipartite graphs. The characteristic of

these graphs is that the algorithms that can “recognize” these graphs as 2-colorable (and respectively the

algorithms with which these graphs can be colored) are executed for polynomial time. In all other cases,

when k≥3 the graph coloring problem is NP-complete [13]. Moreover, even determining to approximate the

chromatic number is an NP-hard problem [1], [28].

All graphs that are not complete and do not have an odd-length cycle have a chromatic number that

is less than or at most equal to the greatest degree of a vertex in that graph, i.e. 𝜒(𝐺) ≤ ∆(𝐺), which is

proved in [29]. In addition, if all the vertex degrees in a graph are greater than 2, then the chromatic number

of the graph will be equal to the largest degree of the vertex plus one only when there is a full clique in that

graph of exactly ∆(𝐺) + 1 [29]. Other results related to the graph vertex coloring and the determination of

the bounds for the chromatic number are published in [30], [31].

In this study, three different algorithms for the graph vertex coloring problem will be studied-one

exact and two approximate [32]. The exact algorithm is based on the backtracking method and always finds

the optimal solutions for the analyzed graphs. In contrast, the other two algorithms-greedy coloring (GCA)

and Welsh-Powell (WPA) are approximate and it is not always guaranteed that the solutions they find will be

optimal. There are other algorithms that are discussed in the scientific literature [33], [34].

2. RESEARCH METHOD

This section introduces an implementation of the exact algorithm that can be used to solve optimally

the graph vertex coloring problem. This algorithm is based on the backtracking method, and it always finds

the exact solution. The other two used algorithms (GCA and WPA) are greedy and can be used to solve the

graph vertex coloring problem approximately. For the implementation of the exact algorithm, it is necessary

to declare (and initialize) some variables and dynamic structures. These declarations are presented in Figure 1

(in Delphi language).

Figure 1. Source code of the global declarations

The TVertex structure (line 2) is a record through which a vertex of a certain graph can be

represented. The Index field contains the index of the corresponding vertex. The XCoord and YCoord fields

contain the screen coordinates at the vertex. The Degree field stores the degree of the corresponding vertex.

The value of this field indicates the number of vertices with which the vertex is adjacent. The Color field is

used by the coloring algorithm, and it contains information about the color with which the corresponding

vertex is colored. The value in this field changes dynamically in the process of finding a solution.

The global variable VertexCount, which is declared on line 5, stores the number of vertices in the

graph. The graph is represented by a list of vertices (the dynamic array VertexArray declared on line 6) and

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 2972-2980

2974

the two-dimensional dynamic array (matrix) AdjacencyMatrix, which is also declared on line 6. The

AdjacencyMatrix structure is actually a dynamic array that stores other one-dimensional dynamic arrays (of

the same size). Each one-dimensional array is associated with a specific vertex of the graph and has as many

elements as the vertices in the graph. The variables maximum colors and minimum colors (declared on

line 5) are used in the solution search process. The ResultMessage variable (declared on line 4) is used to

display the values of the different variables after finding a solution.

The global variable FoundSolution (declared on line 4) has a true value when a solution is found,

i.e., when all vertices in the graph are colored and there is a false value otherwise. The global variable

terminated (also declared on line 4) is used when it is necessary to interrupt the process of finding a solution

(usually by the user). The variable recursions (declared on line 5) stores the number of recursive calls that the

exact algorithm has made in the solution search process.

The source code of the recursive TestNewColor procedure is shown in Figure 2. This procedure

checks whether the vertex with the Vertex index (submitted as a procedure parameter) can be colored with

some of the colors already used. At the beginning of the procedure, a check is made whether one of the two

conditions for the end of the recursive process is fulfilled. The first condition is whether a solution has been

found (i.e., whether the FoundSolution variable has a true value). The second condition is whether the

process of finding a solution is interrupted by the user (i.e., whether the variable terminated has a value of

true-line 6). If neither condition is met, the value of the recursions variable increases (line 7). In this way, the

next recursive call of the TestNewColor procedure is registered.

Figure 2. Source code of the TestNewColor procedure

The verification of whether a solution has been found is performed on line 8. If the index of the

current vertex has become one greater than the number of vertices in the graph, it means that all vertices in

the graph are colored and a solution is found. Therefore, the FoundSolution variable is set to true, and then

the recursive procedure is terminated by calling the exit method (line 9). If no solution is found, the algorithm

checks whether it can color the current vertex with some of the other available colors (lines 10-26). This

color must be chosen so that none of the adjacent vertices of the current one is colored with it (lines 15-25). If

the algorithm colors the current vertex with one of the available colors, the TestNewColor procedure is called

recursively, and the index of the next vertex after the current one is passed as a parameter (line 22). The

process of searching for possible coloring continues until all available colors (stored in the MaximumColors

variable) are tested. The algorithm optimizes the process of finding a solution, interrupting the construction

of any partial but unacceptable solution.

Int J Elec & Comp Eng ISSN: 2088-8708 

An analysis between different algorithms for the graph vertex coloring problem (Velin Kralev)

2975

The source code of the ColorGraphExact procedure is shown in Figure 3. This procedure executes

the exact algorithm. At the beginning of this method, the variables FoundSolution, terminated, recursions,

and the local variable Iteration are initialized. The local variable Iteration controls the construction

repeat-until (lines 9-19). Through this construction, the idea of the algorithm to check whether the given

graph can be colored with 1, 2, 3, ..., and VertexCount colors is realized. Initially (on line 10) the

MaximumColor variable is initialized with the next value of the Iteration variable. In the color field of the

structure TVertex, the value 0 is set. (line 13). The recursive TestNewColor procedure is then called. The

vertex with index 1 is passed to it as a parameter, i.e., the coloring of the vertices starts from the first vertex.

If the recursive procedure finds the color of the graph with the possible number of colors (stored in the

variable MaximumColors), then the global variable FoundSolution will be set to True and the execution of

the algorithm will end. If the recursive procedure fails to find a solution, i.e., fails to color the vertices of the

graph with the available colors, then the global variable FoundSolution will be set to false. This means that

coloring with only the available colors is not possible and a new color will have to be added to the existing

ones (line 18). The value of the variable MaximumColors is set at the beginning of the construction repeat-

until (line 10). The execution of the algorithm can also be interrupted by the user (during the solution search

process). If this occurs, the Terminated variable will be set to true. This will immediately interrupt the

execution of the repeat-until loop (line 17). Therefore, the repeat-until loop can only be completed in two

ways. First, a solution is found (the variable FoundSolution is true). Second, the solution search process is

interrupted by the user (the variable Terminated is True). Depending on these values the ResultMessage

variable will be set (lines 20-24).

Figure 3. Source code of the ColorGraphExact procedure

The two approximate algorithms are known and often discussed and analyzed in the scientific

literature [32]. The GCA algorithm iterates sequentially through the vertices of the graph, passing through

each vertex once. For each vertex, a certain color is chosen from the available ones, but it must have the

lowest index. For each vertex, this color does not change once it has been set. The other heuristic algorithm-

WPA colors non-adjacent vertices with a pre-selected color. Only when the current color can no longer be

used does the algorithm select the next color. With this new color, the algorithm colors only those of the

other uncolored vertices that are not adjacent. These vertices form a new chromatic class. This process is

performed until the number of colored vertices is equal to the number of vertices in the graph. The

computational complexity of the two approximate algorithms is quadratic and depends on the number of

vertices in the graph. The exact algorithm generates all possible colorings of the graph and therefore its

computational complexity is exponential.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 2972-2980

2976

3. RESULTS AND DISCUSSION

The results from two experiments will be presented. First, for graphs with how many vertices and

edges, the exact algorithm can be used so that the time to find the optimal solution is acceptable (for

example, on the order of minutes). Second, a comparative analysis between the algorithms, comparing the

solutions found and the execution time of the algorithms (for the same input data).

3.1. Methodology of the experiments

In this study, 27 graphs, respectively with 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39,

41, 43, 100, 200, 300, 400, 500, 600, 700, 800, and 900 vertices were used. They were divided into two

different groups, the first containing 18 graphs and the second the remaining 9 graphs. In this distribution, the

first group included the graphs with 9÷43 vertices, and the second group, the graphs with 100÷900 vertices.

These graphs are shown in Tables 1 and 2. The first group of graphs is used to perform experiments with all

three algorithms, and the second group of graphs is used to perform experiments only with approximate

algorithms. All graphs are generated randomly, and for each of them, the minimum, maximum, and average

degrees of the vertices are presented.

Table 1. Graphs from the first group
Graph

abbreviation

Vertex

count

Edge

count

Vertices degree Graph

abbreviation

Vertex

count

Edge

count

Vertices degree

Min Max Avg Min Max Avg

G_9_14 9 14 1 6 3 G_27_140 27 140 6 15 10

G_11_22 11 22 2 6 4 G_29_162 29 162 8 17 11

G_13_31 13 31 2 8 5 G_31_186 31 186 7 17 12

G_15_42 15 42 4 8 6 G_33_211 33 211 7 21 13

G_17_54 17 54 3 9 6 G_35_238 35 238 9 20 14

G_19_68 19 68 3 11 7 G_37_266 37 266 9 20 14

G_21_84 21 84 4 12 8 G_39_296 39 296 9 22 15

G_23_101 23 101 5 15 9 G_41_328 41 328 11 23 16

G_25_120 25 120 5 13 10 G_43_361 43 361 10 25 17

Table 2. Graphs from the second group
Graph

abbreviation

Vertex

count

Edge

count

Vertices degree Graph

abbreviation

Vertex

count

Edge

count

Vertices degree

Min Max Avg Min Max Avg

G_100_990 100 990 9 28 20 G_600_35940 600 35 940 93 162 120

G_200_3980 200 3 980 28 54 40 G_700_48930 700 48 930 111 169 140

G_300_8970 300 8 970 41 79 60 G_800_63920 800 63 920 117 194 160

G_400_15960 400 15 960 56 107 80 G_900_80910 900 80 910 139 218 180

G_500_24950 500 24 950 76 127 100

3.2. Experimental results

The experimental conditions are 64-bit OS Windows 11 and hardware configuration: Processor:

Intel (R) Core (TM) i7-7700HQ at 2.80-3.80 GHz; RAM: 8GB DDR4. In Table 3, the “Recursions” column

shows the number of recursive calls that the exact algorithm has made to find the optimal solutions for all

graphs. These solutions show the minimum number of colors needed to distribute the vertices of the analyzed

graphs into chromatic classes. This number is displayed in the “Colors” column under the “Exact algorithm”

column. To execute these recursive calls, the exact algorithm has been running for some time. This time is

displayed in the “Time (ms)” column in milliseconds and in the “Time (h, min, s)” column, but formatted in

the format: “hours, minutes, seconds”.

Table 3 and the chart of Figure 4 show that with a linear increase of the vertices and the edges in a

graph, the execution time for the exact algorithm increases exponentially. In contrast to this trend, with a

linear increase in the number of vertices and edges in a graph, the number of colors required to distribute the

vertices of the graph in different chromatic classes also increases linearly. The chart in Figure 5 shows the

distribution of the solutions generated by the three algorithms in terms of the quality of the solutions. In half

of the analyzed graphs, the approximate algorithms have found the optimal solutions. In addition, the same

optimal solutions have been found by both approximate algorithms. Accordingly, the suboptimal solutions

found by the two approximate algorithms also coincide.

The results obtained from the two approximate algorithms are shown in the “Colors” and “Solution”

columns under the “GC algorithm” and “WP algorithm” columns. The values in the “Colors” columns have

the same meaning as the values in the “Colors” column associated with the exact algorithm, i.e., the number

of the chromatic classes but indicated by colors. The “Solution” columns (for both approximate algorithms)

indicate whether the solutions found by these algorithms match the optimal solutions or not.

Int J Elec & Comp Eng ISSN: 2088-8708 

An analysis between different algorithms for the graph vertex coloring problem (Velin Kralev)

2977

Table 3. Results of the three algorithms for the first group of graphs
Graph

abbreviation

Exact algorithm GC algorithm WP algorithm

Recursions Time (ms) Time (h,

min, s)

Colors Colors Solution Colors Solution

G_9_14 111 0 < 0.1 s 4 4 Optimal 4 Optimal

G_11_22 377 0 < 0.1 s 4 4 Optimal 4 Optimal

G_13_31 1 283 0 < 0.1 s 4 4 Optimal 4 Optimal

G_15_42 6 881 1 < 0.1 s 4 4 Optimal 4 Optimal

G_17_54 13 720 2 < 0.1 s 4 4 Optimal 4 Optimal

G_19_68 54 636 8 < 0.1 s 5 5 Optimal 5 Optimal

G_21_84 197 409 29 < 0.1 s 5 6 Suboptimal 6 Suboptimal

G_23_101 671 191 102 0.1 s 5 6 Suboptimal 6 Suboptimal

G_25_120 2 550 525 416 0.42 s 6 6 Optimal 6 Optimal

G_27_140 9 691 994 1 583 1.58 s 6 6 Optimal 6 Optimal

G_29_162 35 860 377 5 931 5.93 s 6 7 Suboptimal 7 Suboptimal

G_31_186 129 097 359 22 271 22.27 s 6 7 Suboptimal 7 Suboptimal

G_33_211 503 479 699 89 142 1 min, 29 s 6 7 Suboptimal 7 Suboptimal

G_35_238 1 812 526 917 337 465 5 min, 37 s 7 7 Optimal 7 Optimal

G_37_266 6 706 349 594 1 306 008 21 min, 46 s 7 8 Suboptimal 8 Suboptimal

G_39_296 22 801 588 618 4 577 713 1 h, 16 min 7 8 Suboptimal 8 Suboptimal

G_41_328 79 805 560 163 16 794 065 4 h, 39 min 7 8 Suboptimal 8 Suboptimal

G_43_361 265 752 515 342 58 113 386 16 h, 8 min 8 9 Suboptimal 9 Suboptimal

Figure 4. Influence of increasing the number of vertices and edges (x-axis) in each graph on the execution

time of the exact algorithm (left y-axis, in milliseconds) and the number of colors (right y-axis) for

optimal solutions

Figure 5. Comparison of the results of the algorithms according to the quality of the solutions

Since the execution time of the exact algorithm is unacceptably long for graphs with more than 35

vertices, only the approximate algorithms will be used to conduct the second experiment. The results of the

approximate algorithms with the second group of graphs are shown in Table 4. In Table 4, the “Colors”

columns (under the “GC algorithm” and “WP algorithm” columns) show the number of colors needed to

distribute the vertices of the analyzed graphs (from the second group) into chromatic classes. The execution

times of both algorithms are shown in the “Time (ms)” columns. The results of the approximate algorithms

are identical and are summarized in Figure 6 and Figure 7.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 2972-2980

2978

Table 4. Results of the two approximate algorithms for the second group of graphs
Graph

abbreviation
Vertex

count
Edgecount GC algorithm WP algorithm

Colors Time (ms) Colors Time (ms)
G_100_990 100 990 10 15 10 19

G_200_3 980 200 3 980 16 34 16 42
G_300_8 970 300 8 970 21 54 21 66
G_400_15 960 400 15 960 25 64 25 72
G_500_24 950 500 24 950 29 70 29 115
G_600_35 940 600 35 940 35 90 35 132
G_700_48 930 700 48 930 39 112 39 147
G_800_63 920 800 63 920 43 136 43 192
G_900_80 910 900 80 910 47 171 47 207

Table 4 and the chart of Figure 6 show that with a linear increase of the vertices and the edges in a

graph, the number of colors required to distribute the vertices of the graph in different chromatic classes

increases in a polynomial way. In contrast to the exact algorithm, with a linear increase of the vertices and

the edges in a graph, the execution time for the approximate algorithms increases linearly Figure 7. The

execution times of both approximate algorithms (for all analyzed graphs) are commensurate and very short.

This is due to the fact that the computational complexity of both algorithms is quadratic [32].

Figure 6. Influence of increasing the number of vertices (x-axis) and the number of edges (y-axis) on the

number of required colors (chromatic classes) generated by the approximate algorithms

Figure 7. Comparison between the number of vertices and the execution times of both algorithms

4. CONCLUSION

In this paper, a study of the graph vertex coloring problem has been presented. Different approaches

and algorithms to its solution have been discussed. The implementation of an exact algorithm has been

presented as well. The declarations of different data structures-arrays and matrices have been shown. The

source code of the methods for the exact algorithm has been discussed in detail. When analyzing the time for

execution of the exact algorithm, the multitasking mode of the operating system has been taken into account.

The methodology and conditions for the experiments have been presented. For conducting the experiments,

twenty-seven graphs were generated randomly.

Int J Elec & Comp Eng ISSN: 2088-8708 

An analysis between different algorithms for the graph vertex coloring problem (Velin Kralev)

2979

The results show that with a linear increase in the size of the graph, the execution time for the exact

algorithm increases exponentially. The execution times of both heuristic algorithms are very short. In

addition, with a linear increase in the size of the graph, the number of colors required to color the vertices of

the graph increases linearly. For half of the tested graphs, the heuristic algorithms found the optimal

solutions. Furthermore, both algorithms found the same optimal solutions. Also, both algorithms found the

same suboptimal solutions. Both approximate algorithms generated identical results. The question remains

whether this is true for every single graph or not. Additional (extended) experiments need to be conducted to

establish this fact or to find an example that contradicts this statement. This study is beyond the scope of the

present one and will therefore be presented in another scientific paper.

REFERENCES
[1] V. E. Alekseev, R. Boliac, D. V. Korobitsyn, and V. V. Lozin, “NP-hard graph problems and boundary classes of graphs,”

Theoretical Computer Science, vol. 389, no. 1–2, pp. 219–236, Dec. 2007, doi: 10.1016/j.tcs.2007.09.013.

[2] S. V. Kurapov, M. V. Davidovsky, and A. V. Tolok, “A modified algorithm for planarity testing and constructing the topological

drawing of a graph. The thread method,” Scientific Visualization, vol. 10, no. 4, pp. 53–74, Oct. 2018, doi: 10.26583/sv.10.4.05.

[3] B. Natarajan, “Computation of chromatic numbers for new class of graphs and its applications,” International Journal of

Innovative Technology and Exploring Engineering, vol. 8, no. 8, pp. 396–400, 2019.

[4] V. Kralev and R. Kraleva, “Methods for software visualization of large graph data structures,” International Journal on Advanced

Science, Engineering and Information Technology, vol. 10, no. 1, Feb. 2020, doi: 10.18517/ijaseit.10.1.10739.

[5] V. S. Kralev and R. S. Kraleva, “Visual analysis of actions performed with big graphs,” International Journal of Innovative

Technology and Exploring Engineering, vol. 9, no. 1, pp. 2740–2744, Nov. 2019, doi: 10.35940/ijitee.A4978.119119.

[6] S. Slamin, N. O. Adiwijaya, M. A. Hasan, D. Dafik, and K. Wijaya, “Local super antimagic total labeling for vertex coloring of

graphs,” Symmetry, vol. 12, no. 11, Nov. 2020, doi: 10.3390/sym12111843.

[7] J. Xu, X. Qiang, K. Zhang, C. Zhang, and J. Yang, “A DNA computing model for the graph vertex coloring problem based on a

probe graph,” Engineering, vol. 4, no. 1, pp. 61–77, Feb. 2018, doi: 10.1016/j.eng.2018.02.011.

[8] A. Parihar, N. Shukla, M. Jerry, S. Datta, and A. Raychowdhury, “Vertex coloring of graphs via phase dynamics of coupled

oscillatory networks,” Scientific Reports, vol. 7, no. 1, Dec. 2017, doi: 10.1038/s41598-017-00825-1.

[9] T. Kosar, S. Gaberc, J. C. Carver, and M. Mernik, “Program comprehension of domain-specific and general-purpose languages:

replication of a family of experiments using integrated development environments,” Empirical Software Engineering, vol. 23,

no. 5, pp. 2734–2763, Oct. 2018, doi: 10.1007/s10664-017-9593-2.

[10] D. S. S, D. R. Arunadevi, D. B. Kanisha, and D. R. Kesavan, “Mining of sequential patterns using directed graphs,” International

Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 11, pp. 4002–4007, Sep. 2019, doi:

10.35940/ijitee.K2242.0981119.

[11] K. D. Rangaswamy and M. Gurusamy, “Application of graph theory concepts in computer networks and its suitability for the

resource provisioning issues in cloud computing-a review,” Journal of Computer Science, vol. 14, no. 2, pp. 163–172, Feb. 2018,

doi: 10.3844/jcssp.2018.163.172.

[12] V. Kralev, “An analysis of a recursive and an iterative algorithm for generating permutations modified for travelling salesman

problem,” International Journal on Advanced Science, Engineering and Information Technology, vol. 7, no. 5, Oct. 2017, doi:

10.18517/ijaseit.7.5.3173.

[13] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified NP-complete graph problems,” Theoretical Computer Science,

vol. 1, no. 3, pp. 237–267, Feb. 1976, doi: 10.1016/0304-3975(76)90059-1.

[14] S. Nicoloso and U. Pietropaoli, “Vertex-colouring of 3-chromatic circulant graphs,” Discrete Applied Mathematics, vol. 229,

pp. 121–138, Oct. 2017, doi: 10.1016/j.dam.2017.05.013.

[15] R. Chitnis, L. Egri, and D. Marx, “List H-coloring a graph by removing few vertices,” Algorithmica, vol. 78, no. 1, pp. 110–146,

May 2017, doi: 10.1007/s00453-016-0139-6.

[16] C. Feghali and J. Fiala, “Reconfiguration graph for vertex colourings of weakly chordal graphs,” Discrete Mathematics, vol. 343,

no. 3, Mar. 2020, doi: 10.1016/j.disc.2019.111733.

[17] B. Lidický, K. Messerschmidt, and R. Škrekovski, “Facial unique-maximum colorings of plane graphs with restriction on big

vertices,” Discrete Mathematics, vol. 342, no. 9, pp. 2612–2617, Sep. 2019, doi: 10.1016/j.disc.2019.05.029.

[18] H. Lakhlef, M. Raynal, and F. Taiani, “Vertex coloring with communication constraints in synchronous broadcast networks,”

IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 7, pp. 1672–1686, Jul. 2019, doi:

10.1109/TPDS.2018.2889688.

[19] M. Zaker, “A new vertex coloring heuristic and corresponding chromatic number,” Algorithmica, vol. 82, no. 9, pp. 2395–2414,

Sep. 2020, doi: 10.1007/s00453-020-00689-4.

[20] A. Dey, L. Son, P. Kumar, G. Selvachandran, and S. Quek, “New concepts on vertex and edge coloring of simple vague graphs,”

Symmetry, vol. 10, no. 9, Sep. 2018, doi: 10.3390/sym10090373.

[21] T. Karthick, F. Maffray, and L. Pastor, “Polynomial cases for the vertex coloring problem,” Algorithmica, vol. 81, no. 3,

pp. 1053–1074, Mar. 2019, doi: 10.1007/s00453-018-0457-y.

[22] M. Cavers and K. Seyffarth, “Reconfiguring vertex colourings of 2-trees,” Ars Mathematica Contemporanea, vol. 17, no. 2,

pp. 653–698, Dec. 2019, doi: 10.26493/1855-3974.1813.7ae.

[23] C. C. Bolton, G. Gatica, and V. Parada, “Automatically generated algorithms for the vertex coloring problem,” Plos One, vol. 8,

no. 3, Mar. 2013, doi: 10.1371/journal.pone.0058551.

[24] P. San Segundo, “A new DSATUR-based algorithm for exact vertex coloring,” Computers and Operations Research, vol. 39,

no. 7, pp. 1724–1733, Jul. 2012, doi: 10.1016/j.cor.2011.10.008.

[25] V. Kralev, R. Kraleva, V. Ankov, and D. Chakalov, “An analysis between exact and approximate algorithms for the k-center

problem in graphs,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no. 2, pp. 2058–2065, Apr.

2022, doi: 10.11591/ijece.v12i2.pp2058-2065.

[26] C. Yang, B. Yao, and Z. Yin, “A new vertex distinguishing total coloring of trees,” AIMS Mathematics, vol. 6, no. 9,

pp. 9468–9475, 2021, doi: 10.3934/math.2021550.

[27] K. S. Lyngsie and L. Zhong, “Vertex colouring edge weightings: a logarithmic upper bound on weight-choosability,” The

Electronic Journal of Combinatorics, vol. 28, no. 2, Apr. 2021, doi: 10.37236/6878.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 2972-2980

2980

[28] C. Lund and M. Yannakakis, “On the hardness of approximating minimization problems,” in Proceedings of the twenty-fifth

annual ACM symposium on Theory of computing-STOC ’93, 1993, pp. 286–293, doi: 10.1145/167088.167172.

[29] R. L. Brooks, “On colouring the nodes of a network,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 37,

no. 2, pp. 194–197, Apr. 1941, doi: 10.1017/S030500410002168X.

[30] B. Reed, “A strengthening of brooks’ theorem,” Journal of Combinatorial Theory, Series B, vol. 76, no. 2, pp. 136–149, Jul.

1999, doi: 10.1006/jctb.1998.1891.

[31] B. Reed, “ω, Δ, and χ,” Journal of Graph Theory, vol. 27, no. 4, pp. 177–212, Apr. 1998, doi: 10.1002/(SICI)1097-

0118(199804)27:4<177::AID-JGT1>3.0.CO;2-K.

[32] A. Frieze and C. McDiarmid, “Algorithmic theory of random graphs,” Random Structures and Algorithms, vol. 10, no. 1–2, pp.

5–42, Jan. 1997, doi: 10.1002/(SICI)1098-2418(199701/03)10:1/2<5::AID-RSA2>3.0.CO;2-Z.

[33] Z. Huanping, X. Dangqin, and S. Huojie, “Strong vertex-distinguishing total coloring algorithm for complete graphs based on

equitable coloring,” Journal of Engineering Science and Technology Review, vol. 13, no. 1, pp. 126–132, Feb. 2020, doi:

10.25103/jestr.131.17.

[34] M. Miri, K. Mohamedpour, Y. Darmani, and M. Sarkar, “DIAMOND: a distributed algorithm for vertex coloring problems and

resource allocation,” IET Networks, vol. 8, no. 6, pp. 381–389, Nov. 2019, doi: 10.1049/iet-net.2018.5204.

BIOGRAPHIES OF AUTHORS

Velin Kralev is an associate professor of Computer Science at the Faculty of

Mathematics and Natural Sciences, South-West University, Blagoevgrad, Bulgaria. He
defended his Ph.D. Thesis in 2010. His research interests include database systems

development, optimization problems of the scheduling theory, graph theory, and component-

oriented software engineering. He can be contacted at email: velin_kralev@swu.bg.

Radoslava Kraleva is an associate professor of Computer Science at the Faculty

of Mathematics and Natural Sciences, South-West University “Neofit Rilski”, Blagoevgrad,
Bulgaria. She defended her Ph.D. Thesis “Acoustic-Phonetic Modeling for Children’s Speech

Recognition in Bulgarian” in 2014. Her research interests include child-computer interaction,

speech recognition, mobile app development and computer graphic. She is an editorial board

member and reviewer of many journals. She can be contacted at email: rady_kraleva@swu.bg.

https://orcid.org/0000-0002-7780-8281
https://scholar.google.com/citations?user=HtajJP4AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57196329191
https://orcid.org/0000-0003-3322-7298
https://scholar.google.com/citations?user=dIYw8HgAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57200286826

