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 This research focuses on an analysis of different algorithms for the graph 

vertex coloring problem. Some approaches to solving the problem are 

discussed. Moreover, some studies for the problem and several methods for 
its solution are analyzed as well. An exact algorithm (using the backtracking 

method) is presented. The complexity analysis of the algorithm is discussed. 

Determining the average execution time of the exact algorithm is consistent 

with the multitasking mode of the operating system. This algorithm 
generates optimal solutions for all studied graphs. In addition, two heuristic 

algorithms for solving the graph vertex coloring problem are used as well. 

The results show that the exact algorithm can be used to solve the graph 

vertex coloring problem for small graphs with 30-35 vertices. For half of the 
graphs, all three algorithms have found the optimal solutions. The 

suboptimal solutions generated by the approximate algorithms are identical 

in terms of the number of colors needed to color the corresponding graphs. 

The results show that the linear increase in the number of vertices and edges 

of the analyzed graphs causes a linear increase in the number of colors 

needed to color these graphs. 

Keywords: 

Chromatic number 

Computational complexity 

Graph coloring 

Graph theory 

Vertex coloring 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Velin Kralev 

Department of Informatics, Faculty of Mathematics and Natural Science, South-West University 

66 Ivan Michailov str., 2700 Blagoevgrad, Bulgaria 

Email: velin_kralev@swu.bg 

 

 

1. INTRODUCTION  

Graph theory has been studied extensively in recent decades [1]. Graph structures are used to 

represent, study and analyze processes in many different real objects and therefore they are very useful  

[2]–[4]. Many complex, significant and important problems can be presented and studied with graphs. Most 

often, these types of problems are analyzed and solved by software that executes specific algorithms [5]. This 

is one of the reasons why many researchers are researching and improving different algorithms for solving 

certain classes of problems, related and presented directly and indirectly through graph structures [6]–[8]. 

This also includes the development of various software products (applications). This process is usually done 

through integrated development environments and event-oriented programming. These environments allow 

the use of different programming languages and different compilers for different target platforms [9]. 

Structurally, each graph is represented by two sets-one for vertices V and one for edges E. The set of 

vertices V cannot be empty and must have at least one element (vertex). In contrast, the set of edges E may be 

empty and not contain even a single element. This is usually not the case, because the edges actually 

represent connections between pairs of vertices, thus realizing the basic idea of the graph structure. In a given 

graph the edges can be unoriented. In this case, it does not matter which of the two incident vertices is the 

starting one and which is the final one. When the edge is oriented, one vertex is called the initial vertex and 
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the other vertex is called the final vertex. In this case, the edge is called an arc [10]. If a numerical value is set 

for each edge, then the graph is called a weighted [11], [12]. Once these definitions have been presented, the 

graph vertex coloring problem can also be presented as well. 

The graph vertex coloring problem is an NP-complete problem [13]. This problem is still being 

actively studied [14], [15]. Scientific publications have described many variants of this problem. For 

instance, the reconfiguration graph for vertex colorings of weakly chordal graphs [16], the facial  

unique-maximum colorings of plane graphs with restriction on big vertices [17], the vertex coloring with 

communication constraints in synchronous broadcast networks [18], and other. Different variants use 

different approaches [19], [20], techniques [21], [22] and algorithms [23], [24]. Similar approaches have been 

used to solve other problems in graph theory [25]. Detailed reviews of the specifics of the graph vertex 

coloring problem are discussed in [26], [27]. 

The most important feature of a graph vertex coloring algorithm is its computational complexity. In 

fact, it has to do with determining the chromatic number of a graph. A graph can be colored with only one 

color when it is composed of only vertices, and the set of edges is an empty set, i.e. the graph is empty. The 

graphs that can be colored exactly with two colors are the so-called bipartite graphs. The characteristic of 

these graphs is that the algorithms that can “recognize” these graphs as 2-colorable (and respectively the 

algorithms with which these graphs can be colored) are executed for polynomial time. In all other cases, 

when k≥3 the graph coloring problem is NP-complete [13]. Moreover, even determining to approximate the 

chromatic number is an NP-hard problem [1], [28]. 

All graphs that are not complete and do not have an odd-length cycle have a chromatic number that 

is less than or at most equal to the greatest degree of a vertex in that graph, i.e. 𝜒(𝐺) ≤ ∆(𝐺), which is 

proved in [29]. In addition, if all the vertex degrees in a graph are greater than 2, then the chromatic number 

of the graph will be equal to the largest degree of the vertex plus one only when there is a full clique in that 

graph of exactly ∆(𝐺) + 1 [29]. Other results related to the graph vertex coloring and the determination of 

the bounds for the chromatic number are published in [30], [31]. 

In this study, three different algorithms for the graph vertex coloring problem will be studied-one 

exact and two approximate [32]. The exact algorithm is based on the backtracking method and always finds 

the optimal solutions for the analyzed graphs. In contrast, the other two algorithms-greedy coloring (GCA) 

and Welsh-Powell (WPA) are approximate and it is not always guaranteed that the solutions they find will be 

optimal. There are other algorithms that are discussed in the scientific literature [33], [34]. 

 

 

2. RESEARCH METHOD 

This section introduces an implementation of the exact algorithm that can be used to solve optimally 

the graph vertex coloring problem. This algorithm is based on the backtracking method, and it always finds 

the exact solution. The other two used algorithms (GCA and WPA) are greedy and can be used to solve the 

graph vertex coloring problem approximately. For the implementation of the exact algorithm, it is necessary 

to declare (and initialize) some variables and dynamic structures. These declarations are presented in Figure 1 

(in Delphi language). 

 

 

 
 

Figure 1. Source code of the global declarations 

 

 

The TVertex structure (line 2) is a record through which a vertex of a certain graph can be 

represented. The Index field contains the index of the corresponding vertex. The XCoord and YCoord fields 

contain the screen coordinates at the vertex. The Degree field stores the degree of the corresponding vertex. 

The value of this field indicates the number of vertices with which the vertex is adjacent. The Color field is 

used by the coloring algorithm, and it contains information about the color with which the corresponding 

vertex is colored. The value in this field changes dynamically in the process of finding a solution. 

The global variable VertexCount, which is declared on line 5, stores the number of vertices in the 

graph. The graph is represented by a list of vertices (the dynamic array VertexArray declared on line 6) and 
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the two-dimensional dynamic array (matrix) AdjacencyMatrix, which is also declared on line 6. The 

AdjacencyMatrix structure is actually a dynamic array that stores other one-dimensional dynamic arrays (of 

the same size). Each one-dimensional array is associated with a specific vertex of the graph and has as many 

elements as the vertices in the graph. The variables maximum colors and minimum colors (declared on  

line 5) are used in the solution search process. The ResultMessage variable (declared on line 4) is used to 

display the values of the different variables after finding a solution.  

The global variable FoundSolution (declared on line 4) has a true value when a solution is found, 

i.e., when all vertices in the graph are colored and there is a false value otherwise. The global variable 

terminated (also declared on line 4) is used when it is necessary to interrupt the process of finding a solution 

(usually by the user). The variable recursions (declared on line 5) stores the number of recursive calls that the 

exact algorithm has made in the solution search process. 

The source code of the recursive TestNewColor procedure is shown in Figure 2. This procedure 

checks whether the vertex with the Vertex index (submitted as a procedure parameter) can be colored with 

some of the colors already used. At the beginning of the procedure, a check is made whether one of the two 

conditions for the end of the recursive process is fulfilled. The first condition is whether a solution has been 

found (i.e., whether the FoundSolution variable has a true value). The second condition is whether the 

process of finding a solution is interrupted by the user (i.e., whether the variable terminated has a value of 

true-line 6). If neither condition is met, the value of the recursions variable increases (line 7). In this way, the 

next recursive call of the TestNewColor procedure is registered. 

 

 

 
 

Figure 2. Source code of the TestNewColor procedure 

 

 

The verification of whether a solution has been found is performed on line 8. If the index of the 

current vertex has become one greater than the number of vertices in the graph, it means that all vertices in 

the graph are colored and a solution is found. Therefore, the FoundSolution variable is set to true, and then 

the recursive procedure is terminated by calling the exit method (line 9). If no solution is found, the algorithm 

checks whether it can color the current vertex with some of the other available colors (lines 10-26). This 

color must be chosen so that none of the adjacent vertices of the current one is colored with it (lines 15-25). If 

the algorithm colors the current vertex with one of the available colors, the TestNewColor procedure is called 

recursively, and the index of the next vertex after the current one is passed as a parameter (line 22). The 

process of searching for possible coloring continues until all available colors (stored in the MaximumColors 

variable) are tested. The algorithm optimizes the process of finding a solution, interrupting the construction 

of any partial but unacceptable solution. 
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The source code of the ColorGraphExact procedure is shown in Figure 3. This procedure executes 

the exact algorithm. At the beginning of this method, the variables FoundSolution, terminated, recursions, 

and the local variable Iteration are initialized. The local variable Iteration controls the construction  

repeat-until (lines 9-19). Through this construction, the idea of the algorithm to check whether the given 

graph can be colored with 1, 2, 3, ..., and VertexCount colors is realized. Initially (on line 10) the 

MaximumColor variable is initialized with the next value of the Iteration variable. In the color field of the 

structure TVertex, the value 0 is set. (line 13). The recursive TestNewColor procedure is then called. The 

vertex with index 1 is passed to it as a parameter, i.e., the coloring of the vertices starts from the first vertex. 

If the recursive procedure finds the color of the graph with the possible number of colors (stored in the 

variable MaximumColors), then the global variable FoundSolution will be set to True and the execution of 

the algorithm will end. If the recursive procedure fails to find a solution, i.e., fails to color the vertices of the 

graph with the available colors, then the global variable FoundSolution will be set to false. This means that 

coloring with only the available colors is not possible and a new color will have to be added to the existing 

ones (line 18). The value of the variable MaximumColors is set at the beginning of the construction repeat-

until (line 10). The execution of the algorithm can also be interrupted by the user (during the solution search 

process). If this occurs, the Terminated variable will be set to true. This will immediately interrupt the 

execution of the repeat-until loop (line 17). Therefore, the repeat-until loop can only be completed in two 

ways. First, a solution is found (the variable FoundSolution is true). Second, the solution search process is 

interrupted by the user (the variable Terminated is True). Depending on these values the ResultMessage 

variable will be set (lines 20-24). 

 

 

 
 

Figure 3. Source code of the ColorGraphExact procedure 

 

 

The two approximate algorithms are known and often discussed and analyzed in the scientific 

literature [32]. The GCA algorithm iterates sequentially through the vertices of the graph, passing through 

each vertex once. For each vertex, a certain color is chosen from the available ones, but it must have the 

lowest index. For each vertex, this color does not change once it has been set. The other heuristic algorithm-

WPA colors non-adjacent vertices with a pre-selected color. Only when the current color can no longer be 

used does the algorithm select the next color. With this new color, the algorithm colors only those of the 

other uncolored vertices that are not adjacent. These vertices form a new chromatic class. This process is 

performed until the number of colored vertices is equal to the number of vertices in the graph. The 

computational complexity of the two approximate algorithms is quadratic and depends on the number of 

vertices in the graph. The exact algorithm generates all possible colorings of the graph and therefore its 

computational complexity is exponential. 
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3. RESULTS AND DISCUSSION 

The results from two experiments will be presented. First, for graphs with how many vertices and 

edges, the exact algorithm can be used so that the time to find the optimal solution is acceptable (for 

example, on the order of minutes). Second, a comparative analysis between the algorithms, comparing the 

solutions found and the execution time of the algorithms (for the same input data). 

 

3.1.  Methodology of the experiments 

In this study, 27 graphs, respectively with 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 

41, 43, 100, 200, 300, 400, 500, 600, 700, 800, and 900 vertices were used. They were divided into two 

different groups, the first containing 18 graphs and the second the remaining 9 graphs. In this distribution, the 

first group included the graphs with 9÷43 vertices, and the second group, the graphs with 100÷900 vertices. 

These graphs are shown in Tables 1 and 2. The first group of graphs is used to perform experiments with all 

three algorithms, and the second group of graphs is used to perform experiments only with approximate 

algorithms. All graphs are generated randomly, and for each of them, the minimum, maximum, and average 

degrees of the vertices are presented. 

 

 

Table 1. Graphs from the first group 
Graph 

abbreviation 

Vertex 

count 

Edge 

count 

Vertices degree  Graph 

abbreviation 

Vertex 

count 

Edge 

count 

Vertices degree 

Min Max Avg  Min Max Avg 

G_9_14 9 14 1 6 3  G_27_140 27 140 6 15 10 

G_11_22 11 22 2 6 4  G_29_162 29 162 8 17 11 

G_13_31 13 31 2 8 5  G_31_186 31 186 7 17 12 

G_15_42 15 42 4 8 6  G_33_211 33 211 7 21 13 

G_17_54 17 54 3 9 6  G_35_238 35 238 9 20 14 

G_19_68 19 68 3 11 7  G_37_266 37 266 9 20 14 

G_21_84 21 84 4 12 8  G_39_296 39 296 9 22 15 

G_23_101 23 101 5 15 9  G_41_328 41 328 11 23 16 

G_25_120 25 120 5 13 10  G_43_361 43 361 10 25 17 

 

 

Table 2. Graphs from the second group 
Graph 

abbreviation 

Vertex 

count 

Edge 

count 

Vertices degree  Graph 

abbreviation 

Vertex 

count 

Edge 

count 

Vertices degree 

Min Max Avg  Min Max Avg 

G_100_990 100 990 9 28 20  G_600_35940 600 35 940 93 162 120 

G_200_3980 200 3 980 28 54 40  G_700_48930 700 48 930 111 169 140 

G_300_8970 300 8 970 41 79 60  G_800_63920 800 63 920 117 194 160 

G_400_15960 400 15 960 56 107 80  G_900_80910 900 80 910 139 218 180 

G_500_24950 500 24 950 76 127 100        

 

 

3.2.  Experimental results 

The experimental conditions are 64-bit OS Windows 11 and hardware configuration: Processor: 

Intel (R) Core (TM) i7-7700HQ at 2.80-3.80 GHz; RAM: 8GB DDR4. In Table 3, the “Recursions” column 

shows the number of recursive calls that the exact algorithm has made to find the optimal solutions for all 

graphs. These solutions show the minimum number of colors needed to distribute the vertices of the analyzed 

graphs into chromatic classes. This number is displayed in the “Colors” column under the “Exact algorithm” 

column. To execute these recursive calls, the exact algorithm has been running for some time. This time is 

displayed in the “Time (ms)” column in milliseconds and in the “Time (h, min, s)” column, but formatted in 

the format: “hours, minutes, seconds”. 

Table 3 and the chart of Figure 4 show that with a linear increase of the vertices and the edges in a 

graph, the execution time for the exact algorithm increases exponentially. In contrast to this trend, with a 

linear increase in the number of vertices and edges in a graph, the number of colors required to distribute the 

vertices of the graph in different chromatic classes also increases linearly. The chart in Figure 5 shows the 

distribution of the solutions generated by the three algorithms in terms of the quality of the solutions. In half 

of the analyzed graphs, the approximate algorithms have found the optimal solutions. In addition, the same 

optimal solutions have been found by both approximate algorithms. Accordingly, the suboptimal solutions 

found by the two approximate algorithms also coincide. 

The results obtained from the two approximate algorithms are shown in the “Colors” and “Solution” 

columns under the “GC algorithm” and “WP algorithm” columns. The values in the “Colors” columns have 

the same meaning as the values in the “Colors” column associated with the exact algorithm, i.e., the number 

of the chromatic classes but indicated by colors. The “Solution” columns (for both approximate algorithms) 

indicate whether the solutions found by these algorithms match the optimal solutions or not. 
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Table 3. Results of the three algorithms for the first group of graphs 
Graph 

abbreviation 

Exact algorithm  GC algorithm  WP algorithm 

Recursions Time (ms) Time (h, 

min, s) 

Colors  Colors Solution  Colors Solution 

G_9_14 111 0 < 0.1 s 4  4 Optimal  4 Optimal 

G_11_22 377 0 < 0.1 s 4  4 Optimal  4 Optimal 

G_13_31 1 283 0 < 0.1 s 4  4 Optimal  4 Optimal 

G_15_42 6 881 1 < 0.1 s 4  4 Optimal  4 Optimal 

G_17_54 13 720 2 < 0.1 s 4  4 Optimal  4 Optimal 

G_19_68 54 636 8 < 0.1 s 5  5 Optimal  5 Optimal 

G_21_84 197 409 29 < 0.1 s 5  6 Suboptimal  6 Suboptimal 

G_23_101 671 191 102 0.1 s 5  6 Suboptimal  6 Suboptimal 

G_25_120 2 550 525 416 0.42 s 6  6 Optimal  6 Optimal 

G_27_140 9 691 994 1 583 1.58 s 6  6 Optimal  6 Optimal 

G_29_162 35 860 377 5 931 5.93 s 6  7 Suboptimal  7 Suboptimal 

G_31_186 129 097 359 22 271 22.27 s 6  7 Suboptimal  7 Suboptimal 

G_33_211 503 479 699 89 142 1 min, 29 s 6  7 Suboptimal  7 Suboptimal 

G_35_238 1 812 526 917 337 465 5 min, 37 s 7  7 Optimal  7 Optimal 

G_37_266 6 706 349 594 1 306 008 21 min, 46 s 7  8 Suboptimal  8 Suboptimal 

G_39_296 22 801 588 618 4 577 713 1 h, 16 min 7  8 Suboptimal  8 Suboptimal 

G_41_328 79 805 560 163 16 794 065 4 h, 39 min 7  8 Suboptimal  8 Suboptimal 

G_43_361 265 752 515 342 58 113 386 16 h, 8 min 8  9 Suboptimal  9 Suboptimal 

 

 

 
 

Figure 4. Influence of increasing the number of vertices and edges (x-axis) in each graph on the execution 

time of the exact algorithm (left y-axis, in milliseconds) and the number of colors (right y-axis) for 

optimal solutions 

 

 

 
 

Figure 5. Comparison of the results of the algorithms according to the quality of the solutions  

 

 

Since the execution time of the exact algorithm is unacceptably long for graphs with more than 35 

vertices, only the approximate algorithms will be used to conduct the second experiment. The results of the 

approximate algorithms with the second group of graphs are shown in Table 4. In Table 4, the “Colors” 

columns (under the “GC algorithm” and “WP algorithm” columns) show the number of colors needed to 

distribute the vertices of the analyzed graphs (from the second group) into chromatic classes. The execution 

times of both algorithms are shown in the “Time (ms)” columns. The results of the approximate algorithms 

are identical and are summarized in Figure 6 and Figure 7. 
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Table 4. Results of the two approximate algorithms for the second group of graphs 
Graph 

abbreviation 
Vertex 

count 
Edgecount GC algorithm WP algorithm 

Colors Time (ms) Colors Time (ms) 
G_100_990 100 990 10 15 10 19 

G_200_3 980 200 3 980 16 34 16 42 
G_300_8 970 300 8 970 21 54 21 66 
G_400_15 960 400 15 960 25 64 25 72 
G_500_24 950 500 24 950 29 70 29 115 
G_600_35 940 600 35 940 35 90 35 132 
G_700_48 930 700 48 930 39 112 39 147 
G_800_63 920 800 63 920 43 136 43 192 
G_900_80 910 900 80 910 47 171 47 207 

 

 

Table 4 and the chart of Figure 6 show that with a linear increase of the vertices and the edges in a 

graph, the number of colors required to distribute the vertices of the graph in different chromatic classes 

increases in a polynomial way. In contrast to the exact algorithm, with a linear increase of the vertices and 

the edges in a graph, the execution time for the approximate algorithms increases linearly Figure 7. The 

execution times of both approximate algorithms (for all analyzed graphs) are commensurate and very short. 

This is due to the fact that the computational complexity of both algorithms is quadratic [32]. 

 

 

 
 

Figure 6. Influence of increasing the number of vertices (x-axis) and the number of edges (y-axis) on the 

number of required colors (chromatic classes) generated by the approximate algorithms 

 

 

 
 

Figure 7. Comparison between the number of vertices and the execution times of both algorithms 

 

 

4. CONCLUSION 

In this paper, a study of the graph vertex coloring problem has been presented. Different approaches 

and algorithms to its solution have been discussed. The implementation of an exact algorithm has been 

presented as well. The declarations of different data structures-arrays and matrices have been shown. The 

source code of the methods for the exact algorithm has been discussed in detail. When analyzing the time for 

execution of the exact algorithm, the multitasking mode of the operating system has been taken into account. 

The methodology and conditions for the experiments have been presented. For conducting the experiments, 

twenty-seven graphs were generated randomly. 
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The results show that with a linear increase in the size of the graph, the execution time for the exact 

algorithm increases exponentially. The execution times of both heuristic algorithms are very short. In 

addition, with a linear increase in the size of the graph, the number of colors required to color the vertices of 

the graph increases linearly. For half of the tested graphs, the heuristic algorithms found the optimal 

solutions. Furthermore, both algorithms found the same optimal solutions. Also, both algorithms found the 

same suboptimal solutions. Both approximate algorithms generated identical results. The question remains 

whether this is true for every single graph or not. Additional (extended) experiments need to be conducted to 

establish this fact or to find an example that contradicts this statement. This study is beyond the scope of the 

present one and will therefore be presented in another scientific paper. 
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