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 Deep neural networks (DNNs) are very dependent on their parameterization 

and require experts to determine which method to implement and modify the 

hyper-parameters value. This study proposes an automated-tuned hyper-

parameter for DNN using a metaheuristic optimization algorithm, arithmetic 

optimization algorithm (AOA). AOA makes use of the distribution properties 

of mathematics’ primary arithmetic operators, including multiplication, 

division, addition, and subtraction. AOA is mathematically modeled and 

implemented to optimize processes across a broad range of search spaces. 

The performance of AOA is evaluated against 29 benchmark functions, and 

several real-world engineering design problems are to demonstrate AOA’s 

applicability. The hyper-parameter tuning framework consists of a set of 

Lorenz chaotic system datasets, hybrid DNN architecture, and AOA that 

works automatically. As a result, AOA produced the highest accuracy in the 

test dataset with a combination of optimized hyper-parameters for DNN 

architecture. The boxplot analysis also produced the ten AOA particles that 

are the most accurately chosen. Hence, AOA with ten particles had the 

smallest size of boxplot for all hyper-parameters, which concluded the best 

solution. In particular, the result for the proposed system is outperformed 

compared to the architecture tested with particle swarm optimization. 
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1. INTRODUCTION  

Deep neural networks (DNNs) are very reliant on their parameterization. DNNs, like any machine 

learning model, have a number of hyper-parameters such as dropout rate and hidden layer number. To obtain 

excellent model training, these hyper-parameters must be appropriately configured. It takes a team of experts 

to figure out which method to use and how to change the hyper-parameters values. The requirement for 

developing automated methods for determining hyper-parameters is critical as DNN designs get exceedingly 

complex, rendering the trial-and-error method impractical. 

Deep learning algorithms generate results based on available data rather than human-defined rules. 

When sufficient data and a well-implemented framework are available, these algorithms perform well in 

image processing, pattern recognition, and autonomous driving. However, certain elements dependently 

modify for a deep learning algorithm in the training process called hyper-parameters. A hyper-parameter is a 

constant that is not updated by training. However, it affects the algorithm [1]. Unlike the value of parameters 

https://creativecommons.org/licenses/by-sa/4.0/
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such as weights learned during the training process [2]. Compared to the traditional machine learning models, 

DNNs are susceptible to the choice of hyper-parameters [3]. 

For years, the literature has demonstrated that hyper-parameter selection algorithms perform on par 

with human experts and even outperform them in certain situations. They remain, however, challenging to 

implement because of their computational difficulty in practice. This problem is solvable with a robust 

optimization algorithm and capable hardware. Nowadays, taming hyperparameters in deep learning systems 

has been challenging. Mai et al. [4] claimed that hyper-parameter compatibility must be taken into 

consideration when designing potential scalable deep learning systems in order to manipulate hyper-

parameters. During training, the model’s hyperparameters must be adjusted to fit within the loss space, which 

employs a declining learning rate to capture sharp minima [5], improving accuracy. Next is the adaptive 

tuning of hyper-parameters that can schedule change-over-time. Other than that, a deep learning system 

should be adapted to maximize the utilization of expensive graphical processing units (GPUs) resources. 

The selection of hyperparameters can be viewed as an optimization issue in which the objective is to 

maximize the accuracy of fitness functions while minimizing the inaccuracy of cost functions [6]. Manually 

fine-tuning these hyper-parameters is a challenging task [7]. Hence, many studies implemented automated 

hyper-parameter tuning in the literature to solve the problem. The metaheuristics optimization algorithms 

approach is the most popular technique nowadays, compared to random search [8], [9], grid search [10], [11], 

and Bayesian optimization [3], [12]–[15] as this method always gives an accurate and efficient performance. 

The hyper-parameters involved in this experiment; are hidden layer number and size, optimizers, 

loss function, activation function, dropout, and validation split with different values each. Alibrahim and 

Ludwig [16] compared the performance of the grid search algorithm, Bayesian algorithm, and genetic 

algorithm (GA) to select the ideal hyper-parameter values for a neural network model. The algorithms are 

compared using several evaluation metrics, including accuracy and computational time. The GA 

outperformed the grid search followed by the Bayesian approach, as stated in the paper. 

Wang et al. [17] developed a unique particle swarm optimization (PSO) version called cPSO-CNN 

for optimizing the setting of architecture based convolutional neural network (CNN) hyper-parameters. The 

update equations for cPSO-CNN have been changed to account for CNN’s hyper-parameter features. It is 

nearly impossible to manually tune a CNN to a near-optimal hyper-parameter configuration at a reasonable 

time consuming, which impedes the adaptation of CNNs to a variety of real-world issues. As seen by the cPSO-

CNN curve, throughout the generations, it maintains a great capacity for investigation via a succession of free-

falling decreases that culminate in an impressive 14.8 percent at the conclusion, significantly less than that of 

other PSOs. 

Additionally, the most widely used metaheuristic algorithm, PSO, intelligently investigates the 

possible solutions, allowing DNNs with a minimal topology to perform competitively on the MNIST dataset 

[18]. The study demonstrated that limited DNNs optimized using PSO could accurately classify CIFAR-10. 

Additionally, PSO raises the performance of pre-existing DNN designs. PSO is beneficial for automating the 

selection of hyperparameters based on statistical results. Additionally, PSO demonstrated highly desirable 

scalability properties. 

Mohakud and Dash [19] used a grey wolf optimization (GWO) algorithm to optimize the 

hyperparameters in a CNN architecture, which was then used to deduce the skin cancer class. The 

effectiveness of GWO performance was compared to that of PSO and GA-based hyperparameter optimized 

CNNs when applied to the International Skin Imaging Collaboration’s multi-class data set of skin lesions. 

The simulation results indicate that the proposed algorithm outperforms PSO and GA by 4% and 1%, 

respectively. The testing loss realized 39.2% and 15% less than PSO and GA, respectively. 

In addition, Hossain et al. [20] proposed a framework comprised of deep learning models, an 

optimization algorithm, and a technique for decomposing data. The framework is being introduced to increase 

the forecasting accuracy for ultra-short-term wind energy generation. When the forecasting models were 

compared to the baseline models, it was determined that the suggested model is resistant to overfitting. The 

model’s hyper-parameters are tuned using the GWO technique to determine the optimal values. By merging 

the optimization approach with deep learning, the prediction accuracy significantly improved.  

Furthermore, the hyperparameters of deep hybrid learning are tuned using the Harris hawks 

optimization algorithm to optimize the model’s performance [21]. The hybrid deep learning model comprises 

convolutional layers, gated recurrent units, and a fully connected neural network. It is used to forecast the 

very short-term wind energy generation from Australia’s Boco Rock Wind Farms. The study compares the 

proposed model to other deep learning models such as gate recurrent unit networks (GRU), long short-term 

memory networks (LSTM), recurrent neural networks (RNN), and neural network (NN) that are not 

automatically tuned using an optimization algorithm to demonstrate the proposed model’s effectiveness. 

Thus, the proposed model outperformed these other advanced models in terms of error minimization, thereby 

improving wind energy forecasting accuracy. Additionally, Mahdaddi et al. [22] presented an evolutionary 
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method (EA) framework, namely the differential evolution (DE) algorithm, for determining the ideal 

configuration for the proposed model’s hyper-parameters. The suggested model, CNN-attention-based 

bidirectional long short-term memory network (CNN-AbiLSTM), was compared using a manually built deep 

learning model and an EA-based hyper-parameter optimization technique. This comparison demonstrates that 

using EAs to determine an example quality configuration for the proposed model’s hyper-parameters 

outperformed benchmark models manually parameterized according to the two evaluation procedures. 

On the other hand, few researchers implemented Bayesian optimization [13] to fine-tune the deep 

convolutional neural network (DCNN) for image classification. The trained DCNN achieved an accuracy of 

96.05%. This method, in particular, does not guarantee that the optimal solution will be found. However, it 

can find compared to grid search, good results can be achieved with far less computational time [12]. 

In this study, the arithmetic optimization algorithm (AOA) is implemented to fine-tune the hyper-

parameters for the DNN model. AOA is mathematically modeled and implemented to optimize processes 

across a broad range of search spaces. The dataset used was Lorenz chaotic system [23]. This study aims to 

improve the effectiveness and accuracy of the DNN model for chaotic systems. As for the comparison 

purpose, AOA will be compared with PSO algorithm in terms of convergence curve and hyper-parameter 

combination. 

The remainder of this essay is organized as follows: section 2 discusses pertinent literature for the 

study. Following that, section 3 discusses the AOA and the development of a hyper-parameter tuning 

framework as the research methodology. Section 4 discusses the experimental design, dataset, results, and 

analysis. Finally, section 5 brings the paper to a close-by outlining future recommendations. 

 

 

2. METHOD 

This subtopic discussed the methodology implemented for this study. The first section explained 

how the AOA works, including equations and a flowchart. Then, the development of the proposed  

hyper-parameter tuning framework is introduced. 

 

2.1.  The arithmetic optimization algorithm 

The AOA is a new metaheuristic method that exploits the distribution behavior of the major 

arithmetic operators in mathematics, such as multiplication (M), division (D), addition (A), and subtraction 

(S) [24]. AOA is an arithmetically designed and applied technique for optimizing processes across a wide 

range of problem domains. 

The solutions, X, are created randomly during the initialization phase, and the best solution acquired 

in each iteration is considered the best-obtained solution. Prior to initiating the AOA, utilizing the math 

optimizer accelerated (MOA) function, X should select the search space, whether exploration or exploitation. 

The coefficient is calculated by (1), 

 

𝑀𝑂𝐴(𝐶𝐼𝑡𝑒𝑟) = 𝑀𝑖𝑛 + 𝐶𝐼𝑡𝑒𝑟 × (
𝑀𝑎𝑥−𝑀𝑖𝑛

𝑀𝐼𝑡𝑒𝑟
) (1) 

 

where 𝑀𝑂𝐴(𝐶𝑖𝑡𝑒𝑟) Denotes the function value at the 𝑡th iteration. 𝐶𝑖𝑡𝑒𝑟  denotes current iteration, which is 

between 1 and the maximum iteration, 𝑀𝑖𝑡𝑒𝑟 . 𝑀𝑖𝑛 and 𝑀𝑎𝑥 denote the minimum and maximum values of the 

accelerated function, respectively. 

The mathematical evaluations using either D or M operators obtained strong values or decisions 

based on the arithmetic operators, leading to the mechanism of exploration search. AOA’s exploration 

operators randomly examine the search area across multiple regions and try to discover an ideal solution 

using two primary search strategies: D search and M search. When the value of a random number, 𝑟1 is larger 

than the MOA value, then this search phase is started. 

After that, 𝑟2 value (also random number) conditioned by 𝑟2 < 0.5, will employ the first operator D 

while the other operator M is neglected until this operator finishes its current task. It also works otherwise. 

The position updating equations for the exploration parts in this study are as (2), 

 

𝑥𝑖𝑗(𝐶𝑖𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡(𝑥𝑗) ÷ (𝑀𝑂𝑃+∈) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑟2 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) × 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

 

where 𝑥𝑖(𝐶𝑖𝑡𝑒𝑟 + 1) is the 𝑖th solution in the next iteration, 𝑥𝑖𝑗(𝐶𝑖𝑡𝑒𝑟) is the 𝑗th position of the 𝑖th solution at 

the current iteration, and 𝑏𝑒𝑠𝑡(𝑥𝑗) represent the 𝑗th position in the best-obtained solution so far. ∈ is the small 
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integer number while 𝑈𝐵𝑗  and 𝐿𝐵𝑗  denote the upper and lower bound value at the 𝑗th position, respectively. 

Lastly, 𝜇 is a control parameter to adjust the search process, fixed equal to 0.5. 

𝑀𝑂𝑃(𝐶𝐼𝑡𝑒𝑟) = 1 −
𝐶𝐼𝑡𝑒𝑟

1
𝛼⁄

𝑀𝐼𝑡𝑒𝑟

1
𝛼⁄

 (3) 

 

where math optimizer probability (MOP) is a coefficient, 𝑀𝑂𝑃(𝐶𝐼𝑡𝑒𝑟) denotes the function value at the 𝑡th 

iteration, and 𝐶𝐼𝑡𝑒𝑟 denotes the current iteration and 𝑀𝐼𝑡𝑒𝑟 denotes the maximum iteration number. 𝛼 is a 

sensitive parameter and defines the exploitation accuracy over the iterations, and it is fixed to 5. 

Mathematical calculations are employing either S or A produced dense results for the AOA 

exploitation approach by reference to the exploitation mechanism. The AOA exploitation operators 

thoroughly investigate the search area across numerous dense locations and approach finding a better solution 

using two distinct search strategies as depicted in (4). Furthermore, these operators aid the exploitation stage 

through improved communication. 

 

𝑥𝑖𝑗(𝐶𝐼𝑡𝑒𝑟) =  {
𝑏𝑒𝑠𝑡(𝑥𝑗) − 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑟3 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) + 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

 

The settings are intended to generate a random value at each iteration in order to maintain 

exploitation not only during the initial iteration but also throughout the final iteration. In this phase, the first 

operator, Subtraction (S), is constrained by 𝑟3 0.5, and the other operator A is ignored until this operator 

completes its current work and vice versa. This portion of the search is advantageous in cases of minimal 

local optima, particularly in the final iteration. Figure 1 depicts the clear and thorough AOA process. 

 

 

 
 

Figure 1. Flowchart of AOA 

 

 

3.2.  Hyper-parameter tuning framework 

This study proposed an automated-tuning hyper-parameters technique based on a DNNs model for 

Lorenz chaotic system by AOA. The flowchart in Figure 2 is the proposed method for parameter tuning for 

DNNS by using AOA. Three DNNs hyper-parameters are tuned to obtain the best combinations concerning 

the accuracy value from the learning process of DNNs. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Automated-tuned hyper-parameter deep neural network by using arithmetic … (Nurnajmin Qasrina Ann) 

2171 

The goal of hyper-parameter tuning is to find the optimal combination while optimizing the model’s 

accuracy. For this study, there is no specific fitness function for AOA. However, the solutions from the 

optimization algorithm will be trained automatic and directly in the DNNs model, refer to Figure 3, so that, 

the developed model is accurate and robust. The process, on the other hand, is the most time-consuming part. 

 

max 𝐷𝑁𝑁(𝐻, 𝑊, 𝐷) (5) 

 

where 𝐷𝑁𝑁 is the deep learning model, 𝐻 is defined as hyper-parameters that need to be tuned, 𝑊 indicates 

the weights of hyper-parameters, and 𝐷 is referred to as datasets. 

 

 

 
 

Figure 2. Proposed method for parameter tuning 

 

 

 
 

Figure 3. Proposed framework for tuning hyper-parameter based on AOA 
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3. RESULTS AND DISCUSSION 

The experimental setup, dataset, result, and discussion of the study findings have been explained in 

this subtopic. The experimental study consists of two main experiments. Firstly, it verifies how the value of 

the particles affects the AOA capabilities to find the best solution and compares with the PSO with the 

different values of particles. The second part is about the descriptive statistics analysis to make sure the 

chosen model is proficient in terms of accuracy on the test dataset and consistency in the values of hyper-

parameters. 

 

3.1.  Experimental setup 

The hyper-parameter selection by AOA and training of DNN implemented in MATLAB R2021a. 

The experiments run on the following CPU hardware: Intel® Core™ i7-8700 Processor (3.20 GHz), RAM: 

16GB, GPU: NVIDIA GeForce GTX 1060 3GB. Table 1 shows the hyper-parameters of DNNs involved in 

automated tuning using AOA and their ranges (boundary or selection) during the optimization and training 

process. For optimizer, there are three different selections which are stochastic gradient descent with 

momentum (SGDM), root-mean-square propagation (RMSProp), and adaptive moment estimation (ADAM). 

The last column of that table shows the expected value for each hyper-parameter when the algorithm is 

trained independently. Furthermore, Table 2 tabulates the parameter value of AOA and PSO, which are the 

number of iterations, number of particles, 𝛼, 𝜇, 𝑐1, 𝑐2, 𝑤𝑚𝑎𝑥  and 𝑤𝑚𝑖𝑛. Using a trained DNN model, the 

fitness function derived from this study is calculated and validated by the correctness of the testing data set. 
 
 

Table 1. Hyper-parameter of DNN for automated tuning 
Hyper-parameter Range Expected Value 

Number of neurons for first hidden layer [1, 100] 48 

Optimizers [SGDM, RMSProp, ADAM] ADAM 

Number of epochs [10, 200] 200 

 

 

Table 2. Parameters of AOA and PSO 
Variable Speed (rpm) Power (kW) 

AOA 𝛼 5 

𝜇 0.5 

PSO 𝑐1, 𝑐2 2 

maximum weight, 𝑤𝑚𝑎𝑥 0.9 

minimum weight, 𝑤𝑚𝑖𝑛 0.2 

Both no. of particles 4, 10, 15 

no. of iteration 50 

 

 

3.2.  Dataset 

In this study, the multi-class classification is focused on and utilizes the real dataset of the Lorenz 

chaotic system. Barrio et al. [23] proposed this dataset as a benchmark database of extremely precise 

numerically calculated and validated initial conditions for periodic orbits in the Lorenz model. The initial 

conditions of the periodic orbits and intervals of size 10,100 are calculated with 1,000 digits of precision 

using high-precision arithmetic and numerous approaches that demonstrate each orbit’s existence. The 

dataset utilized in this study is quite huge, so it is recommended to split the dataset [25] into 70%, 15%, and 

15% training, testing, and validation datasets. 

 

3.3.  Impact of the particle size on AOA 

Refer to Figure 4, the graphs compare two meta-heuristic algorithms with different particles. Both 

PSO and AOA algorithms converge throughout the iterations until they reach the maximum iteration. Based 

on the convergence curve, for ten particles and 15 particles of AOA and PSO, respectively, the perfect fitness 

value is achieved. It showed that PSO needs more particles to give better accuracy. The exploration and 

exploitation for AOA are balanced, although the number of particles required is low. The convergence curve 

shows the best fitness function to iterations for each run. The convergence curves by AOA visualized that 

there are no distinct advantages in the first iterations. AOA distributes solutions over multiple local research 

areas rather than accumulating positions in a particular local area [24]. However, AOA can significantly 

reduce its dependency on local search areas and has competitive experience with global search areas.  

Both AOA and PSO algorithms have experimented with a similar set of particles values. In Table 3, 

the display result is retrieved from the DNN architecture with the different number of particles together with 

a comparison to AOA and PSO. With 50 as the maximum iteration, the computational time and best hyper-

parameter combination are recorded.  
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PSO algorithm is straightforward. The hyper-parameter tuning process is a tightrope walk to balance 

underfitting and overfitting. The optimization and learning process of the DNNs model produces a 

combination of three hyper-parameters investigated in this study. The hyper-parameters involved are the 

number of hidden neurons, the number of epochs, and the type of optimizers trained dependently on each 

other and gave the best combination of hyper-parameter of the DNN model. The chosen number of hidden 

neurons, number of epochs, and type of optimizers are 46, 200, and ADAM optimizers, respectively, which is 

ten particles of AOA. Thus, AOA with ten particles outperformed by obtaining the highest accuracy based on 

the test dataset and the closest expected value of the hyper-parameter combination presented in Table 1. In 

particular, AOA takes longer to compute the algorithm than PSO in terms of computational time. 

 

 

 
 

Figure 4. AOA and PSO convergence curve for different no. of particles 

 

 

Table 3. Comparison of AOA and PSO with different numbers of particles 
Algorithm No. of particles Time (s) Best Hyper-Parameter Combination Accuracy on Test Dataset 

AOA 4 12827 [97, 162, ADAM] 0.9982 
10 33167 [46, 200, ADAM] 1.0000 

15 50988 [23, 180, ADAM] 0.9982 
PSO 4 12047 [57, 178, RMSProp] 0.9982 

10 20496 [37, 177, RMSProp] 0.9982 

15 28475 [35, 107, ADAM] 1.0000 

 

 

3.4.  Descriptive statistics analysis on hyper-parameter selection by using arithmetic optimization 

algorithm 

In the study, analysis of fitness value is not enough, as the experiment involves selecting hyper-

parameters in DNN. Three hyper-parameters tested are the number of hidden neurons, epoch number, and 

type of optimizer. Therefore, boxplots helped visualize the features of numerical data through 10 runs 

dependently.  

Figures 5 to 7 show the three hyper-parameters, the number of hidden neurons, epoch number, and 

type of optimizer, respectively. The boxplots represented the standard deviation of the data obtained from the 

simulations regarding the size of the boxplot. The most consistent mean data is ten particles of AOA for all 

three hyper-parameters based on the boxplots.  

The 4 and 15 particles in boxplot analysis give the broad range value for the number of hidden 

neurons hyper-parameter, as shown in Figure 5. In addition, Figure 6 represents the boxplot for the epoch 

number needed to complete training for the developed model. The most considerable size of the boxplot is  

16 particles, followed by four particles and ten particles having the smallest size of the boxplot. Figure 7 

illustrates that ten particles are consistent at the ‘ADAM’ type of optimizer while 15 particles have outlier data. 

The optimizers obtained by four particles are ‘ADAM’ and ‘RMSProp’. Thus, the result shown in this analysis is 

matched to the best hyper-parameter combination and the highest accuracy on the test dataset. 
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Figure 5. Boxplot for no. of hidden neurons 

 

 

 
 

Figure 6. Boxplot for number of epochs 

 

 

 
 

Figure 7. Boxplot for optimizers 
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4. CONCLUSION 

To sum up, this study is presented the automated-tuned hyper-parameter of DNNs by using AOA for 

Lorenz chaotic dataset. A novel model architecture proposes solving the hyper-parameter problems in DNNs, 

an anchor for a deep learning model. The optimization and learning process of the AOA and DNNs model 

produced the best combination of three hyper-parameters: number of hidden neurons, epoch number, and 

type of optimizer, investigated in this study. In particular, the result showed that ten particles of AOA 

outperformed PSO with 15 particles in achieving the highest accuracy value, which is one on the test dataset. 

The boxplot analysis proved the consistency value of each hyper-parameters for the standard deviation value 

with ten independent runs. The boxplot statistical analysis ensures that the best number of particles is chosen 

for the trained model. Hence, AOA with ten particles had the smallest size of boxplot for all hyper-

parameters, which concluded the best solution among all. For future works, after the chaotic system, the 

hyper-chaotic system will be experimented with using this model architecture. The experiment is essential for 

further real-world application, mainly in the image cryptosystems field. 
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