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 Seasonal time series with trends are the most common data sets used in 

forecasting. This work focuses on the automatic processing of a  

non-pre-processed time series by studying the efficiency of recurrent neural 

networks (RNN), in particular both long short-term memory (LSTM), and 

bidirectional long short-term memory (Bi-LSTM) extensions, for modelling 

seasonal time series with trend. For this purpose, we are interested in the 

learning stability of the established systems using the mean average 

percentage error (MAPE) as a measure. Both simulated and real data were 

examined, and we have found a positive correlation between the signal 

period and the system input vector length for stable and relatively efficient 

learning. We also examined the white noise impact on the learning 

performance. 

Keywords: 

Automatic learning 

Long short-term memory 

Machine learning 

Recurrent neural network  

Time series This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Rida El Abassi 

Laboratory of Mathematical and Computer Engineering, Faculty of Sciences, Ibn Zohr University 

Agadir, Morocco 

Email: rida.elabassi@edu.uiz.ac.ma 

 

 

1. INTRODUCTION  

The analysis of time series represents a source of knowledge and information given the amount of 

data generated through technical and technological development, which multiplies the fields of application 

for this discipline. In the field of time series, researchers tend to propose models describing the underlying 

relationship of the generator process and to forecast time series [1]. The seasonal and trend components are 

characteristics of several time series resulting from economic phenomena. Seasonality is considered as a 

periodic and recurring pattern, while the trend component characterizes the long-term evolution of the time 

series studied. The importance of accurate forecasting of seasonal time series trends is crucial for areas such 

as marketing, inventory control and many other business sectors.  

The traditional methods of time series analysis proceed with two main steps: decomposition, then 

reconstitution of series to carry out the forecast [2]. This approach assumes that the structure of time series 

can be decomposed into modellable elements [3]. There are three main components: the trend Tt, which 

describes the long-term evolution and the phenomenon’s pattern, the seasonal component St, which 

characterizes repetition over time, and the residual component Rt, which represent the noise [4]. 

In the 1970s, Box and Jenkins introduced another perspective on time series modelling [5], named 

Box and Jenkins methodology, it is based on the Wold’s representation theorem [6]–[9]; in fact, once a 

process is (weakly) stationary, it can be written as the weighted sum of past shocks. This is how the notion of 

stationary becomes fundamental to the analysis process [10]. However, a seasonal and trend time series is 

considered to be non-stationary and often needs to be made stationary, using a certain seasonal adjustment 

method [11], before most modelling and forecasting processes take place. 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Efficiency of recurrent neural networks for seasonal trended time series modelling (Rida El Abassi) 

6587 

Moreover, neural networks (NN) offer new perspectives [12]–[14] for modelling time series than 

traditional seasonal autoregressive integrated moving average (SARIMA) models [15], [16]. The learning 

mechanism allows to establish a neural architecture based on parameters such as the size of the input vector, 

and the number of hidden layers. Indeed, NN have been widely applied to many fields through their 

flexibility to design a network structure [17]. The fully connected NN (FNN) is a basic structure of neural 

networks, Qi and Zhang [18] implemented this structure to seasonal time series with trends, indeed, they 

conducted experiments by comparing the two models, autoregressive integrated moving average (ARIMA) 

and FFN, which report that an FNN cannot directly model seasonality, however, a preprocessing step is 

needed involving seasonal and trend adjustments for proper modelling. Liu et al. [19] also compares FFN and 

ARIMA using the same type of simulated time series, this study concludes that by choosing rectified linear 

unit (ReLU) or the linear activation function and Adam optimizer, the FFN model performs well. 

The motivation for this works was inspired by Qi and Liu studies [18], [19], in which the authors 

compare the performance of SARIMA to an FNN and a convolutional NN. In this paper, we plan to use a 

recurrent neural network (RNN), in particular, long short-term memory (LSTM) and bidirectional long short-

term memory (Bi-LSTM) extensions. However, their experiments and conclusions are inadequate for our 

purposes. 

The aim of our study is to find a modelling method such that users do not have to worry about 

preprocessing time series. Thus, the initial motivation of this paper is to develop a machine learning tool to 

predict time series data without manual intervention, using recurrent neural networks. The main problem  

is to find a general-purpose modelling method or algorithm that can handle seasonality, trends and  

auto-correlations in time series data. It is important to note that the initial question was about the choice of 

these parameters, in particular the size of the input vector and the number of hidden layers for additive and 

multiplicative signals. 

 

 

2. METHOD 

2.1.   Principle of LSTM and Bi-LSTM structures 

Extensions of recurrent neural networks (RNNs) such as LSTMs are the most feasible solutions 

since, they are directed to the problem of the gradient disappearance by managing short-and long-term 

memory. They anticipate future predictions based on various highlighted characteristics present in the 

dataset. LSTMs can remember or forget things precisely. Data collected on progressive timescales is 

presented as time series, and let to make predictions, while LSTMs are proposed as a stable methodology. In 

this type of design, the model passes the past protection state to the next stage of the layout. Since RNNs can 

only store a limited amount of information for long-term memory storage, LSTMs cells are used with RNNs 

[20]. They overcome the difficulties of leakage gradient and explosion gradient and have the ability to 

support long-term dependencies by replacing the hidden layers of RNN with memory cells. The LSTM block 

contains three gates [21] and each gate corresponds to a processing step. Standard recurrent neural 

architectures, like LSTM, treat the inputs in one direction only and ignore the possessed information about 

the future. The bi-directional LSTM (Bi-LSTM) model responds to this issue in its operating process [22].  

For the Bi-LSTM topology [23]–[26], the information flows in two directions as illustrated in 

Figure 1, taking into account the temporal dynamics of the vectors of past and future inputs. Standard RNN’s 

hidden neurons are split forward and backward. The basic structure of Bi-LSTM [27] is unfolded in three-

time steps: forward pass, backward pass, and weight update. 

 

 

 
 

Figure 1. Example of Bi-LSTM structure 
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2.2.  Processing strategy 

The first questions at the origin of this study were mainly related to the capacity of RNNs to model 

the regularities of a signal, specifically the seasonality and the trend. Then by developing a neural model, we 

realized that several parameters are put into the equation, namely, the size of the input vector, and the number 

of hidden layers. This work empirically highlights a correlation between the period of the time series and the 

size of the input vector for stable and relatively successful learning. This study is conducted on twenty-six 

time series derived from a real phenomenon, the first characterizes the evolution of the number of passengers 

in an international airport, which is a classic signal in the literature [4], it was the first signal for which the 

two researchers George Box and Gwilym Jenkins established their methodology, then the second 

characterizes the evolution of CO2 concentrations in the air measured during 1974 through 1987 [28]. In 

another sense, it is important to note that the time series belong to two basic classes of models, namely the 

additive and the multiplicative models, in order to analyze the robustness of the RNNs not only to the change 

of fluctuation at the seasonal level but also to the impact of white the noise and then to draw conclusions on 

the stability of the established systems.  

It is important to note that the learning process will be carried out by a part of the signal noted 

(Train), which represents nearly 80% of the size of the basic signal. However, 20% will represent the part 

(Test), which allow us to measure the performance of the learning carried out via the mean absolute 

percentage error (MAPE) given in (1). The next step is to make a prediction of 100 future observations in 

order to analyze the prediction of the system and its ability to detect the regularities of the signal and under 

what conditions, and if the system has taken into account the regularities of the signal (Tt and St). We apply 

the low-frequency filter (the moving average) by changing the window l to determine the period of the 

predicted signal. In Figure 2, we have displayed the whole layout of the proposed model. 

 

𝑀𝐴𝑃𝐸 = (
1

𝑘
∑ |

𝑎𝑥−𝑓𝑥

𝑎𝑥
|𝑘

𝑥=1 ) × 100 (1) 

 

 

 
 

Figure 2. Layout of proposed method 

 

 

2.3.  Simulated data 

The design of the methodology of this empirical analysis focuses on the use of several time series 

with different periods and variance 𝜎2 of white noise, we generate the time series via (2) and (3). 

 

𝑦(𝑡) = 𝑆𝐼(𝑡) + 𝑇(𝑡) + 𝐸(𝑡) (2) 

 

𝑦(𝑡) = 𝑆𝐼(𝑡) × 𝑇(𝑡) + 𝐸(𝑡) (3) 

 

In (2) and (3) are a characteristic of the additive (AM) and multiplicative (MM) model respectively, such that 

the SI(t) is the seasonality index, Table 1 shows the measures adopted for MM and MA. T(t) is the linear 

trend, and E(t) is the distribution error that follows the normal distribution 𝑁(0, 𝜎2). Note that for each given 

SI we assign 𝜎2 three values 𝜎=1, 5, 12. Indeed, controlling the seasonality index allows us to fix the period 

of seasonality and then see the reaction of the established systems with respect to these changes. On the other 

hand, the change 𝜎 allows us to test the robustness of the established assumptions with respect to the increase 

of the white noise energy in the signal. Figure 3 shows an example of the time series that we have generated 

with a seasonality index SI given in Table 1, for MM in Figure 3(a) and for an AM in Figure 3(b), the part T 

that characterizes the trend is given by T(t)=0.8t+150 for any 𝑡 ∈ [0.359], i.e., this series as well as all the 

others generated from both MM and AM will have 360 observations. The white noise variance 𝜎2 of this 

time series is given by (𝜎2 = 144). 
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Table 1. Seasonal indexes used for simulated monthly data 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

SI MM 0.8 0.85 0.87 0.95 0.99 0.97 0.96 1.04 0.99 1.07 1.25 1.85 
SI AM 89 96 99 105 119 98 92 136 93 149 168 194 

 

 

  
(a) (b) 

 

Figure 3. Plot the simulated time series (a) through the multiplicative model and (b) through the additive 

model 

 

 

2.4.  Real data 

Figure 4 represents the real database; Figure 4(a) shows the monthly evolution of total passengers in 

an international airport in the period from January 1949 to December 1960. Box and Jenkin applied their 

methodology to this time series and proposed linear models of class SARIMA that they developed [5]. The 

time series shows an upward tendency and a seasonality of period p=12 that changes in fluctuation in the 

course of the time. While Figure 4(b) illustrates the evolution of the air’s CO2 concentration from May 1974 

to September 1987. 

 

 

  
(a) (b) 

 

Figure 4. Plot the real time series (a) monthly evolution of total passengers in an international airport in the 

period from January 1949 to December 1960 and (b) evolution of CO2 concentration in the air in the period 

May 1974 to September 1987 

 

 

2.5.  Modeling strategy 

The databases we manipulated in this study are univariate time series. We implemented two models 

of recurrent neural networks in particular LSTM and Bi-LSTM, using libraries such as NumPy [29], Pandas 

[30], Keras and TensorFlow [31]. For a given signal with fixed period p and white noise variance 𝜎2, we 

performed in the learning by train part while varying the size of the input vector 𝑣𝑒 and took the following 

values: 3, 4, 9 and 12. In other words, we have performed for a given signal four tests, this allows us to note 

the correlations of the different parameters of the system. Figure 5 shows the neural structure adapted for the 

two models, LSTM and Bi-LSTM. Noting that the structure is the same for both models, it is composed of an 

input layer with 𝑣𝑒 inputs and connected to 256 neurons of the first hidden layer. The neural structure has six 

hidden layers, the choice of the number of neurons is based on the remark of Moolayil [32], concerning the 

number of hidden layers, which is one of the questions of this study. How to choose the number of hidden 

layers intelligently in relation to the particularity of the signal to guarantee the performance of the learning. 

We conducted experiments in this direction, but they did not lead to consistent results. 
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Figure 5. RNN (LSTM and Bi-LSTM) structure with 256 input neurons and 7 hidden layers 

 

 

Table 2 shows the different parameters of the neural architectures established. For the RNNs model 

LSTM and its extension Bi-LSTM, the activation function is the ReLU, the optimization algorithm held is the 

Adam's and the cost function employed is the mean-squared error (MSE). The learning algorithm tries to 

minimize the cost function, which characterizes the distance between real and predicted values at the same 

time, by adjusting the weights and bias of the system. The starting point of these parameters impacts the 

learning performance, a decision is made to initialize the weights and bias of the neural architecture to the 

same values for all performed tests. 

 

 

Table 2. Parameter settings of the studied approaches 
Models Parameters Values 

LSTM and Bi-LSTM Input 

Output 

Hidden Layer 

Neurons 
Optimizer 

Features 

activation function 
Loss function 

Training epochs 

𝑣𝑒 

1 

7 
256-128-64-32-16-8-4 

Adam 

1 
ReLU 

MSE 

500 

 

 

3. RESULTS AND DISCUSSION  

3.1.   Simulated data results and discussion 

We established LSTM and Bi-LSTM to try to answer the question reported in section 2. We adopted 

the same parameters indicated in Table 2 of section 2 for all the neural architectures established. The purpose 

of this study does not take into consideration the comparison of the different architectures such as Adam 

algorithm, adaptive gradient algorithm (AdaGrad) and stochastic gradient descent (SGD) or the different 

existing cost functions. Table 3 shows the results of the tests carried out using the methodology reported in 

section 2 to generate the time series, according to AM and MM characterized respectively by the formulas 2 

and 3. We raise two remarks: firstly, there is a correlation between the period of the signal and the size of the 

input vector 𝑣𝑒, meaning that, to guarantee the relative performance of the learning, it is more appropriate to 

choose 𝑣𝑒 = 𝑝, and this is for the two extensions of the recurrent neural networks LSTM and Bi-LSTM. 

Secondly, the white noise impacts the learning performance. 

Figure 6 shows the learning result for AM, Figures 6(a) and 6(b) illustrate the performance of the 

LSTM and Bi-LSTM models, respectively. The MAPE, as shown in Table 3, is of order 0.53 and 0.49, 

respectively. Figure 7 characterizes the learning results for MM, Figures 7(a) and 7(b) illustrate the 

performance of the LSTM and Bi-LSTM models, respectively. The MAPE, as shown in Table 3, is of the 

order 0.17 and 0.09 respectively.  

Remember that the comparison of the two models LSTM and Bi-LSTM is not the goal of this work. 

The initial question was mainly focused on the stability of learning, and to ensure an adequate model for 

signals, characterized by a seasonal and a trend via RNNs models. Two interesting results are deduced: first, 

a significant correlation exists between the size of the input vector of the system 𝑣𝑒 and the period of the 

signal, second, the noise has an impact on the learning. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Efficiency of recurrent neural networks for seasonal trended time series modelling (Rida El Abassi) 

6591 

Table 3. Simulation result for neural networks 
𝑝 𝜎2 𝑣𝑒 MAPE  MAPE 

Additive model Multiplicative 

model 

Additive model Multiplicative 

model 

LSTM Bi-
LSTM 

LSTM Bi-
LSTM 

LSTM Bi-
LSTM 

LSTM Bi-
LSTM 

𝑝 = 3 σ = 1 𝑣𝑒 = 3 

𝑣𝑒 = 4 

𝑣𝑒 = 6 

𝑣𝑒 = 12 

0.01 

10.77 

5.61 
1.47 

0.04 

13.61 

8.37 
1.16 

0.03 

12.65 

23.46 
10.34 

0.12 

13.76 

11.54 
1.98 

𝑝 = 6 2.23 

10.18 

0.03 
1.48 

1.72 

6.49 

0.02 
0.53 

2.79 

17.11 

0.02 
1.38 

1.29 

12.36 

0.02 
2.11 

σ = 5 𝑣𝑒 = 3 

𝑣𝑒 = 4 

𝑣𝑒 = 6 

𝑣𝑒 = 12 

0.09 

12.42 
10.35 

3.29 

0.14 

12.27 
11.48 

9.11 

0.08 

7.38 
6.29 

5.81 

0.14 

14.61 
16.92 

10.73 

4.83 

18.43 
0.12 

12.37 

6.35 

21.73 
0.21 

2.43 

3.65 

14.57 
0.17 

16.49 

2.32 

17.52 
0.08 

19.53 

σ = 12 𝑣𝑒 = 3 

𝑣𝑒 = 4 

𝑣𝑒 = 6 

𝑣𝑒 = 12 

1.91 
17.19 

13.22 

10.41 

1.45 
25.18 

24.62 

12.43 

2.41 
24.73 

21.22 

16.73 

1.78 
38.41 

21.39 

18.37 

11.62 
20.46 

1.48 

4.41 

18.42 
17.31 

0.82 

2.93 

13.64 
19.43 

0.42 

14.28 

15.11 
26.59 

0.53 

22.48 

𝑝 = 4 σ = 1 𝑣𝑒 = 3 

𝑣𝑒 = 4 

𝑣𝑒 = 6 

𝑣𝑒 = 12 

8.83 

0.02 
3.56 

2.84 

3.78 

0.01 
7.51 

4.68 

6.48 

0.05 
7.51 

3.71 

9.57 

0.15 
10.35 

10.51 

𝑝 = 12 2.87 

17.32 
5.63 

0.21 

1.39 

10.45 
2.54 

0.01 

2.47 

9.33 
1.43 

0.02 

5.83 

10.82 
4.69 

0.06 

σ = 5 𝑣𝑒 = 3 

𝑣𝑒 = 4 

𝑣𝑒 = 6 

𝑣𝑒 = 12 

14.64 
0.12 

18.51 

6.42 

12.63 
0.17 

12.85 

3.57 

13.27 
0.28 

18.29 

8.38 

15.61 
0.18 

23.51 

17.32 

3.67 
21.86 

6.17 

0.37 

4.78 
14.26 

4.34 

0.15 

15.22 
8.62 

3.45 

0.11 

16.43 
15.73 

5.22 

0.68 

σ = 12 𝑣𝑒 = 3 

𝑣𝑒 = 4 

𝑣𝑒 = 6 

𝑣𝑒 = 12 

14.18 

2.79 

21.48 
6.92 

8.52 

0.27 

14.27 
6.27 

19.27 

0.74 

18.63 
16.38 

11.69 

0.42 

17.65 
16.84 

3.78 

20.41 

9.54 
0.53 

4.38 

15.26 

5.86 
0.49 

17.64 

13.63 

4.57 
0.17 

16.44 

12.85 

4.12 
0.09 

 

 

  
(a) (b) 

 

Figure 6. Predicted values versus true values on the training data (𝜎 = 12) for AM, in (a) the LSTM model 

results and (b) the Bi-LSTM model results 

 

 

  
(a) (b) 

 

Figure 7. Predicted values versus true values on the training data (𝜎 = 12), for MM in (a) the LSTM model 

results and (b) the Bi-LSTM model results 
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3.2.  Real data results and discussion 

We used the same parameters used previously as shown in Table 2 and the same RNNs on the  

two-time series, both additive and multiplicative, as described in subsection 3.3. We applied the low 

frequency filter (the moving average) to determine the period, we conduct tests by systematically changing 

the size of the input vector. The results of the system learning for the real data shows the potential of neural 

networks to model this class of time series by choosing appropriate parameters, in particular the size of the 

input vector, Figure 8(a) illustrates the performance of the LSTM models, the MAPE is of order 0.04, while 

Figure 8(b) shows the prediction of the two neural systems for 100 future observations. Moreover, 

Figure 9(a) shows the performance of the Bi-LSTM model, the MAPE is of order 0.05 while Figure 9(b) 

shows the prediction of the two neural systems for 100 future observations. 

 

 

  
(a) (b) 

 

Figure 8. LSTM model results for total passengers in an international airport data (a) predicted values versus 

true values on the training data and (b) prediction of 100 future observations 

 

 

  
(a) (b) 

 

Figure 9. Bi-LSTM model results for evolution of CO2 concentration in the air data (a) predicted values 

versus true values on the training data and (b) prediction of 100 future observations 

 

 

It is important to note that the learning performance depends on the size of the input vector ve, 

which corroborates the conclusion made for the simulated data, indeed, we did the learning by varying ve, for 

ve=12 the system becomes efficient compared to other 𝑣𝑒 values. The first multiplicative signal of the 

monthly evolution of passengers has period p=12 [5], for ve equal to 3, 6 and 9, MAPE is of the order, 12.35, 

4.21 and 13.93 respectively, and this for LSTM model, the choice of ve=12 allows an optimal performance 

of the order MAPE=0.04. The second additive signal has period p=12 [28], for 𝑣𝑒 equal to 3, 6, 9 and 12, 

MAPE is of the order, 10.26, 6.74, 8.31, and 0.05 respectively, and this for Bi-LSTM model. The prediction 

of 100 future observations shows clearly that the system was able to learn the different features for the 

multiplicative and additive signals, such as the variation of seasonal component fluctuations over time. 

Liu et al. study [19], adopts models such as, the convolutional neural network (CNN), FNN and a 

non-pooling CNN. Lui’s study [19] also made a comparative study on the optimizer parameter using several 

types such as, Adadelta, AdaGrad, Adam, and SGD as well as the activation function namely, ReLU, Tanh, 

linear. They concluded that the choice of system parameters impacts learning performance, by indicating that 

choosing ReLU or linear activation functions and the Adam optimizer increases performance. Concerning 

this paper, we focused the research on other parameters of the system, specifically, the size of the input 

vector using RNN models. 
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To evaluate the performance of the neural network system, we made a comparison with the 

autoregressive moving average (ARMA) model, ARMA requires additional preprocessing to make both time 

series stationary. We created a 12-lag difference to remove the seasonality and then a 2-lag difference to 

remove the trends. The final model for the total passengers in an international airport data is ARMA with 

p=12 and q=1, which were selected by the autocorrelation function, the partial autocorrelation function and 

the Bayesian information criterion (BIC). For this model, the MAPE measure is of order 1.39. We find that 

the LSTM has obtained much better MAPE value than the ARMA. 

 

 

4. CONCLUSION  

Analyzing and modelling time series allows the extraction of knowledge. In the present study, we 

have introduced the modelling of seasonal time series with a trend via a supervised learning technique, in 

particular the RNN method. For this, we have established both LSTM and Bi-LSTM models in order to 

propose an approach to construct neural systems allowing relatively efficient modelling. We conducted tests 

on real and simulated time series, and we simulated the additive and multiplicative classes, in order to test the 

ability of the established systems to detect the change in the fluctuation of the seasonal component over time. 

Based on 80% of the data, the two RNN extensions were able to predict the rest of the series, which was then 

validated with the remaining 20%. Tests are performed by varying the period p and 𝜎2 (the variance of the 

noise component), and we noted a significant correlation between the input vector size ve and the period p. 

Indeed, to ensure relatively efficient learning, we recommend choosing the input vector size ve equal to the 

signal period p. We have also concluded that noise has an impact on learning performance, as the increase of 

MAPE error depends on the noise component. 
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