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 This paper presents an efficient fast Walsh–Hadamard–Hartley transform 

(FWHT) algorithm that incorporates the computation of the Walsh-

Hadamard transform (WHT) with the discrete Hartley transform (DHT) into 
an orthogonal, unitary single fast transform possesses the block diagonal 

structure. The proposed algorithm is implemented in an integrated butterfly 

structure utilizing the sparse matrices factorization approach and the 

Kronecker (tensor) product technique, which proved a valuable and fast tool 
for developing and analyzing the proposed algorithm. The proposed 

approach was distinguished by ease of implementation and reduced 

computational complexity compared to previous algorithms, which were 

based on the concatenation of WHT and FHT by saving up to 3N-4 of real 
multiplication and 7.5N-10 of real addition. 
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1. INTRODUCTION 

The orthogonal transforms and their fast algorithms have a vital role in a variety of fields such as 

signal processing [1], image encryption [2], [3] digital watermarking [4], wireless communication systems 

[5]–[7] and many other fields [8]–[10]. The importance of these transforms has prompted numerous 

researchers to use various techniques and methodologies, which have developed a wide variety of fast 

algorithms and novel transforms to solve current problems and challenges or satisfy the criteria of modern 

applications. One of the most effective approaches to creating new transforms is combining two orthogonal 

transforms to provide a realistic and cost-effective solution while retaining quality by benefiting from their 

unique advantages, besides exchanging resources [11]–[15].  

Discrete Hartley transform (DHT) is a significant member of the orthogonal transformations family, 

representing an efficient tool for a wide range of applications [2], [4], [15]–[18]. The importance of DHT is 

due to its use as an alternative to the discrete Fourier transform (DFT) for real input; therefore, utilizing DHT 

achieves a significant increase in computing efficiency by saving arithmetic operations and memory storage. 

Additionally, the DHT has the self-inverse characteristic, which means that except for the scale factor, the 

same algorithm is used for forward and inverse [16], [17], [19]. Another essential member of orthogonal 

transforms is the Walsh-Hadamard transform (WHT), a common tool in a wide range of applications [3], [5], 

[8], [20]–[23]. WHT's key distinguishing feature is that its computation does not include any multiplication 

or division. 

Therefore, in this paper, a radix-2 fast Walsh–Hadamard–Hartley transform (FWHT) algorithm 

integrates the computation of both WHT and DHT into a single fast algorithm for the length power-of-two 

sequences. The primary advantage of the radix-2 FWHT algorithm is that it concurrently computes both 

transforms (WHT and FHT) utilizing a single butterfly. Furthermore, the FWHT has more efficient 
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performance and lower arithmetic complexity than the traditional technique based on the concatenation of 

fast WHT and DHT algorithms. Accordingly, the proposed algorithm can be applied to a wide range of 

applications, such as in orthogonal frequency division multiplexing (OFDM) systems. 

The remainder of the paper is structured in the following manner. The development of the proposed 

algorithm is completely derived in section 2. Section 3 discusses the applications of the developed algorithm. 

Section 4 discusses computational complexity and comparisons. The conclusion is presented in section 5. 

 

 

2. DERIVATION OF THE ALGORITHM  

Radix-2 FWHT starts by constructing the HN matrix, which is equal to the product of the WHT and 

DHT matrices as (1): 

 

𝐻𝑁 =
1

𝑁
 𝑊𝐻𝑁 DH

∧

𝑁 (1) 

 

where HN is used to denote the H-transform matrix, WHN is the Walsh–Hadamard matrix, and DH
∧

𝑁 denotes 

the discrete Hartley by rearranging the rows in bit reversed order. The DHT matrix in (1) has order N and 

may be expressed in terms of the lower order N/2. [24], [25] as shown in (2). 
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where 0 ≤ 𝑘 ≤
𝑁

2
− 1 and JN is the exchange matrix of order N (i.e., reverse diagonal unity matrix) specified 

by: 
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as shown in (2) may be factorized into the (4). 
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The factorization shown in (4) can be stated in terms of tensor (Kronecker) product as (5). 

 

NN
22

N 2 N 2
DH = I DH DH I
∧ ∧

 (5) 

 

Using similar approach, WHN can be written as (6): 

 

N N
2 2

N 22
WH = I WH WH I  (6) 
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Substituting (5) and (6) into (1), the general radix-2 H-matrix of order N=2m can be expressed as (7). 

 

mm-1 m-1 m-1m-12 2N 2 22 22 2 2

1
N

WH WH DH DHH = I I I I
∧

 (7) 

 

The terms product m-1 m-12 22 2
WH I I DH  can be exchanged with each other, with the aid of a result of 

the multiplication rule for tensor product [26]. 

Therefore (7) can be written as (8): 
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with the aid of (6) and (5), respectively, the product 𝑊𝐻2𝑚−1 DH
∧

2𝑚−1  can be factorized to, 

 

m 1 m-2m-1 m-22 2 2 22 2
DH DH DH= I I
∧ ∧

 (10) 

m-1 m-2 m-2222 2 2
WH WH WH= I I  (11) 

 

Substituting m-1 m-122
DHWH and
∧

 by their values in (10) and (11) into (8), we obtain, 
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Employing the same strategy as in (7); therefore, (12) can be expressed as (13): 
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This factorization will be repeated, and after log2N stages, the final stage will be denoted as (15): 
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By combining (9)–(15) and utilizing the fact 2 2= I ,The H-matrix can be decomposed into, 
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Since N is a power of two, after that (16) can be written in compact form as (17): 
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3. APPLICATIONS OF THE DEVELOPED ALGORITHM  

As an example, and without losing the generality, let us assume the transform length N=16; the HN 

matrix can be represented as (18). 
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To fully clarify the proposed algorithm, we apply (18) separately for each stage as follows:  

For stage one (i=0) 

 

16 28 8 82 2

28 2 2

1
2

1
2

H = I I I DHWH

= I DHWH

 (19) 

 

Since 
2 22

1 0 1 1
== ,and DH =WH

0 1 1 -1
. Hence 

168 216
H = = II I . For stage two (i=1) 

 

416 4 4 42 22 2

2 2 22 2

4 4 4
2 22 2 2

16

1
2

1
2

H = I I I DWH HI I

I I II 0 I
= I I I

- -I II I I0

= I

 (20) 

 

for stages three (i=2) 
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Following the same procedure for stage four (i=3).  
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Therefore, it is feasible to calculate transformations using the matrices provided in (18) using the butterfly 

structure, as illustrated in Figure 1. 

 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.96194 0 0 0 0 0 0.19134 0 0.03806 0 0 0 0 0 0.19134

0 0 0.85355 0 0 0 0.35355 0 0 0 0.14645 0 0 0 0.35355 0

0 0 0 0.69134 0 0.46194 0 0 0 0 0 0.30866 0 0.46194 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0.46194 0 0.30866 0 0 0 0 0 0.46194 0 0.69134 0 0

0 0 0.35355 0 0 0 0.14645 0 0 0 0.35355 0 0 0 0.85355 0

0 0.19134 0 0 0 0 0 0.03806 0 0.19134 0 0 0 0 0 0.96194

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0.03806 0 0 0 0 0 0.19134 0 0.96194 0 0 0 0 0 0.19134

0 0 0.14645 0 0 0 0.35355 0 0 0 0.85355 0 0 0 0.35355 0

0 0 0 0.30866 0 0.46194 0 0 0 0 0 0.69134 0 0.46194 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0.46194 0 0.69134 0 0 0 0 0 0.46194 0 0.30866 0 0

0 0 0.35355 0 0 0 0.85355 0 0 0 0.35355 0 0 0 0.14645 0

0 0.19134 0 0 0 0 0 0.96194 0 0.19134 0 0 0 0 0 0.03806

 (22) 

 

 

 
 

Figure 1. Radix-2 FWHT signal flow diagram when N=16, with (20) multiplications and (50) additions 

where the solid and dotted lines denote additions and subtractions, respectively 

 

 

4. COMPUTATIONAL COMPLEXITY 

According to Figure 1, the proposed algorithm reduces the total number of stages to (log2N − 2) as 

demonstrated in (19) and (20). Additionally, (21) and (22) show removing the butterflies at the points where 
k k

N N 4
cos + sin 1 ,at k=0, N . Therefore, we can construct an in-place butterfly for the developed algorithm, as 

shown in Figure 2. 

Hence, the whole transformation satisfies the following: 
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N 2M = N(log N- 2) - (N- 4)  (23) 

 

N 2
5
2

A = N(log N- 2) - (N- 4)  (24) 

 

AN and MN denote the overall number of real additions and multiplications. The comparison in the total 

number of operations number between the FWHT and radix-2 WHT followed by the radix-2 FHT is shown 

in Table 1. The comparison shows that the FWHT algorithm requires (3N-4) real multiplications and  

(7.5N-10) real additions less than the existing algorithm. Furthermore, the proposed algorithm was also 

applied on MATLAB (R2021b), loaded on a laptop computer processor (Intel Core i7), and Windows-10 

system to validate and confirm the results of the mathematical operations, as shown in Figures 3(a) and 3(b). 

 

 

 
 

Figure 2. An in-place butterfly of radix-2 FWHT algorithm 

 

 

Table 1. Comparison of real arithmetic operations 
Transform Length(N) Radix-2 WHT&FHT Radix-2 FWHT 

Multiplications Additions Multiplications Additions 

4 8 20 0 0 

8 24 60 4 10 

16 64 160 20 50 

32 160 400 68 170 

64 384 960 196 490 

128 896 2240 516 1290 

256 2048 5120 1284 3210 

512 4608 11520 3076 7690 

1024 10240 25600 7172 17930 

2048 22528 56320 16388 40970 

 

 

  
(a) (b) 

 

Figure 3. Shows the overall number of real operations (additions and multiplications) for the proposed  

radix-2 FWHT and WHT+FHT (a) real additions and (b) real multiplications 
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5. CONCLUSION  

The paper has been presented an efficient FWHT algorithm as a combination of the fast version of 

the WHT and the DHT. The developed algorithm is based on sparse matrices factorization using Kronecker 

product technique. The in-place butterfly structure has been used to implement the newly developed radix-2 

FWHT algorithm, and the arithmetic complexity of the proposed algorithm has been computed and 

investigated in detail. The number of arithmetic operations has been compared with the conventional  

WHT-FHT method. The result of this comparisons reveals that the proposed algorithm significantly reduced 

the number of arithmetic operations (multiplications and additions) performed in addition to the simplicity of 

implementation. The unique characteristics of the transform developed in this paper imply a variety of 

exciting applications. Although this topic is beyond the scope of this paper, it will be discussed in more depth 

in a forthcoming publication. 
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