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 The main purpose of this paper is to explore and investigate the role of deep 

reinforcement learning (DRL) in optimizing the post-alert incident response 

process in security incident and event management (SIEM) systems. 
Although machine learning is used at multiple levels of SIEM systems, the 

last mile decision process is often ignored. Few papers reported efforts 

regarding the use of DRL to improve the post-alert decision and incident 

response processes. All the reported efforts applied only shallow 
(traditional) machine learning approaches to solve the problem. This paper 

explores the possibility of solving the problem using DRL approaches. The 

main attraction of DRL models is their ability to make accurate decisions 

based on live streams of data without the need for prior training, and they 
proved to be very successful in other fields of applications. Using standard 

datasets, a number of experiments have been conducted using different DRL 

configurations The results showed that DRL models can provide highly 

accurate decisions without the need for prior training. 
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1. INTRODUCTION  

The main purpose of this paper is to explore the potential of reinforcement deep learning in 

improving the performance and accuracy of security incident and event management (SIEM) systems. SIEM 

systems are basically log analysis systems that continuously monitor and manage the security of an 

organization. They analyze the huge amounts of logs accumulated by different components of the 

organization information system. A wide range of models are used to detect all types of security intrusions 

and malicious behaviors and generate alerts to be handled by security operators. There are three levels of 

security operators:  

− Tier 1 security operators (the triage team): perform filtering and screening of alerts before passing them to 

tier 2 operators,  

− Tier 2 security operators: handle the alters and take the appropriate actions based on the type of attack, 

− Tier 3 security operators (the team of experts): are responsible for handling advanced types of threats and 

threat hunting. 

Many organizations and enterprises build SIEM systems to protect against cybersecurity threats and 

satisfy international and local compliance requirements [1]–[5]. SIEM systems are centralized multi-tier 

https://creativecommons.org/licenses/by-sa/4.0/
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platforms that aggregate, transform, and analyze log data collected from all components of organizational 

information technology (IT) systems to produce cybersecurity insights and handle all types of threats [1], [4], 

[5]. SIEM solutions usually operate in the context of a security operation center (SOC) in coordination with 

other cybersecurity solutions [6], [7]. The SOC is a centralized operation unit that handles cybersecurity 

issues at the technical and non-technical levels through multiple services and specialized security teams. 

The main problem with current SIEM solutions is the high rate of generated security alerts, and the 

high percent of false positives. This slows down the incident response process to the extent that many parts of 

the alert stream pass without being investigated. This is clearly a serious threat to the organization security. 

The main bottleneck is that, in most current SOC and SIEM systems the incident response process is 

manually handled by human SOC analysts who receive the alerts and analyze them to decide what type of 

reaction to take [1], [3].  

Over the past few years, a lot of efforts has been made to apply machine learning to solve problems 

in many areas of cybersecurity. These efforts have been motivated by the reported great successes of machine 

learning in other fields [8]–[11]. Areas of applications in cybersecurity include: intrusion detection, botnet 

finger printing, penetration testing, and anti-jamming. Since the focus of this study is on improving the 

incident response process, the paragraphs below cover the state-of-the-art in machine learning efforts to 

improve the incident response process. 

Sopan et al. [12] demonstrated how machine learning can be applied to automate alert processing in 

SIEM solutions. They noted that SOC analysts spend a lot of time to take decisions based on the parameters 

and content of the alert message. They interviewed five senior SOC analysts on the process of analyzing 

SIEM alerts. Based on the results of the interview they derived feature vectors to characterize alerts. These 

feature vectors have then been used to train a machine learning model on the decisions corresponding to 

these vectors. A random forest classifier with more than 200 decision trees has been applied to perform the 

classification. The underlying dataset was extracted directly from the SIEM environments. The model has 

then been integrated with a real life SIEM system where analysts can provide feedback regarding the 

predictions to validate and update the results. 

Feng et al. [13], developed a user-centric machine learning (ML) framework for SOC’s SIEM 

system to reduce false positive alert rates. The main purpose of this framework is to score risky user behavior 

feature vectors. The model was tested on a real industry environment. The dataset used was extracted from 

the raw data logs stored in Symantec internal systems. About 100 features were created to encode and predict 

user behavior. The ML models used include multi-layer neural network (MLP) with two hidden layers, 

random forest (RF) with 100 Gini split trees, support vector machine (SVM) with radial basis function kernel 

and logistic regression (LR). The MLP and RF models provided the best performance. 

Nila et al. [14] presented a quick way for incident response using efficient ML approach. For the 

input dataset, the authors analyzed 2.5 million actual log events, and generated one thousand feature vectors, 

where each vector includes nine manually extracted features. These features have then been used to triage 

incidents into malicious or safe. The collected dataset was then used to evaluate the efficiency of the ML 

algorithms showing high accuracies for intrusion detection and prevention systems. Various supervised and 

unsupervised ML models have been used in the experimentation such as: ZeroR, OneR, naïve Bayes, SVM, 

J48, RF algorithms (deployed in Weka 3.8). The best accuracy of 95.54% has been achieved by the RF 

algorithm. In addition, a hybrid classifier technique with linear regression and multi-layer perceptron models 

were also used to reach maximum accuracy with small number of samples. Security incidents response team 

may use a proposed approach to quickly differentiate between safe or suspicious events using combination of 

ML classifiers. 

Maeda and Mimura [15] considered a novel solution that automates and emulates red team  

post-exploitation attacks using reinforcement learning (RL) where agent actions are generated in the context 

of power shell empire. The model was tested in a real environment to see how efficient are RL models in 

performing post exploitation attacks. The study deployed 3 RL models: A2C, Q-learning and SARSA, where 

advantage actor critic (A2C) model showed maximum stability of gaining the rewards. The behavior of the 

agent was evaluated in Windows test domain network, where the A2C model was able to take admin 

privileges optimal time. 

Lee et al. [16] noted that the practice of using machining learning to score and classify events in 

SIEM solutions is growing, but in many cases the ML models are trained using only public datasets. This is 

mainly due to the difficulty of preparing real life training datasets. Accordingly, they developed an advanced 

event profiling system to prepare real life data sets. The authors then demonstrated that deep learning models 

outperform conventional machine learning models on the collected datasets. 

Sethi et al. [17] noted that most of the currently existing intrusion detection system (IDS) are 

ineffective and are uncapable of providing high threat detection accuracies. Accordingly, they proposed a 

context aware distributed graph IDS detection model comprising multiple deep reinforcement learning (DRL) 

agents. The DRL agents are installed on inner routers within different contexts in the underlying network. In 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6768-6776 

6770 

their experimentation they used three standard public datasets NSL-KDD, UNSW-NB15 and AWID, and 

compared their results with other models applied to the same datasets. The main contribution of the study is 

to distribute multiple RL agents across the network to explore the environment and gain rewards. The 

proposed system is also capable of classifying attacks and events with good accuracies.   

Oprea et al. [18] developed malicious activity detection in enterprises (MADE) which is a system 

that could be deployed on a wide range of geographically distributed enterprises. The underlying approach is 

based on ML supervised learning, where features extracted from web proxy network logs are used to detect 

malware embedded in hypertext transfer protocol (HTTP), hypertext transfer protocol secure (HTTPS) 

(beaconing) traffic. The models used include logistic regression, decision trees (DT), random forest (RF), and 

SVM. The maximum accuracy achieved is 97%. MADE is capable of detecting a wide range of well-known 

malicious activities, which reduces SOC workload. 

Farooq and Otaibi [19] proposed an efficient ML based cyber threat detection approach that can 

minimize false positive alerts. Their approach is mainly based on selecting the appropriate machine learning 

model for each of the taxonomies outlined in MITRE. The study applied some existing ML models to some 

of the MITRE attack taxonomies to demonstrate how these models can reduce false positives. 

Chatterjee and Namin [20] applied a deep reinforcement learning based framework to automate the 

detection of malicious websites used in phishing attacks. The authors used a balanced dataset consisting of 

legitimate and illegitimate phishing uniform resource locators (URLs) to train and test the model. As 

expected, the model produced high accuracy, but no comparisons with other models were provided. 

The main purpose of this paper is to investigate how DRL [21] can be used to improve the post-alert 

incident response process. Although machine learning has been applied at different levels of cybersecurity 

systems such as intrusion detection [16], [17], [22], network traffic reduction and botnet detection [23], 

defense in software-defined networks [24], detect malicious URLs and phishing websites [25], network  

anti-jamming development [26], network penetration-testing [27], very little has been done regarding the 

improvement of the last mile incident response process [14]. 

RL is the third approach in the main taxonomy of machine learning [28]. The main attraction of this 

approach is that models learn from experience using a trial-and-error process without the need for prior 

training. This makes it possible to place these models in positions where they can learn from continuous 

streams of log events passing out of SIEM systems. Over the past few years, a lot has been done and written 

about reinforcement learning and deep reinforcement learning [21], [28]–[31]. An RL model consists of five 

components:  

a. Agent: a dynamic entity that takes “Actions” and makes decisions based on the context;  

b. Environment: the agent makes decisions based on feedback form a stochastic “environment”, which 

represents the context in which the agent operates. It is assumed that the inners of the environment are 

unknown to the agent;  

c. Actions: in order to get feedback, the agent performs actions on the environment;  

d. Sate: taking an action moves the environment from one state to another; and  

e. Reward: Feedback from the environment comes in the shape of a reward, which is a numeric indicator 

showing how good or bad is the action.  

A good example is the driverless autonomous car. Where the virtual controller of the car (the agent), 

drives (takes actions) the car through roads (the environment), and responding properly to events and signals 

(feedback) from the environment. Figure 1 shows a how agents interact with the environment in RL models.  

 

 

 
 

Figure 1. Structure of reinforcement learning models 

 

 

Q-learning is a recent simple reformulation of the initial RL algorithm that triggered the current 

popularity of RL. The algorithm is based on the Q version of the temporal difference equation [28]. 
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𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 (𝑟  +  𝛾 ∗  𝑎𝑟𝑔𝑚𝑎𝑥
𝑎𝑠∈𝒜(𝑠)

 𝑄 (𝑠′, 𝑎𝑠) − 𝑄 (𝑠, 𝑎))] (1) 

 

Here s is the set of states, a is the set of actions, Q(s,a) is the action value function whose value is based on 

the current state and the action taken. The computation of Q(s,a) requires the use of the of a two dimensional 

table that contains computed values of Q based on s and a. Figure 2 describes the implementation of tabular 

Q-learning algorithm [28]. 

Note that the main purpose of this algorithm is to compute the optimal action a, given the current 

state and the value of Q(s,a). The value of Q(s,a) is computed iteratively as shown in Figure 3. One main 

problem with the tabular implementation of the Q-learning algorithm as shown in Figure 3 is that the table 

may grow dramatically for large values of s and a. To solve this problem, researchers developed a special 

version of the algorithm where the Q table is replaced by an approximation neural deep learning function. In 

this type of model, a deep learning model is used to predict the value of Q(s,a) [28]. The term  

“deep Q-learning (DQN)” has been coined to refer to this version of the Q-learning algorithm. DQN is the 

main model used in our experimentation below. DQN models apply an experience replay approach as shown 

in Figure 4 to improve the prediction power of the model.  

 

 
1: 𝒊𝒏𝒑𝒖𝒕:apolicy that uses the action-value function, 𝜋(𝑎 ∣ 𝑠 , 𝑄 ( 𝑠 , 𝑎 ))

2: Initialize 𝑄(𝑠, 𝑎) ← 0, for  all 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜(𝑠)
3: 𝒍𝒐𝒐𝒑:for each episode

4:      Initialize environment to provide 𝑠
5:     𝒅𝒐:

6:         Choose 𝑎 from 𝑠 using 𝜋, breaking ties randomly

7:         Take action, 𝑎, and observe  𝑟, 𝑠′

8:         𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾 ∗  𝑎𝑟𝑔𝑚𝑎𝑥
𝑎𝑠∈𝒜(𝑠)

 𝑄  (𝑠′, 𝑎𝑠)  −  𝑄 (𝑠, 𝑎)]

9:         𝑠 ← 𝑠′
10:    𝒘𝒉𝒊𝒍𝒆 𝑠 is not terminal

 

 

Figure 2. The Q-learning algorithm 

 

 
Repeat 

1- Take action a (either selected randomly, or based on Q(s,a)) 

2- Update the value of Q(s,a) based on the second component of (1). Note that the second component contains a weighted 

sum of the reward r and the max delta value [Q(s’,a)-Q(s,a)], where Q(s’,a) is the value of Q when the system moves to 

one of the future states s’. 

3- s=s’ 

until the optimal action is reached 

 

Figure 3. Computing the value of Q(s,a) 

 

 

 
 

Figure 4. Experience replays in DQN models 

 

 

2. METHODS 
2.1.  Identify and acquire the public datasets 

The first step is to look for appropriate public datasets that can be used to evaluate the model. The 

main criterion for selecting the datasets is the relevance of the context in which they have been used, namely, 

being used in the context of attempts to automate decision making in SIEM solutions. This makes it possible 
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to benchmark our results. Since the main purpose of our study is to explore the possibilities and provide a 

proof of concept, the choice has been limited to the following datasets: 

− The SNL-KDD “intrusion detection” dataset, originally prepared by DARPA by simulating operations of 

US Air Force local area network (LAN) network with multiple attack types categorized into four classes 

[32], [33]. Lately the dataset has been taken care of and further developed by the Canadian Institute of 

Cybersecurity [34]. The training component of the dataset contains 125,973 items, while the testing 

component consists of 22,54. As an intrusion dataset, the SNL-KDD dataset provides records about 

suspected attacks on networks systems. Each row in the dataset represents an attempted attack with 

relevant attributes that describe the the context and behavior of the attack. The last column in the dataset 

is a label indicating the type (class) of attack. 

− Ebub 2017 URL web phishing URL dataset [35] prepared by a group of researchers [25]. The dataset 

initially prepared by Sahingoz et al. [25], and later used by Chatterjee and Namin [20] to test their DQN 

model. The dataset contains 73,575 URLs-36,000 legitimate and 37,175 phishing websites. 

− We started experimentation with the malware API dataset, which has been prepared by a Turkish 

cybersecurity Institution [33], but unfortunately, we realized that the dataset is unbalanced due to the lack 

of enough benign samples in that. 

 

2.2.  Model configuration 

The second step in the methodology is to configure the DQN model described in section 1 above. 

The main purpose of the configuration is to determine the optimal parameters for (1). These include the 

discount factor, the learning rate alpha, and the greedy policy factor. Table 1 shows the optimal values tuned 

through experimentation. The other set of parameters in Table 1 include the type of deep learning model used 

in the DQN, the actions and the rewards. These are the fundamental parameters for the operation of the 

model and vary from one implementation to another based on the type of problem addressed. The deep 

learning model selected is the well-known MLP, which led to the excellent results we obtained. Regarding 

the actions, we have only two actions “fix” or “escalate” to the upper tier in the hierarchy of SOC operators. 

Remember that our model is addressing the post-alert stage in SIEM systems. It attempts to automate the 

work of the two lower tiers of SOC operators. Since we have only two actions, there are two values for the 

rewards, 0 for “fix”, and 1 for escalate. The values are used to update the reward matrix R, which is crucial to 

the computation of Q(s,a) in the (1). The symbol “s” is used to represent the current state. With each action, 

the system moves from one state to another. In our case the number of states is equal to the length of the 

dataset, since the dataset represents “the environment”. 

 

 

Table 1. DQN model configuration 
Parameter Description/Value 

Discount factor (gamma) 0.73 

Learning rate (alpha) 0.5 

Epsilon greedy policy factor 0.5 

Experience replay A three-layer MLP deep learning model 

Actions Two actions, ‘fix’ or ‘escalate’ 

Rewards Reward for ‘fix’ =0, reward for ‘escalate.’ =1 

States The states are represented by the input stream vectors. The stream 

moves from one state to another based on the value of passing vectors 

 

 

2.3.  A multiagent DQN framework for deploying the model in production environments 

To deploy the DQN model in production environments, we developed a framework to show how 

multiple DQN agents may be used to address multiple streams of alerts in parallel. This will of course 

improve performance and lead to more accurate results. Our multiagent framework is similar to the 

frameworks developed by Sethi et al. [17] and Maeda and Mimura [15]. The main difference between our 

framework and the frameworks reported in the above papers is that the DQN agents in our case are 

positioned on top of the alert layer in SIEM systems. This means that the main function of the underlying 

DQN models is to predict the correct decisions. Figure 5 shows the structure of the framework and the 

functionality of each DQN agent. 

As apparent from the diagram in Figure 5, multiple DQN models can be executed in parallel to 

predict the appropriate decisions based on the incoming stream of alerts. It is assumed that the underlying 

SIEM solution provides multiple streams of alerts based on some event profiling approaches like the one 

reported by Lee et al. [16]. Although, the Figure 5 shows six possible types of DQN agents, the number of 

agents is dynamic and can be more or less than six.  
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Figure 5. A multiagent DQN framework for incident response optimization 

 

 

3. RESULTS 

Based on the above framework, and the available reliable public datasets we experimented with two 

parallel DQN agents, and two emulated steams of data. Each stream is emulated with one of the two datasets 

described below. The experiments have been performed using a Surface Laptop 3 with Intel Core i7 

processor and 16 GB RAM. Tables 2 and 3 show the results for the two datasets used in the experimentation: 

the SNL-KDD and the phishing URLs respectively. In both cases, the experience replay model of the DQN 

has been used to produce the results. For experience replay, we used a standard three-layer MLP deep 

learning model. As apparent from the tables, the algorithm started to converge after episode 10. Note that 

according to experience replay, the MLP model is trained again using batches of the predictions produced by 

the model during the first phase where the model sees the data stream for the first time. Accordingly, 

experience replay is a sort of testing and training at the same time. 

 

 

Table 2. DQN results for the SNL-KDD dataset 
Eps acc precision recall F1 

0 0.5001 0.4663 0.5013 0.4832 

1 0.7524 0.7257 0.7523 0.7388 

2 0.8137 0.7919 0.8134 0.8025 

3 0.8523 0.8337 0.8525 0.8430 

4 0.8919 0.8778 0.8919 0.8848 

5 0.9212 0.9100 0.9219 0.9159 

6 0.9431 0.9347 0.9438 0.9392 

7 0.9598 0.9534 0.9608 0.9571 

8 0.9698 0.96475 0.9706 0.9677 

9 0.9761 0.9720 0.9767 0.9743 

10 0.9792 0.9761 0.9792 0.9776 

11 0.9819 0.9792 0.9820 0.9806 

12 0.9826 0.9804 0.9825 0.9814 
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Table 3. Results for the phishing URL dataset 
Eps acc precision recall F! 

0 0.5006 0.8589 0.5015 0.6333 

1 0.7485 0.9489 0.7477 0.8364 

2 0.8111 0.9639 0.8107 0.8807 

3 0.8510 0.9712 0.8519 0.9077 

4 0.8893 0.9783 0.8911 0.9327 

5 0.9163 0.9847 0.9169 0.9496 

6 0.9416 0.9886 0.9429 0.9652 

7 0.9569 0.9916 0.9579 0.9745 

8 0.9664 0.9936 0.9671 0.9802 

9 0.9723 0.9949 0.9728 0.9837 

10 0.9751 0.9956 0.97538 0.9855 

11 0.9776 0.9968 0.9771 0.9868 

12  0.9786 0.9975 0.9775 0.9874 

 
 

3.1.  Results for the SNL-KDD dataset 

It is interesting to note that there is an exponential growth in accuracy at the beginning, the model 

started to converge at about episode 10. This is expected, since the knowledge gained from the early parts of 

the data stream is not enough to take firm decisions. But as knowledge accumulates the decision become 

clearer and clearer. 

 

3.2.  Results for the phishing URL dataset 

The behavior here again is similar to the behavior of the model with the previous dataset. Again, 

there is some exponential growth in accuracy at the beginning, with convergence at the same episode level. 

However, the big differences between the values of precision, recall and F1 metrics in the early episodes 

indicate that there is imbalance in the data. Unlike deep learning models, the effects of imbalance on the 

accuracy of the model completely disappeared at convergence time 

 

3.3.  Comparisons 

We compared our results for the SNL-KDD with results obtained by Sethi et al. [17], who applied a 

DQN to the same dataset as part of their context-aware framework for intrusion detection framework. The 

accuracy obtained by Sethi et al. [17] is 81.8%, compared to 98.26% obtained through our model. As for the 

phishing URL Dataset, we compared our results with the results obtained by Chatterjee and Namin [20], 

whose DQN model achieved 0.901% accuracy compared to 97.85% achieved by our model. Table 4 

compares the accuracy of our model with state-of-the-art models: 
 

 

Table 4. Comparisons with state-of-the-art results 
Dataset Our Model Sethi et al. [17] Chatterjee and Namin [20] 

SNL-KDD IDS Dataset [34] 98.26% 81.8% --- 

Phishing URLs [35] 97.86% --- 90.01% 

 
 

4. DISCUSSION 
It is clear from the table that the accuracy of our model is higher than those produced by the other 

two models, although both used a variation of a DQN model. The main reason is that our model has been 

built from scratch, and a lot of time has been spent on configuring, tuning, and testing it. Another reason is 

the way rewards are allocated. We used a simple binary scheme, 0 for ‘fix’ action, and 1 for ‘escalate’ action. 

The other two models used a similar two-level reward system, but the actual values of the rewards are 

different. The major advantage of reinforcement learning is that no prior training is required. The model 

learns from experience, while consuming the streams of data. This implies that there is no danger of 

overfitting (like what happens in the case of deep learning). 

 

 

5. CONCLUSION 
In this study we explored the potentials of DRL in optimizing the decision process in SIEM incident 

response systems. A DQN model has been used to investigate the possibilities. A couple of standard public 

datasets have been used to emulate data streams in real life SIEM systems. The results are very encouraging, 

and the accuracies are even higher than those produced by trained supervised models. This is an indication 

that DRL models can be used in the post-alert and post-exploitation decision phases, where model training is 

not feasible. 
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