
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 12, No. 6, December 2022, pp. 6768~6776

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i6.pp6768-6776 6768

Journal homepage: http://ijece.iaescore.com

Optimizing cybersecurity incident response decisions using deep

reinforcement learning

Hilala Alturkistani1, Mohammed A. El-Affendi2
1College of Computer and Information Sciences, Prince Sultan University, Riyadh, Kingdom of Saudi Arabia
2Department of Computer Science, College of Computer and Information Sciences, Prince Sultan University,

Riyadh, Kingdom of Saudi Arabia

Article Info ABSTRACT

Article history:

Received Sep 19, 2021

Revised Jun 22, 2022

Accepted Jul 18, 2022

 The main purpose of this paper is to explore and investigate the role of deep

reinforcement learning (DRL) in optimizing the post-alert incident response

process in security incident and event management (SIEM) systems.
Although machine learning is used at multiple levels of SIEM systems, the

last mile decision process is often ignored. Few papers reported efforts

regarding the use of DRL to improve the post-alert decision and incident

response processes. All the reported efforts applied only shallow
(traditional) machine learning approaches to solve the problem. This paper

explores the possibility of solving the problem using DRL approaches. The

main attraction of DRL models is their ability to make accurate decisions

based on live streams of data without the need for prior training, and they
proved to be very successful in other fields of applications. Using standard

datasets, a number of experiments have been conducted using different DRL

configurations The results showed that DRL models can provide highly

accurate decisions without the need for prior training.

Keywords:

Cybersecurity management

Deep Q-learning

Incident response

Machine learning

Optimization

Reinforcement learning

This is an open access article under the CC BY-SA license.

Corresponding Author:

Mohammed A. El-Affendi

Department of Computer Science, College of Computer and Information Sciences (CCIS), Prince Sultan

University

Riyadh, Kingdom of Saudi Arabia

Email: affendi@psu.edu.sa

1. INTRODUCTION

The main purpose of this paper is to explore the potential of reinforcement deep learning in

improving the performance and accuracy of security incident and event management (SIEM) systems. SIEM

systems are basically log analysis systems that continuously monitor and manage the security of an

organization. They analyze the huge amounts of logs accumulated by different components of the

organization information system. A wide range of models are used to detect all types of security intrusions

and malicious behaviors and generate alerts to be handled by security operators. There are three levels of

security operators:

− Tier 1 security operators (the triage team): perform filtering and screening of alerts before passing them to

tier 2 operators,

− Tier 2 security operators: handle the alters and take the appropriate actions based on the type of attack,

− Tier 3 security operators (the team of experts): are responsible for handling advanced types of threats and

threat hunting.

Many organizations and enterprises build SIEM systems to protect against cybersecurity threats and

satisfy international and local compliance requirements [1]–[5]. SIEM systems are centralized multi-tier

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708

 Optimizing cybersecurity incident response decisions using deep reinforcement … (Hilala Alturkistani)

6769

platforms that aggregate, transform, and analyze log data collected from all components of organizational

information technology (IT) systems to produce cybersecurity insights and handle all types of threats [1], [4],

[5]. SIEM solutions usually operate in the context of a security operation center (SOC) in coordination with

other cybersecurity solutions [6], [7]. The SOC is a centralized operation unit that handles cybersecurity

issues at the technical and non-technical levels through multiple services and specialized security teams.

The main problem with current SIEM solutions is the high rate of generated security alerts, and the

high percent of false positives. This slows down the incident response process to the extent that many parts of

the alert stream pass without being investigated. This is clearly a serious threat to the organization security.

The main bottleneck is that, in most current SOC and SIEM systems the incident response process is

manually handled by human SOC analysts who receive the alerts and analyze them to decide what type of

reaction to take [1], [3].

Over the past few years, a lot of efforts has been made to apply machine learning to solve problems

in many areas of cybersecurity. These efforts have been motivated by the reported great successes of machine

learning in other fields [8]–[11]. Areas of applications in cybersecurity include: intrusion detection, botnet

finger printing, penetration testing, and anti-jamming. Since the focus of this study is on improving the

incident response process, the paragraphs below cover the state-of-the-art in machine learning efforts to

improve the incident response process.

Sopan et al. [12] demonstrated how machine learning can be applied to automate alert processing in

SIEM solutions. They noted that SOC analysts spend a lot of time to take decisions based on the parameters

and content of the alert message. They interviewed five senior SOC analysts on the process of analyzing

SIEM alerts. Based on the results of the interview they derived feature vectors to characterize alerts. These

feature vectors have then been used to train a machine learning model on the decisions corresponding to

these vectors. A random forest classifier with more than 200 decision trees has been applied to perform the

classification. The underlying dataset was extracted directly from the SIEM environments. The model has

then been integrated with a real life SIEM system where analysts can provide feedback regarding the

predictions to validate and update the results.

Feng et al. [13], developed a user-centric machine learning (ML) framework for SOC’s SIEM

system to reduce false positive alert rates. The main purpose of this framework is to score risky user behavior

feature vectors. The model was tested on a real industry environment. The dataset used was extracted from

the raw data logs stored in Symantec internal systems. About 100 features were created to encode and predict

user behavior. The ML models used include multi-layer neural network (MLP) with two hidden layers,

random forest (RF) with 100 Gini split trees, support vector machine (SVM) with radial basis function kernel

and logistic regression (LR). The MLP and RF models provided the best performance.

Nila et al. [14] presented a quick way for incident response using efficient ML approach. For the

input dataset, the authors analyzed 2.5 million actual log events, and generated one thousand feature vectors,

where each vector includes nine manually extracted features. These features have then been used to triage

incidents into malicious or safe. The collected dataset was then used to evaluate the efficiency of the ML

algorithms showing high accuracies for intrusion detection and prevention systems. Various supervised and

unsupervised ML models have been used in the experimentation such as: ZeroR, OneR, naïve Bayes, SVM,

J48, RF algorithms (deployed in Weka 3.8). The best accuracy of 95.54% has been achieved by the RF

algorithm. In addition, a hybrid classifier technique with linear regression and multi-layer perceptron models

were also used to reach maximum accuracy with small number of samples. Security incidents response team

may use a proposed approach to quickly differentiate between safe or suspicious events using combination of

ML classifiers.

Maeda and Mimura [15] considered a novel solution that automates and emulates red team

post-exploitation attacks using reinforcement learning (RL) where agent actions are generated in the context

of power shell empire. The model was tested in a real environment to see how efficient are RL models in

performing post exploitation attacks. The study deployed 3 RL models: A2C, Q-learning and SARSA, where

advantage actor critic (A2C) model showed maximum stability of gaining the rewards. The behavior of the

agent was evaluated in Windows test domain network, where the A2C model was able to take admin

privileges optimal time.

Lee et al. [16] noted that the practice of using machining learning to score and classify events in

SIEM solutions is growing, but in many cases the ML models are trained using only public datasets. This is

mainly due to the difficulty of preparing real life training datasets. Accordingly, they developed an advanced

event profiling system to prepare real life data sets. The authors then demonstrated that deep learning models

outperform conventional machine learning models on the collected datasets.

Sethi et al. [17] noted that most of the currently existing intrusion detection system (IDS) are

ineffective and are uncapable of providing high threat detection accuracies. Accordingly, they proposed a

context aware distributed graph IDS detection model comprising multiple deep reinforcement learning (DRL)

agents. The DRL agents are installed on inner routers within different contexts in the underlying network. In

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6768-6776

6770

their experimentation they used three standard public datasets NSL-KDD, UNSW-NB15 and AWID, and

compared their results with other models applied to the same datasets. The main contribution of the study is

to distribute multiple RL agents across the network to explore the environment and gain rewards. The

proposed system is also capable of classifying attacks and events with good accuracies.

Oprea et al. [18] developed malicious activity detection in enterprises (MADE) which is a system

that could be deployed on a wide range of geographically distributed enterprises. The underlying approach is

based on ML supervised learning, where features extracted from web proxy network logs are used to detect

malware embedded in hypertext transfer protocol (HTTP), hypertext transfer protocol secure (HTTPS)

(beaconing) traffic. The models used include logistic regression, decision trees (DT), random forest (RF), and

SVM. The maximum accuracy achieved is 97%. MADE is capable of detecting a wide range of well-known

malicious activities, which reduces SOC workload.

Farooq and Otaibi [19] proposed an efficient ML based cyber threat detection approach that can

minimize false positive alerts. Their approach is mainly based on selecting the appropriate machine learning

model for each of the taxonomies outlined in MITRE. The study applied some existing ML models to some

of the MITRE attack taxonomies to demonstrate how these models can reduce false positives.

Chatterjee and Namin [20] applied a deep reinforcement learning based framework to automate the

detection of malicious websites used in phishing attacks. The authors used a balanced dataset consisting of

legitimate and illegitimate phishing uniform resource locators (URLs) to train and test the model. As

expected, the model produced high accuracy, but no comparisons with other models were provided.

The main purpose of this paper is to investigate how DRL [21] can be used to improve the post-alert

incident response process. Although machine learning has been applied at different levels of cybersecurity

systems such as intrusion detection [16], [17], [22], network traffic reduction and botnet detection [23],

defense in software-defined networks [24], detect malicious URLs and phishing websites [25], network

anti-jamming development [26], network penetration-testing [27], very little has been done regarding the

improvement of the last mile incident response process [14].

RL is the third approach in the main taxonomy of machine learning [28]. The main attraction of this

approach is that models learn from experience using a trial-and-error process without the need for prior

training. This makes it possible to place these models in positions where they can learn from continuous

streams of log events passing out of SIEM systems. Over the past few years, a lot has been done and written

about reinforcement learning and deep reinforcement learning [21], [28]–[31]. An RL model consists of five

components:

a. Agent: a dynamic entity that takes “Actions” and makes decisions based on the context;

b. Environment: the agent makes decisions based on feedback form a stochastic “environment”, which

represents the context in which the agent operates. It is assumed that the inners of the environment are

unknown to the agent;

c. Actions: in order to get feedback, the agent performs actions on the environment;

d. Sate: taking an action moves the environment from one state to another; and

e. Reward: Feedback from the environment comes in the shape of a reward, which is a numeric indicator

showing how good or bad is the action.

A good example is the driverless autonomous car. Where the virtual controller of the car (the agent),

drives (takes actions) the car through roads (the environment), and responding properly to events and signals

(feedback) from the environment. Figure 1 shows a how agents interact with the environment in RL models.

Figure 1. Structure of reinforcement learning models

Q-learning is a recent simple reformulation of the initial RL algorithm that triggered the current

popularity of RL. The algorithm is based on the Q version of the temporal difference equation [28].

Int J Elec & Comp Eng ISSN: 2088-8708

 Optimizing cybersecurity incident response decisions using deep reinforcement … (Hilala Alturkistani)

6771

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 (𝑟 + 𝛾 ∗ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎𝑠∈𝒜(𝑠)

 𝑄 (𝑠′, 𝑎𝑠) − 𝑄 (𝑠, 𝑎))] (1)

Here s is the set of states, a is the set of actions, Q(s,a) is the action value function whose value is based on

the current state and the action taken. The computation of Q(s,a) requires the use of the of a two dimensional

table that contains computed values of Q based on s and a. Figure 2 describes the implementation of tabular

Q-learning algorithm [28].

Note that the main purpose of this algorithm is to compute the optimal action a, given the current

state and the value of Q(s,a). The value of Q(s,a) is computed iteratively as shown in Figure 3. One main

problem with the tabular implementation of the Q-learning algorithm as shown in Figure 3 is that the table

may grow dramatically for large values of s and a. To solve this problem, researchers developed a special

version of the algorithm where the Q table is replaced by an approximation neural deep learning function. In

this type of model, a deep learning model is used to predict the value of Q(s,a) [28]. The term

“deep Q-learning (DQN)” has been coined to refer to this version of the Q-learning algorithm. DQN is the

main model used in our experimentation below. DQN models apply an experience replay approach as shown

in Figure 4 to improve the prediction power of the model.

1: 𝒊𝒏𝒑𝒖𝒕:apolicy that uses the action-value function, 𝜋(𝑎 ∣ 𝑠 , 𝑄 (𝑠 , 𝑎))

2: Initialize 𝑄(𝑠, 𝑎) ← 0, for all 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜(𝑠)
3: 𝒍𝒐𝒐𝒑:for each episode

4: Initialize environment to provide 𝑠
5: 𝒅𝒐:

6: Choose 𝑎 from 𝑠 using 𝜋, breaking ties randomly

7: Take action, 𝑎, and observe 𝑟, 𝑠′

8: 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾 ∗ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎𝑠∈𝒜(𝑠)

 𝑄 (𝑠′, 𝑎𝑠) − 𝑄 (𝑠, 𝑎)]

9: 𝑠 ← 𝑠′
10: 𝒘𝒉𝒊𝒍𝒆 𝑠 is not terminal

Figure 2. The Q-learning algorithm

Repeat

1- Take action a (either selected randomly, or based on Q(s,a))

2- Update the value of Q(s,a) based on the second component of (1). Note that the second component contains a weighted

sum of the reward r and the max delta value [Q(s’,a)-Q(s,a)], where Q(s’,a) is the value of Q when the system moves to

one of the future states s’.

3- s=s’

until the optimal action is reached

Figure 3. Computing the value of Q(s,a)

Figure 4. Experience replays in DQN models

2. METHODS
2.1. Identify and acquire the public datasets

The first step is to look for appropriate public datasets that can be used to evaluate the model. The

main criterion for selecting the datasets is the relevance of the context in which they have been used, namely,

being used in the context of attempts to automate decision making in SIEM solutions. This makes it possible

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6768-6776

6772

to benchmark our results. Since the main purpose of our study is to explore the possibilities and provide a

proof of concept, the choice has been limited to the following datasets:

− The SNL-KDD “intrusion detection” dataset, originally prepared by DARPA by simulating operations of

US Air Force local area network (LAN) network with multiple attack types categorized into four classes

[32], [33]. Lately the dataset has been taken care of and further developed by the Canadian Institute of

Cybersecurity [34]. The training component of the dataset contains 125,973 items, while the testing

component consists of 22,54. As an intrusion dataset, the SNL-KDD dataset provides records about

suspected attacks on networks systems. Each row in the dataset represents an attempted attack with

relevant attributes that describe the the context and behavior of the attack. The last column in the dataset

is a label indicating the type (class) of attack.

− Ebub 2017 URL web phishing URL dataset [35] prepared by a group of researchers [25]. The dataset

initially prepared by Sahingoz et al. [25], and later used by Chatterjee and Namin [20] to test their DQN

model. The dataset contains 73,575 URLs-36,000 legitimate and 37,175 phishing websites.

− We started experimentation with the malware API dataset, which has been prepared by a Turkish

cybersecurity Institution [33], but unfortunately, we realized that the dataset is unbalanced due to the lack

of enough benign samples in that.

2.2. Model configuration

The second step in the methodology is to configure the DQN model described in section 1 above.

The main purpose of the configuration is to determine the optimal parameters for (1). These include the

discount factor, the learning rate alpha, and the greedy policy factor. Table 1 shows the optimal values tuned

through experimentation. The other set of parameters in Table 1 include the type of deep learning model used

in the DQN, the actions and the rewards. These are the fundamental parameters for the operation of the

model and vary from one implementation to another based on the type of problem addressed. The deep

learning model selected is the well-known MLP, which led to the excellent results we obtained. Regarding

the actions, we have only two actions “fix” or “escalate” to the upper tier in the hierarchy of SOC operators.

Remember that our model is addressing the post-alert stage in SIEM systems. It attempts to automate the

work of the two lower tiers of SOC operators. Since we have only two actions, there are two values for the

rewards, 0 for “fix”, and 1 for escalate. The values are used to update the reward matrix R, which is crucial to

the computation of Q(s,a) in the (1). The symbol “s” is used to represent the current state. With each action,

the system moves from one state to another. In our case the number of states is equal to the length of the

dataset, since the dataset represents “the environment”.

Table 1. DQN model configuration
Parameter Description/Value

Discount factor (gamma) 0.73

Learning rate (alpha) 0.5

Epsilon greedy policy factor 0.5

Experience replay A three-layer MLP deep learning model

Actions Two actions, ‘fix’ or ‘escalate’

Rewards Reward for ‘fix’ =0, reward for ‘escalate.’ =1

States The states are represented by the input stream vectors. The stream

moves from one state to another based on the value of passing vectors

2.3. A multiagent DQN framework for deploying the model in production environments

To deploy the DQN model in production environments, we developed a framework to show how

multiple DQN agents may be used to address multiple streams of alerts in parallel. This will of course

improve performance and lead to more accurate results. Our multiagent framework is similar to the

frameworks developed by Sethi et al. [17] and Maeda and Mimura [15]. The main difference between our

framework and the frameworks reported in the above papers is that the DQN agents in our case are

positioned on top of the alert layer in SIEM systems. This means that the main function of the underlying

DQN models is to predict the correct decisions. Figure 5 shows the structure of the framework and the

functionality of each DQN agent.

As apparent from the diagram in Figure 5, multiple DQN models can be executed in parallel to

predict the appropriate decisions based on the incoming stream of alerts. It is assumed that the underlying

SIEM solution provides multiple streams of alerts based on some event profiling approaches like the one

reported by Lee et al. [16]. Although, the Figure 5 shows six possible types of DQN agents, the number of

agents is dynamic and can be more or less than six.

Int J Elec & Comp Eng ISSN: 2088-8708

 Optimizing cybersecurity incident response decisions using deep reinforcement … (Hilala Alturkistani)

6773

Figure 5. A multiagent DQN framework for incident response optimization

3. RESULTS

Based on the above framework, and the available reliable public datasets we experimented with two

parallel DQN agents, and two emulated steams of data. Each stream is emulated with one of the two datasets

described below. The experiments have been performed using a Surface Laptop 3 with Intel Core i7

processor and 16 GB RAM. Tables 2 and 3 show the results for the two datasets used in the experimentation:

the SNL-KDD and the phishing URLs respectively. In both cases, the experience replay model of the DQN

has been used to produce the results. For experience replay, we used a standard three-layer MLP deep

learning model. As apparent from the tables, the algorithm started to converge after episode 10. Note that

according to experience replay, the MLP model is trained again using batches of the predictions produced by

the model during the first phase where the model sees the data stream for the first time. Accordingly,

experience replay is a sort of testing and training at the same time.

Table 2. DQN results for the SNL-KDD dataset
Eps acc precision recall F1

0 0.5001 0.4663 0.5013 0.4832

1 0.7524 0.7257 0.7523 0.7388

2 0.8137 0.7919 0.8134 0.8025

3 0.8523 0.8337 0.8525 0.8430

4 0.8919 0.8778 0.8919 0.8848

5 0.9212 0.9100 0.9219 0.9159

6 0.9431 0.9347 0.9438 0.9392

7 0.9598 0.9534 0.9608 0.9571

8 0.9698 0.96475 0.9706 0.9677

9 0.9761 0.9720 0.9767 0.9743

10 0.9792 0.9761 0.9792 0.9776

11 0.9819 0.9792 0.9820 0.9806

12 0.9826 0.9804 0.9825 0.9814

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6768-6776

6774

Table 3. Results for the phishing URL dataset
Eps acc precision recall F!

0 0.5006 0.8589 0.5015 0.6333

1 0.7485 0.9489 0.7477 0.8364

2 0.8111 0.9639 0.8107 0.8807

3 0.8510 0.9712 0.8519 0.9077

4 0.8893 0.9783 0.8911 0.9327

5 0.9163 0.9847 0.9169 0.9496

6 0.9416 0.9886 0.9429 0.9652

7 0.9569 0.9916 0.9579 0.9745

8 0.9664 0.9936 0.9671 0.9802

9 0.9723 0.9949 0.9728 0.9837

10 0.9751 0.9956 0.97538 0.9855

11 0.9776 0.9968 0.9771 0.9868

12 0.9786 0.9975 0.9775 0.9874

3.1. Results for the SNL-KDD dataset

It is interesting to note that there is an exponential growth in accuracy at the beginning, the model

started to converge at about episode 10. This is expected, since the knowledge gained from the early parts of

the data stream is not enough to take firm decisions. But as knowledge accumulates the decision become

clearer and clearer.

3.2. Results for the phishing URL dataset

The behavior here again is similar to the behavior of the model with the previous dataset. Again,

there is some exponential growth in accuracy at the beginning, with convergence at the same episode level.

However, the big differences between the values of precision, recall and F1 metrics in the early episodes

indicate that there is imbalance in the data. Unlike deep learning models, the effects of imbalance on the

accuracy of the model completely disappeared at convergence time

3.3. Comparisons

We compared our results for the SNL-KDD with results obtained by Sethi et al. [17], who applied a

DQN to the same dataset as part of their context-aware framework for intrusion detection framework. The

accuracy obtained by Sethi et al. [17] is 81.8%, compared to 98.26% obtained through our model. As for the

phishing URL Dataset, we compared our results with the results obtained by Chatterjee and Namin [20],

whose DQN model achieved 0.901% accuracy compared to 97.85% achieved by our model. Table 4

compares the accuracy of our model with state-of-the-art models:

Table 4. Comparisons with state-of-the-art results
Dataset Our Model Sethi et al. [17] Chatterjee and Namin [20]

SNL-KDD IDS Dataset [34] 98.26% 81.8% ---

Phishing URLs [35] 97.86% --- 90.01%

4. DISCUSSION
It is clear from the table that the accuracy of our model is higher than those produced by the other

two models, although both used a variation of a DQN model. The main reason is that our model has been

built from scratch, and a lot of time has been spent on configuring, tuning, and testing it. Another reason is

the way rewards are allocated. We used a simple binary scheme, 0 for ‘fix’ action, and 1 for ‘escalate’ action.

The other two models used a similar two-level reward system, but the actual values of the rewards are

different. The major advantage of reinforcement learning is that no prior training is required. The model

learns from experience, while consuming the streams of data. This implies that there is no danger of

overfitting (like what happens in the case of deep learning).

5. CONCLUSION
In this study we explored the potentials of DRL in optimizing the decision process in SIEM incident

response systems. A DQN model has been used to investigate the possibilities. A couple of standard public

datasets have been used to emulate data streams in real life SIEM systems. The results are very encouraging,

and the accuracies are even higher than those produced by trained supervised models. This is an indication

that DRL models can be used in the post-alert and post-exploitation decision phases, where model training is

not feasible.

Int J Elec & Comp Eng ISSN: 2088-8708

 Optimizing cybersecurity incident response decisions using deep reinforcement … (Hilala Alturkistani)

6775

ACKNOWLEDGEMENTS

The authors would like to than PSU EIAS Data Science and Cyber Analytics Lab for the great help

and resources provided by the lab.

REFERENCES
[1] Exabeam, “The SOC, SIEM, and other essential SOC tools,” exabeam. https://www.exabeam.com/siem-guide/the-soc-secops-

and-siem/ (accessed Aug 27, 2021).

[2] Elastic, “Anomaly detection with machine learning,” elastic. https://www.elastic.co/guide/en/siem/guide/current/machine-

learning.html (accessed Aug 27, 2021).

[3] S. Anson, Applied incident response. Wiley, 2019., doi: 10.1002/9781119560302.

[4] E. C. Thompson, Cybersecurity incident response. Berkeley, CA: Apress, 2018., doi: 10.1007/978-1-4842-3870-7.

[5] Y. Diogenes, N. DiCola, and J. Trull, “Microsoft azure sentinel: planning and implementing microsoft cloud-native SIEM

solution,” in IT Best Practices-Microsoft Press series, 2020.

[6] J. Muniz, G. McIntyre, and N. AlFardan, Security operations center: building, operating, and maintaining your SOC. Pearson

Education, 2015.

[7] J. Muniz, A. Lakhani, O. Santos, and M. Frost, The modern security operations center. Addison-Wesley Professional, 2021.

[8] R. Liu, F. Nageotte, P. Zanne, M. de Mathelin, and B. Dresp-Langley, “Deep reinforcement learning for the control of robotic

manipulation: a focussed mini-review,” Robotics, vol. 10, no. 1, Jan. 2021, doi: 10.3390/robotics10010022.

[9] B. R. Kiran et al., “Deep reinforcement learning for autonomous driving: a survey,” IEEE Transactions on Intelligent

Transportation Systems, vol. 23, pp. 4909–4926, Feb. 2020, doi: 10.1109/TITS.2021.3054625.

[10] T. Théate and D. Ernst, “An application of deep reinforcement learning to algorithmic trading,” Expert Systems with Applications,

vol. 173, Jul. 2021, doi: 10.1016/j.eswa.2021.114632.

[11] A. Buchard et al., “Learning medical triage from clinicians using deep Q-Learning,” arXiv preprint arXiv:2003.12828, Mar. 2020

[12] A. Sopan, M. Berninger, M. Mulakaluri, and R. Katakam, “Building a machine learning model for the SOC, by the input from the

SOC, and analyzing it for the SOC,” in 2018 IEEE Symposium on Visualization for Cyber Security (VizSec), Oct. 2018, pp. 1–8.,

doi: 10.1109/VIZSEC.2018.8709231.

[13] C. Feng, S. Wu, and N. Liu, “A user-centric machine learning framework for cyber security operations center,” in 2017 IEEE

International Conference on Intelligence and Security Informatics (ISI), Jul. 2017, pp. 173–175., doi: 10.1109/ISI.2017.8004902.

[14] C. Nila, I. Apostol, and V. Patriciu, “Machine learning approach to quick incident response,” in 2020 13th International

Conference on Communications (COMM), Jun. 2020, pp. 291–296., doi: 10.1109/COMM48946.2020.9141989.

[15] R. Maeda and M. Mimura, “Automating post-exploitation with deep reinforcement learning,” Computers and Security, vol. 100,

Jan. 2021, doi: 10.1016/j.cose.2020.102108.

[16] J. Lee, J. Kim, I. Kim, and K. Han, “Cyber threat detection based on artificial neural networks using event profiles,” IEEE Access,

vol. 7, pp. 165607–165626, 2019, doi: 10.1109/ACCESS.2019.2953095.

[17] K. Sethi, E. Sai Rupesh, R. Kumar, P. Bera, and Y. Venu Madhav, “A context-aware robust intrusion detection system: a

reinforcement learning-based approach,” International Journal of Information Security, vol. 19, no. 6, pp. 657–678, Dec. 2020,

doi: 10.1007/s10207-019-00482-7.

[18] A. Oprea, Z. Li, R. Norris, and K. Bowers, “MADE,” in Proceedings of the 34th Annual Computer Security Applications

Conference, Dec. 2018, pp. 124–136., doi: 10.1145/3274694.3274710.

[19] H. M. Farooq and N. M. Otaibi, “Optimal machine learning algorithms for cyber threat detection,” in 2018 UKSim-AMSS 20th

International Conference on Computer Modelling and Simulation (UKSim), Mar. 2018, pp. 32–37, doi:

10.1109/UKSim.2018.00018.

[20] M. Chatterjee and A.-S. Namin, “Detecting phishing websites through deep reinforcement learning,” in 2019 IEEE 43rd Annual

Computer Software and Applications Conference (COMPSAC), Jul. 2019, pp. 227–232, doi: 10.1109/COMPSAC.2019.10211.

[21] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau, “An introduction to deep reinforcement learning,”

Foundations and Trends® in Machine Learning, vol. 11, no. 3–4, pp. 219–354, 2018, doi: 10.1561/2200000071.

[22] M. Lopez-Martin, B. Carro, and A. Sanchez-Esguevillas, “Application of deep reinforcement learning to intrusion detection for

supervised problems,” Expert Systems with Applications, vol. 141, Mar. 2020, doi: 10.1016/j.eswa.2019.112963.

[23] M. A. Sankaran, A. K. B. Murat, M. Tharrshinee, and G. Yuvasree, “Botnet detection using machine learning,” International

Research Journal of Engineering and Technology (IRJET), vol. 7, no. 7, pp. 5116–5121, 2020.

[24] Y. Han et al., “Reinforcement learning for autonomous defence in software-defined networking,” in Lecture Notes in Computer

Science, Springer International Publishing, 2018, pp. 145–165, doi: 10.1007/978-3-030-01554-1_9.

[25] O. K. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine learning based phishing detection from URLs,” Expert Systems with

Applications, vol. 117, pp. 345–357, Mar. 2019, doi: 10.1016/j.eswa.2018.09.029.

[26] Y. Li et al., “On the performance of deep reinforcement learning-based anti-jamming method confronting intelligent jammer,”

Applied Sciences, vol. 9, no. 7, Mar. 2019, doi: 10.3390/app9071361.

[27] M. C. Ghanem and T. M. Chen, “Reinforcement learning for efficient network penetration testing,” Information, vol. 11, no. 1,

Dec. 2019, doi: 10.3390/info11010006.

[28] P. Winder, Reinforcement learning. O’Reilly Media, Inc., 2020.

[29] N. Habib, Hands-on Q-Learning with Python. Packt Publishing, 2019.

[30] A. Lonza, Reinforcement learning algorithms with Python. Packt Publishing, 2019.

[31] M. Lapan, Deep reinforcement learning hands-on-second edition. Packt Publishing, 2020.

[32] D. Protić, “Review of KDD Cup ’99, NSL-KDD and Kyoto 2006+ datasets,” Vojnotehnicki glasnik, vol. 66, no. 3, pp. 580–596,

2018, doi: 10.5937/vojtehg66-16670.

[33] F. O. Catak and A. F. Yazi, “A benchmark API call dataset for windows PE malware classification,” Machine Learning Based

Cyber Security, 2019

[34] UNB, “Canadian Institute for Cybersecurity (CIC) and UNB, NSL-KDD dataset.” University of New Brunswick. [Online].

Available: https://www.unb.ca/cic/datasets/index.html

[35] E. Buber, “Ebbu2017 phishing dataset,” GitHub. [Online]. Available: https://github.com/ebubekirbbr/

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6768-6776

6776

BIOGRAPHIES OF AUTHORS

Hilala Alturkistani received the BS in Information Systems from Prince Sultan

University, then she obtained her MS in Cybersecurity from the same university. She is
currently preparing for her PhD while teaching parttime with the college of computer and

information sciences in PSU. She is conducting research. She can be contacted at email:

219420735@psu.edu.sa and hilalahfeda@gmail.com.

Mohammed A. El-Affendi is a Professor of Computer Science in the Department
of Computer Science, PSU, KSA and a former dean of the college. Currently, prof ELAffendi

is the founder and Director of the Center of Excellence in Cybersecurity and the founder and

leader of the Data Science and Cyber Analytics lab. Currently he is conducting research in the

áreas of data scinece and applied artificial intelligence (AI) with a focus on applications of
machine deep learning and reinforcement learning to real life AI problems. He can be

contacted at email: affendi@psu.edu.sa.

http://orcid.org/0000-0002-0890-275X
http://orcid.org/0000-0001-9349-1985
https://www.scopus.com/authid/detail.uri?authorId=6507794725

