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 In this paper, we introduce an improved multivariate statistical monitoring 

method based on the stacked sparse autoencoder (SSAE). Our contribution 

focuses on the choice of the SSAE model based on neural networks to solve 

diagnostic problems of complex systems. In order to monitor the process 

performance, the squared prediction error (SPE) chart is linked with 

nonparametric adaptive confidence bounds which arise from the kernel 

density estimation to minimize erroneous alerts. Then, faults are localized 
using two methods: contribution plots and sensor validity index (SVI). The 

results are obtained from experiments and real data from a drinkable water 

processing plant, demonstrating how the applied technique is performed. 

The simulation results of the SSAE model show a better ability to detect and 
identify sensor failures. 
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1. INTRODUCTION  

Industrial systems are becoming more and more complex, which makes it very difficult to control 

their various adjustment parameters. The difficulty comes not only from the fact that the control of an 

automated system requires real-time information on the various events, but also to detect failures and 

diagnose the reasons in order to find adequate solutions. The water industry is under increasing pressure to 

produce the highest quality drinking water at a lower cost. This implies a saving in terms of cost but also in 

terms of respect for the environment. The objective of this work is to present a model that allows the 

detection/diagnosis of the faults which can affect a station of treatment of drinking water based on data 

collected in real-time. Generally, the analytical methods used in the modeling of dynamic systems do not 

necessarily meet what is expected by automation engineers, hence the need to rely on statistical methods that 

provide more information on the processes from existing real data. In this sense, an approach for determining 

operational states based on data from the statistical analysis system (SAS) can play an important role in the 

detection and diagnosis of errors [1]. Thus, multivariate statistics tools have been the source of many 

techniques used in statistical process control (SPC). By the way, control charts are the ultimate tools for 

applying SPC. They make it possible to visualize the evolution of the process in order to identify the changes 

likely to modify its performance. On the other hand, the dimensions of the processes [2] and the collinearities 

that may exist between the variables, limit the effectiveness in terms of error isolation in the direct 

interpretation of these graphs. The advantage of this method is characterized by reducing the size of the 

variable space using projection methods which can reveal hidden information that can be better explained. 

https://creativecommons.org/licenses/by-sa/4.0/
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The most well-known statistical tool is principal component analysis (PCA) [3]. It provides robustness [4] in 

terms of extracting the relevant variation from the data, defining a set of principal components (PCs) 

consisting of a linear combination of the original variables. The scope of the PCA method is wide, from 

dimensional reduction to noise reduction and suppression, including data compression and defect detection. 

The major disadvantage of this method is that the PCs are general linear sets of all input variables. In 

addition, the coefficients of its sets are generally non-zero. Therefore, each principal component obtained 

may not have any practical significance. Sparse principal component analysis (SPCA) [5], [6] solves this 

problem and becomes one of the most widely used techniques for better interpretation of close-range 

structures by identifying spatial structures present in the data. In SPCA, the PCs that should be sparse are 

limited, which means, they have only a few non-zero entries in the original database. This has the advantage, 

among others, that the components are easier to interpret. Nevertheless, both PCA and SPCA are linear 

methods and cannot be handled effectively with non-linear variables. With data processing technology, deep 

neural networks [7] can effectively solve the problem of insufficient feature extraction methods [8].  

In this work, we are interested in deep learning [9], which consists in learning high-level data 

representations using neural networks [10]. These methods were developed in the 1980s but were quickly 

abandoned because they were considered unpromising. With the improvement of computing power, new and 

richer databases [11], [12], and great advances in optimization techniques [13], [14], deep learning has 

recently reached exceptional performances for different tasks [15]–[17]. Then, we focus on the stacked sparse 

autoencoder (SSAE) [18], which finds a hidden representation in massive data by using a multi-layer 

encoder-decoder structure, where small abstract features are extracted to reconstruct the input data. Data 

reconstructed can be used to recover detected faulty data. In addition, it can be used to detect and isolate the 

faulty sensor through an analytical redundancy method that captures anomalies based on the divergence 

between the measurement data and the reconstructed one. Subsequently, after recovery, new feature detection 

is carried out by means of the Q-statistics [19] in combination with an adaptive nonparametric kernel density 

estimation (KDE) based limit of confidence in order to minimize the rate of faulty alert detection. Once the 

detection is performed, we need to know which sensor is faulty. To do this, we use one of the many defect 

identification methods that have been developed, such as contribution plots and sensor validity index (SVI).  

In this work, the SSAE model is discussed, which is trained to reconstitute the collected input data 

in standard conditions. This article is structured through the following: section 2 outlines the process 

monitoring strategy based on spasticity reconstruction. In section 4, results are presented using both 

synthesized and real data collected from a potable water processing plant. 

 

 

2. METHODS 

2.1.  Statistical process monitoring (SPM) method: stacked sparse autoencoder 

Deep learning is a branch of machine learning. It consists of learning representations of the high 

level of data using neural networks. These methods have been developed in the 1980s but were quickly 

abandoned because considered not promising. Deep learning recently achieved exceptional performance for 

different tasks, however, in the area of process control, still rare. Deep neural network models are employed 

as a tool for predicting patterns that include a hidden layer called the bottleneck layer. 

First, the input vector xi={1, 2, 3, ..., N} is transformed into a hidden part represented by the 

function hi, which is as (1), 

 

ℎ𝑖 = 𝑓(𝑥𝑖) = 𝑠𝑖𝑔𝑚(𝑊1𝑥 + 𝑏1) (1) 

 

where W1 and b1 are respectively the weight and the bias between the input layer and the hidden part and 

sigm(x) is a sigmoid function that is calculated as (2). 

 

𝑠𝑖𝑔𝑚(𝑥) = (1 + 𝑒𝑥𝑝( − 𝑥))−1 (2) 

 

At the decode layer, hi gets mapped to the output enunciated by x̂. where we employ the activation function 

represented as (3), 

 

�̂�𝑖 = 𝑔(ℎ) = 𝑠𝑖𝑔𝑚(𝑊2ℎ𝑖 + 𝑏2) (3) 

 

where W2 and b2 represent the weight and the bias from the hidden to the output layer, as well (x̂). An 

autoencoder for which the learning parameter implies a sparsity penalty [20] is simply called SSAE [21] as 

shown in Figure 1. 
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Figure 1. Structure of the proposed SSAE model 

 

 

The power of this network consists in predicting its output (input estimate) to be as similar to its 

input, by optimizing the cost function given by (4), 

 

𝐽 =
1

𝑁
∑ (

1

2
‖�̂� − 𝑥𝑖‖

2
) +

𝜆

2
∑ ‖𝑊𝑖‖2 + 𝛽 ∑ 𝐾𝐿(𝜌‖�̂�𝑗)𝑚

𝑗=1
𝑁
𝑖=1

𝑁
𝑖=1  (4) 

 

where m is the number of hidden nodes. λ and β are the coefficient determining the weight decay and the 

sparsity penalty terms respectfully. In (4), the first term is the reconstruction error, the second is the 

normalization term and the final one is the sparsity penalty, where 𝐾𝐿(𝜌‖�̂�𝑖) is the Kullback-Leibler 

divergence, is used to compute the difference between ρ and �̂�𝑖 being the constraint used during learning. 

𝐾𝐿(𝜌‖�̂�𝑖) [22] is defined as (5). 

 

𝐾𝐿(𝜌‖�̂�𝑖) = 𝜌 𝑙𝑜𝑔
𝜌

�̂�𝑖
+ (1 − 𝜌) 𝑙𝑜𝑔

1−𝜌

1−�̂�𝑗
 (5) 

 

The goal in the use of the SSAE is to train it using the backpropagation algorithm and limited memory BFGS 

(L-BFGS) [23], to reduce the cost function, and to define the adequate parameters W1, W2, b1, b2. 

 

2.2.  Novelty detection 

There are few studies on fault detection processing to diagnose the root causes of malfunctions or to 

identify unexpected events in data sets, which differ from the norm. Among these studies are those based on 

residual analysis, which is based on a similarity test between measured and estimated data. The regular 

measure used is the squared prediction error (SPE) where:  

 

𝑄 = 𝑆𝑃𝐸 = ∑ (𝑥𝑖 − �̂�𝑖)
2𝑁

𝑖=1  (6) 

 

N is the number of samples. In this paper, we propose an adaptive confidence limit by employing a k-means 

clustering algorithm in order to split the normal data of the full operating regime into smaller and possibly 

simpler local operating regimes. 

 

2.2.1. Control limits 

a. χ2 Distribution (𝛿𝛼
2) 

The control limit is the process variation that indicates when the process is out of control. The 

system is considered to be in its normal state of operation if SPE≤𝛿𝛼
2. On the other hand, if SPE>𝛿𝛼

2, the 

system is considered faulty, where 𝛿𝛼
2 denoted for the SPE control limit [24], that can be determined by a 

distribution of weighted 𝑥2, 

 

𝛿=g𝜒ℎ,𝛼
2  𝑔 =

𝑣

2𝑚
 ℎ =

2𝑚2

𝑣
 (7) 

 

with m and v being the estimated mean and variance of SPE, respectively. 
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b. Threshold using k-means based on kernel density estimation (adaptive upper control limit 

KDE/AUCLKDE) 

KDE is a robust tool for the nonparametric approximation of a probability density function for 

random variables at any given point in the support. However, with a sample matrix of n variables and m 

samples, the KDE of the density function f(x) at each point x is written as: 
 

𝑓(𝑥) =
1

𝑚ℎ
∑ 𝐾 (

𝑥−𝑥𝑗

ℎ
)𝑛

𝑗=1  (8) 

 

h is the border width setting and K is a kernel function that is integrable to one and has a null mean. 

Many clustering algorithms for different problems have been proposed, including partition-based 

clustering, hierarchical clustering, neural network clustering, mixture model clustering, and kernel clustering. 

Many classification algorithms for various tasks have been developed such as fuzzy C-means [24]. The 

clustering algorithm that has been used in this paper is k-means. k-means is one of the simplest unsupervised 

learning algorithms that solve the well-known clustering problem. The procedure follows a simple and easy 

method to partition a data set via a number of classes (let us assume k classes) fixed a priori, where each 

partition represents a cluster containing at least one object. The objective of k-means is to minimize the 

objective function which is the total distance between all objects and their respective centers. These centers 

have to be placed in a clever way because a different location leads to a different result. The objective 

function is given as (9), 
 

𝐽 = ∑ ∑ ‖𝑥𝑖
𝑗

− 𝑐𝑗‖
2

𝑛
𝑖=1

𝑘
𝑗=1  (9) 

 

where ‖𝑥𝑖
𝑗

− 𝑐𝑗‖
2
 is a chosen distance measure between a data point 𝑥𝑖

𝑗
and the cluster center 𝑐𝑗, is an 

indicator of the distance of the n data points from their respective cluster centers. In the threshold-based 

clustering algorithm, we proceed as: an element is chosen from the dataset which is assigned as a seed of a 

cluster by the algorithm. Then we calculate the distance of each unclassified element from the cluster center. 

The element is assigned to the cluster if the distance is less than the threshold, otherwise, we recalculate the 

centers, if no cluster can be found after examining all elements in the cluster, then the element is assigned as 

a seed of a new cluster. If the distance between the new cluster and another cluster is less than the threshold, 

the two clusters are merged and the cluster distances are recalculated. After assigning all elements to a 

cluster, the algorithm stops. 

 

 

3. FAULT IDENTIFICATION 

3.1.  Contribution plots 

There are various approaches to fault isolation, for which contribution diagrams can be used. The 

contribution of variable j to the Q statistic is calculated as (10), 

 

𝐶𝑖𝑗𝑘
𝑄 = 𝑒𝑖𝑗𝑘

2  (10) 

 

with 𝑒 = (𝑥𝑖 − 𝑥ˆ𝑖). 

 

3.2.  Nonlinear reconstruction principle 

This approach is applied in the case of a faulty sensor. It consists of reconstructing the value 

measured by the sensor as a function of other variables in an iterative way as shown in Figure 2. The 

procedure consists in replacing the jth variable with the predicted one and repeating it until the end of the 

algorithm as (11), 
 

�̃�𝑖 = 𝜉𝑗
𝑇𝐺(𝐹(𝑥𝑗)) (11) 

 

with �̃�𝑖 = (𝑥1, 𝑥2, . . . , 𝑥ˆ𝑗, . . . , 𝑥𝑚), ξT is the jth column of the identity matrix. 

 

3.3.  Sensor validity index 

Its principle is to calculate the ratio between SPEj and the faulty SPE, after calculating the SPE 

statistic of the same reconstructed variable [24], it is defined as (12), 
 

𝜂𝑗
2(𝑘) =

𝑆𝑃𝐸𝑗(𝑘)

𝑆𝑃𝐸(𝑘)
 (12) 
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in which SPE is the overall squared prediction error obtained before the reconstruction and SPE j is the jth 

squared prediction error obtained after the reconstruction [25]. The validity index for a faulty sensor should 

tend to zero. 

 

 

 
 

Figure 2. Reconstruction principle 

 

 

4. RESULT AND DISCUSSION 

4.1.  Synthetic data 

To illustrate the advantages of our developed method in fault detection and isolation, a multivariate 

dataset is used, containing three variables, where t is uniformly distributed in the interval [-1, 1]; εi represents 

Gaussian white noise with zero means and standard deviation of 0.01. 1,000 samples are collected to build 

SSAE model (13). After building the model, we examine the behavior of the SPE in normal conditions, 

where its threshold was calculated with three techniques: the 𝑥2 distribution, KDE, and the adaptive 

threshold AUCLKDE using k-means clustering. The result is shown in Figure 3(a) SPE: data in normal state 

for δ2 threshold, Figure 3(b) SPE: data in normal state for KDE threshold and Figure 3(c) SPE: data in 

normal state for AUCL threshold using k-means clustering. For simplicity of results, we use a window 

between 150 and 250 samples. 

 

𝑥1 = 𝑡2 + 0.3 𝑠𝑖𝑛( 2𝜋𝑡) + 𝜀1

𝑥2 = 𝑡 + 𝜀2                                

𝑥3 = 𝑡3 + 𝑡 + 1 + 𝜀3              

 (13) 

 

We now simulate a bias fault and observe the variation of SPE with the three limits. Figure 4(a) to 

(c) show SPE data in the faulty state for 𝛿
2

𝑎
 threshold, KDE threshold, and AUCL threshold using k-means 

clustering, respectively. By examining figures in normal and faulty modes, we observe false alarms in the 

data, generally from outliers. This model can detect the fault, there were 200 samples. 

We have identified which sensor is faulty as shown in Figure 5(a) for SSAE model, the faulty one 

was the third. A second method of locating faulty sensors were used based on SVI. It returns the process to 

its normal operating conditions as shown in Figure 5(b). 

 

4.2.  Application on a water treatment plant 

The factory that we studied is the purification of water in Oued El Othmania. It is responsible for the 

distribution of drinking water to many citizens at and around Constantine which is a city in northeast Algeria, 

it is also the third most populous city in the country [26]. It is known to have many important parameters 

such as turbidity, temperature, flow rate, and pH value. The data used in this study contains: raw water 

parameters and treated water parameters: turbidity, temperature, pH, and O2, this means we have eight 

parameters in total, that is, we have eight sensors to be monitored. The observations are sampled by a data 

acquisition unit (SCADA system) for a period of 356 days, respecting various intervals. We use this database 

to construct and develop the model SSAE. The results are obtained from the PES under normal conditions 

with the three types of thresholds, which the real data are shown in Figure 6(a) to (c) for SPE data in the 

normal state for δ2 threshold, KDE threshold, and AUCL threshold using k-means clustering, respectively. 

We add a defect to one of the sensors and we observe the result for the three thresholds as shown in  

Figure 7(a) to (c) for SPE data in the faulty state for δ2 threshold, for the KDE threshold, and for AUCL 

threshold using k-means clustering, respectively. The SSAE model is able to detect the fault, in our example, 

the detection was made from sample 200. The faulty sensor was sensor 8 which is the treated water O2 (TW) 

as demonstrated in Figure 8(a) for contribution plots and Figure 8(b) for SVI, which implies that the SSAE 

model is suitable for fault isolation. 
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(a)  (a) 

   

 

 

 
(b)  (b) 

   

 

 

 
(c)  (c) 

   

Figure 3. SPE data in normal state (a) 𝛿𝛼
2 threshold, 

(b) KDE threshold, and (c) AUCL threshold using 

k-means clustering 

 Figure 4. SPE data in faulty state (a) 𝛿𝛼
2 threshold, 

(b) KDE threshold, and (c) AUCL threshold using 

k-means clustering 
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(a) (b) 

 

Figure 5. Fault isolation (a) normalized contribution plots (fault in the 3rd sensor) and (b) SVI sensor validity 

index (3rd sensor fault) 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 6. SPE data in normal state for (a) 𝛿𝛼
2 threashold, (b) KDE threashold, and (c) AUCL using  

k-mean clustering 
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(a) (b) 

  

 
(c) 

 

Figure 7. SPE data in faulty state for (a) 𝛿𝛼
2 threashold, (b) KDE threashold, and (c) AUCL using  

k-mean clustering 

 

 

  
(a) (b) 

 

Figure 8. Fault isolation (a) normalized contribution plots (fault in the 8 sensor) and (b) SVI’s raw water 

(RW) and treated water (TW) sensors 
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5. CONCLUSION 

In this work, we propose an SSAE modeling method applied to real data collected from a drinking 

water treatment plant. We used the SPE index for the detection of the defects, by calculating its confidence 

limit by three different techniques: the 𝑥2 distribution, the KDE, and the upper control limit (UCLKDE) with 

the k-means clustering, which allowed us to obtain a very good result. Then, we proceed to the localization of 

the faulty sensor using two approaches: Contribution diagrams and the improved SVI based on the 

reconstruction principle. Simulation results show that the choice of the SSAE model is effective in terms of 

the ability to detect and identify sensor failures. In terms of perspective and in order to reduce the overfitting 

problem and improve the performance of SSAE, we can adopt the dropout technique and rectified linear unit 

(ReLU) activation function to achieve high diagnostic accuracy. 
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