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 Computer technology shows swift progress that has infiltrated people’s lives 

with the candidness and pliability of computers to work ease shows security 

breaches. Thus, malware detection methods perform modifications in 
running the malware based on behavioral and content factors. The factors are 

taken into consideration compromises of convergence rate and speed. This 

research paper proposed a method called fisher exact Boschloo and 

polynomial vector learning (FEB-PVL) to perform both content and 
behavioral-based malware detection with early convergence to speed up the 

process. First, the input dataset is provided as input then fisher exact 

Boschloo’s test Bernoulli feature extraction model is applied to obtain 

independent observations of two binary variables. Next, the extracted 
network features form input to polynomial regression support vector 

learning to different malware classes from benign classes. The proposed 

method validates the results with respect to the malware and the benign files. 

The present research aimed to develop the behaviors to detect the accuracy 

process of the features that have minimum time speeds the overall 

performances. The proposed FEB-PVL increases the true positive rate and 

reduces the false positive rate and hence increasing the precision rate using 

FEB-PVL by 7% compared to existing approaches. 
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1. INTRODUCTION  

In recent years, the computer system is retained to secure from malware infection which is a 

substantial ultimatum [1]. There is rapid growth and also intricacy for malware as it is creating a big issue for 

network and computer security [2]. A hypervisor content-based malware detection method uses the 

hypervisor [3]. The comparison is done for prevailing the hypervisor content based on the proposed method 

as it used a new model for a sophisticated crafted monitoring element which was injected into the guest 

operating system address space [4]. Moreover, the hypervisor in the proposed content-based malware 

detection method also safeguarded the monitoring component from detection and modification [5]. The 

performances are evaluated and handled by the guest context finds negligible contributes to the overhead of 

minimum [6]. However, the developed model focused on detecting malware based on content [7]. A novel 

behavior-based malware detection method was proposed in [8].  

To design this method, a dynamic analysis environment with various behaviors artifacts is extracted 

such as printable string information (PSI), calls, application programming interface (API) calls, registry 

changes, operations, and network activities, with the help of count vectorization, string tokens of the 

vocabulary were created [9]–[12]. Next, a singular value decomposition model was utilized that in turn 
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minimized the feature matrix dimension. Finally, malware classifiers were trained and therefore results in 

moderate accuracy [13]–[15]. Despite improvement observed in terms of accuracy, efforts were not made in 

addressing content-based malware detection [16], [17]. The creation and curating of a large set of useful 

features consume significant amounts of time [18], [19]. The motivation for malware detection is that the 

malware detection model concentrates mainly on content and behavior aspects [20].  

Leon et al. [21] performed a hypervisor-assisted dynamic malware analysis. The developed model 

detected the malware and the latter significantly showed improvement in performance. The developed model 

analyzed the malware with respect to the context of the operating system (OS) which made it completely 

transparent for running OS. The OS component was camouflaged by a hypervisor and analyzed the model to 

run OS and its applications. However, the model has a hypervisor that failed to meet the transparency. Singh 

and Singh [22] analyzed the behavioral artifacts using machine learning algorithms for detecting malicious 

software. The runtime features were extracted to set the dynamic analysis in an environment by Cuckoo 

sandbox. The primary features were processed to develop a malware classifier that overcame the problem of 

the existing research problem. The model experimentally tested the inclusion of features that showed 

improvement in accuracy for the malware classifiers. Vinayakumar et al. [23] developed a deep learning 

model for malware detection using a robust intelligent model of an advanced type. However, the most 

significant direction for malware detection was an important step to improve safety.  

Lu et al. [24] developed a hybrid deep-learning model for Android-based malware detection. The 

android malware detection uses a deep learning model as it combines deep belief network (DBN) and gate 

recurrent unit (GRU). However, the separate model and traditional machine learning algorithm were used to 

improve and optimize to reduce the time cost. Xiao et al. [25] utilized a deep learning model for behavior 

graphs (BDLF) to detect malware. However, the stacked autoencoders (SAEs) had inserted one another, and 

the last layer required classifiers to some extent. Semi-supervised technique for recognizing distributed denial 

of service in an SD-honeypot network environment has been developed by Sumadi et al. [26]. Faieq and 

Mijwil [27] proposed the support vector machine (SVM) and artificial neural network (ANN), two 

techniques for the early identification of cardiac disease. The medical information was obtained from a 

database maintained by the University of California, Irvine (UCI), and it includes 170 individuals’ reports. 

The analysis’ findings validated the SVM technique is ideal use, which yields highly accurate prediction 

outcomes.  

In [28], various machine-learning approaches were put to the test to evaluate how well they 

identified ransomware attacks. The gain ratio was used as a feature selection approach to choose the top 

1,000 features from raw bytes. To obtain considerable ransomware detection accuracy, three separate 

classifiers that were accessible in the Waikato environment for knowledge analysis (WEKA) based machine 

learning platform has been investigated. Security concerns and potential cyber-attacks were mentioned in 

[29] as a result of the utilization of the main prominent VM apps by academic institutions. Additionally, a 

thorough comparison of the various VM programs from the viewpoint of cybersecurity was done. In contrast, 

Ojugo and Oyemade [30] suggested using a string match method as part of a deep learning ensemble on a 

hybrid spam filtering method to normalize noisy features, expand text, and use semantic dictionaries of 

categorization to train underlying learning algorithms and accurately categorize SMS into legitimate and 

spam classes. The objective of the survey by Nordin et al. [31] was to do a comparative examination of the 

metaheuristic fuzzy modeling algorithms for phishing attack detection. Apache spark machine learning 

library (MLlib), that serves as an open source, independent, scalable, and distributed learning library, has 

been proven by Ali et al. [32]. However, the Boruta feature selection method was used in [33] to identify the 

most crucial features while building a machine learning model.  

Convolutional neural networks (CNN) and large short-term memories were combined to provide a 

method for identifying cross-site scripting (XSS) attacks while taking the cross-site scripting attack into 

consideration [34]. Long short-term memory (LSTM) decoding, generalization, and tokenization were first 

used to pre-process the XSS data set, after which word2vec was used to turn the phrases in the XSS payloads 

into word vectors. After that, train and test word vectors using CNN and LSTM to develop an algorithm that 

could be applied to a web-based application. By recommending a system that employs feature selection based 

on an ensemble extra tree classifier technique and machine learning classifier, Alkaaf et al. [35] have 

supplied exploring permission in android applications utilizing ensemble-based extra tree feature selection to 

investigate the sequence of malware apps interpreting authorizations. A malicious uniform resource locator 

(URL) detection method employing optimization and machine learning classifiers has been developed by Lee 

et al. [36]. To identify applications with dangerous URLs, the static analysis combined with machine learning 

has been employed. This integration with other important properties leads to encouraging results and 

increased detection accuracy in this work. Particle swarm optimization (PSO), a bio-inspired technique has 

been utilized to optimize the properties of URLs. It demonstrates that naive Bayes and SVM may achieve 

excellent detection accuracy when detecting dangerous URLs. 
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From the overall analysis of the above-stated literature, the existing model has a hypervisor that 

failed to meet the transparency, because it requires the extension for the layer to improve the precision. In 

order to overcome those issues, the fisher exact Boschloo and polynomial vector learning (FEB-PVL) model 

is proposed. The major contributions of this research are i) that this research develops the fisher exact 

Boschloo and the polynomial vector learning model for the detection of content, and behavior-based features; 

ii) additionally, the integration method is performed for the selection of network features based on the 

dissimilar features among the benign and malware classes; and iii) the network features utilized in benign and 

malware classes showed classification among benign and malware classes. 

This research paper is structured as: section 2 explains the proposed FEB-PVL model for malware 

detection. The results evaluated are provided in section 4. The comparative analysis for the precision 

performance is stated in section 4. And the conclusion of this research work is presented in section 5.  

 

 

2. FISHER EXACT BOSCHLOO AND POLYNOMIAL VECTOR LEARNING (FEB-PVL)  

The FEB-PVL is proposed to design both content and behavioral-based malware detection. The 

integrated method selects the network features by identifying the dissimilarity between malware and benign 

classes. As the network features are normally utilized in malware and hardly utilized in benign classes that 

are more paramount to different malware classes from benign classes an objective function of the proposed 

method is split into two parts. Figure 1 shows the structure of the FEB-PVL method. As shown in Figure 1, 

the network anomaly dataset is provided with input at first and then fisher exact Boschloo’s test Bernoulli 

feature extraction model is used. The design of the contingency table extracts both content-based network 

features and behavior-based network features. 

 

 

 
 

Figure 1. Structure of FEB-PVL method 

 

 

2.1.  Fisher exact Boschloo’s test Bernoulli feature extraction model  

The procedure of feature extraction plays a very significant role in deciding the cost-effectiveness 

and accuracy of the malware detection process. It focuses on influencing the feature subset that assists in 

significantly differentiating between malicious and benign files. In this section, fisher exact Boschloo’s test 

Bernoulli feature extraction model is designed with the purpose of extracting both content-based and 

behavior-based network features in a timely and efficient manner. 

The fisher exact Boschloo’s test Bernoulli feature extraction being a statistical significance test is 

valid for all sample sizes. The exact tests are owed with the significance of divergence from the null 

hypothesis estimated. Instead of this, an approximation has become an exact limit that shows an increase in 

sample size with statistical tests arranged numerously. With this advantage, absolute features are extracted in 

a timely and accurate manner. Comprising of three different features 𝐹 as shown in Table 1, i.e., basic 
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features 𝐵𝐹, content-related features 𝐶 and time related traffic features 𝑇𝑇𝐹, the objective remains in 

extracting the relevant features promptly and ensuring an early convergence rate. Let us consider a sample of 

2 ∗ 2 contingency as given in Table 1. 

 

 

Table 1. Sample contingency table 
Row Columns Total 

𝐶1 𝐶2 
𝑅1 𝐹11 𝐹12 𝐹11 + 𝐹12 
𝑅2 𝐹21 𝐹22 𝐹21 + 𝐹22 

𝑇𝑜𝑡𝑎𝑙 𝐹11 + 𝐹21 𝐹12 + 𝐹22 𝑛 

 

 

As given in the sample contingency Table 1, 𝐹𝑖𝑗 represents the feature in row 𝑖 and column 𝑗, 𝐹11 +

𝐹12 represent the sum of two features in row 𝑖 and 𝐹12 + 𝐹22 denotes the sum of two features in column 𝑗, 

respectively. Then, the probability of obtaining the values as in the above contingency table based on the 

hypergeometric distribution function is mathematically expressed in (1)-(3). 

 

𝑃𝑟𝑜𝑏 (𝑅1𝐶1 → 𝑅2𝐶1) =  
(

𝐹11+𝐹12
𝐹11

)(
𝐹21+𝐹22

𝐹21
)

(
𝑛

𝐹11+𝐹21
)

 (1) 

 

𝑃𝑟𝑜𝑏 (𝑅1𝐶2 → 𝑅2𝐶2) =
(

𝐹11+𝐹12
𝐹12

)(
𝐹21+𝐹22

𝐹22
)

(
𝑛

𝐹12+𝐹21
)

 (2) 

 

𝑃𝑟𝑜𝑏(𝑅1𝐶1 → 𝑅2𝐶1  ∪ 𝑅1𝐶2 → 𝑅2𝐶2) =
(𝐹11+𝐹21)!(𝐹21+𝐹22)!(𝐹11+𝐹21)!(𝐹12+𝐹22)!

𝐹11!𝐹12!𝐹21!𝐹22!
 (3) 

 

From (1)-(3), (
𝑛
𝑙

) denotes the network connection vector binomial coefficients and exclamation 

mark! represents factorial representing with 𝑙 denoting a 2 × 2 contingency table, respectively. Then, the 

probability that network feature vectors are positive in a random selection is based on the significance level 

from a larger network feature vector set. It is containing elements in total out of which are positive using the 

hypergeometric distribution function that is mathematically stated as given in (4) and (5). 

 

𝑍𝑝(𝐹1, 𝐹0) =
𝑝1

′ −𝑝0
′

√𝑝′(1−𝑝) (
1

𝑛1
+

1

𝑛0
)
 (4) 

 

𝑝𝑖
′ =  

𝐹𝑖

𝑛𝑖
;  𝑝′ =

𝐹1+𝐹0

𝑛1+𝑛0
 (5) 

 

From (4), and (5), 𝑝𝑖
′ represents the group network connection vector event rates and 𝑝𝑖

′ denotes the 

pooled network connection vector event rate 𝑝′ respectively. Moreover, 𝑝0 and 𝑝1 denote the expected and 

variance random values of the Bernoulli distribution. The higher the significance level obtained based on 

hyper-geometric distribution function, the higher is the probability of extracting the features. The pseudo-

code representation of hyper-geometric fisher exact Bernoulli feature extraction is given in Algorithm 1.  

 

Algorithm 1. Hyper-geometric fisher exact Bernoulli feature extraction 
Input: Features 𝐹 = {𝐵𝐹 ∪ 𝐶𝐹}, basic features 𝐵𝐹 = {𝑏𝑓1, 𝑏𝑓2, … , 𝑏𝑓9}, content features 𝐶𝐹 =
{𝑐𝑓1, 𝑐𝑓2, … . , 𝑐𝑓13} 
Output: Precise content-based and behavior-based significant feature 𝑆𝐹 = 𝑆𝐹1, 𝑆𝐹2, 𝑆𝐹3, … , 𝑆𝐹𝑛 

1: Begin 

2: For each Features 𝐹 
3: For each basic features 𝐵𝐹, content features 𝐶𝐹  
4: Obtain contingency table based on hyper-geometric distribution function as in (1), (2) 

and (3) 

4: Estimate significance level from a larger network feature vector set as in (4) and (5) 

5: Return (high significance feature 𝑆𝐹) 
6: End for  

7: End for  

8: End  

 

As given in the above hyper-geometric fisher exact Bernoulli feature extraction model, an objective 

function for the extraction of highly précised information is provided. At the first, a contingency table is used 
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for the hyper-geometric distribution function for modeling it. With the employment of this hyper-geometric 

distribution function, the probability of obtaining a certain number of successes for the corresponding 

network connection vector without the replacement of specific basic feature, content-related, and time-related 

traffic feature size. Also, it explores the relationship of two Bernoulli distributed random variables by 

employing fisher exact Boschloo’s test via contingency table. The weights are evaluated based on fisher 

exact Boschloo’s test that utilized a table for the behavior-based and content-based features that have to be 

extracted precisely to ensure a convergence rate better. 

 

2.2.  Polynomial regression support vector learning model 

With the extracted content-based and behavior-based network features, malware is detected using 

the polynomial regression support vector learning model. Malware detection refers to the procedure of 

detecting the malware presence by differentiating whether a software code is malicious or benign. Early 

malware detection helps the hackers from malicious users to intercept the data packets to compromise the 

information. By using the polynomial regression support vector learning model, the grouping of significant 

network features is performed via polynomial kernel, therefore it maximizes the margin of detection and 

classification. Let us consider training data (𝑎𝑖, 𝑏𝑖) for 𝑖 = 1,2,3, … 𝑛, where each 𝑎𝑖 is a real-valued 

significant feature vector of length 𝑛 and each 𝑏𝑖 ∈ {−1, +1} refers to the equivalent class label. This is 

mathematically formulated as (6). 

 

𝑇𝐷 = {(𝑎𝑖, 𝑏𝑖)| 𝑎𝑖 ∈ 𝑆𝐹, 𝑏𝑖 ∈ {−1, +1}} (6) 

 

In (6), 𝑎𝑖 represents the training sample consisting of 𝑛 samples with 𝑏𝑖 representing the binary label 

related to the 𝑖𝑡ℎ vector. Then, for a degree 𝑑 polynomials, the polynomial kernel is mathematically 

formulated as given in (7), where 𝑆𝐹 and 𝑐 refer to the vectors in the input space (i.e., significant features) 

and the parameter 𝑝 trading of higher order versus lower order. On the other hand, as a kernel, 𝐾 refers to the 

innermost consequence in a feature space based on the mapping parameter 𝜑 as formulated in (8).  

 

𝐾(𝑆𝐹, 𝑐) = (𝑆𝐹𝑇𝑐 + 𝑝)𝑑 (7) 

 

𝐾(𝑆𝐹, 𝑐) =< 𝜑(𝑎), 𝜑(𝑐) >  (8) 

 

The weight mapping between input space and feature space for each significant feature is then 

updated as given in (9), where 𝑆𝐹 represents the significant feature, 𝑅𝑆 is the random sample selected from 

the set of significant features, 𝑁𝑁(𝑆𝑅𝑆) denotes the nearest neighbor from the same random sample whereas 

𝑁𝑁(𝐷𝑅𝑆) represents the nearest neighbor from different samples respectively, the weight update of each 

feature is obtained. Therefore, the polynomial regression support vector learning is proposed for estimating 

the relationship between two network features using quadratic kernel feature mapping and a statistical 

pattern. 

 

𝑊(𝑆𝐹) = 𝑊(𝑆𝐹) −  
𝐷𝑖𝑓𝑓 [𝑆𝐹,𝑅𝑆,𝑁𝑁(𝑆𝑅𝑆)]

𝑛
+

𝐷𝑖𝑓𝑓 [𝑆𝐹,𝑅𝑆,𝑁𝑁(𝐷𝑅𝑆)]

𝑛
  (9) 

 

Therefore, to find the benign classes and attack classes, speeding up the process is performed for 

malware detection using (10) and (11). Based on the weight update and regrouping for a parameter 𝑝 

regression kernel results are obtained from (10) and (11). Then, for a hyperplane parametrized by vector 𝑤 

and a parameter 𝑝 the classification rule between malicious class and benign class for early malware 

detection is mathematically expressed as given in (12). 

 

𝐾(𝑆𝐹, 𝑐) =  (∑ 𝑆𝐹𝑖, 𝑐𝑖
𝑛
𝑖=1 +  𝑝)2 (10) 

 

= ∑ (𝑆𝐹𝑖
2)(𝑐𝑖

2) + ∑ ∑ (√2𝑆𝐹𝑖𝑆𝐹𝑗)(√2𝑐𝑖𝑐𝑗)𝑛
𝑗−1 + ∑ (√2𝑝𝑆𝐹𝑖)(√2𝑝𝑐𝑖)𝑛

𝑖=1
𝑛
𝑖=1

𝑛
𝑖=1  (11) 

 

𝐶𝑅 = ℎ𝑤(𝑆𝐹) = 𝑆𝑖𝑔𝑛 (𝑤𝑇𝑆𝐹 + 𝑐) (12) 

 

From (12), the function ℎ𝑤(𝑆𝐹) precisely classifies the training data or the significance feature, 

therefore, improving the margin of detection and classification. The given polynomial quadratic support 

vector learning for malware detection algorithm has the objective to detect the malware at an early stage. In a 

timely manner, a polynomial regression function is first modeled via quadratic kernel feature by mapping the 
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input space with the feature space. By performing this mapping, the relationships between two network 

features (i.e., content-based and behavior-based) are determined with which highly significant results (i.e., 

network features) are considered as a malicious class and less significant results (i.e., network features) are 

contemplated as benign classes. Finally, the vector kernel results, hyperplane is parameterized therefore 

improving the margin of detection and classification. The pseudo code representation of polynomial 

quadratic support vector learning for malware detection is given in Algorithm 2. 

 

Algorithm 2. Polynomial quadratic support vector learning for malware detection 
Input: Features 𝐹 = {𝐵𝐹 ∪ 𝐶𝐹}, basic features 𝐵𝐹 = {𝑏𝑓1, 𝑏𝑓2, … , 𝑏𝑓9}, content features 𝐶𝐹 =
{𝑐𝑓1, 𝑐𝑓2, … . , 𝑐𝑓13}, Threshold 𝑇𝑃 
Output: Timely and early malware detection  

1: Initialize high significance feature 𝑆𝐹 
2: Initialize threshold values 𝑇ℎ𝑟𝑒𝑠ℎ𝐻𝐸𝑟𝑟, 𝑇ℎ𝑟𝑒𝑠ℎ𝐷𝑢𝑟, 𝑇ℎ𝑟𝑒𝑠ℎ𝑁𝐹𝑖𝑙𝑒, 𝑇ℎ𝑟𝑒𝑠ℎ𝐹𝐿𝑜𝑔𝑖𝑛𝑠 
3: Begin 

4: For each high significance feature 𝑆𝐹 as input 
5: Formulate polynomial kernel as in (7) 

6: Perform quadratic kernel feature mapping as in (8) and (9) 

7: Evaluate weight update and regrouping as in (10) and (11) 

8: Classify between malicious class and benign class as in (12) 

9: Return (classified results)  

10: If 𝐶𝑅 < 𝑇ℎ𝑟𝑒𝑠ℎ𝐻𝐸𝑟𝑟 then no attack 
11: Else attack type is DDoS 

12: End if  

13: If 𝐶𝑅 < 𝑇ℎ𝑟𝑒𝑠ℎ𝐷𝑢𝑟 then no attack 
14: Else attack type is Probing 

15: End if  

16: If 𝐶𝑅 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑁𝐹𝑖𝑙𝑒 then no attack 
17: Else attack type is U2R 

18: End if  

19: If 𝐶𝑅 < 𝑇ℎ𝑟𝑒𝑠ℎ𝐹𝐿𝑜𝑔𝑖𝑛𝑠 then no attack 
20: Else attack type is R2L 

21: End if 

22: End for  

23: End  

 

 

3. EVALUATION OF PERFORMANCE PARAMETERS  

In the results section of the research, the underlying definitions of the performance parameters 

employed assess the proposed method for malware detection. The proposed method is conducted for fisher 

exact Boschloo and polynomial vector learning to detect the malware attack. Based on the behavior and 

content of the network features, the implementation is done in Java. 

Fair comparisons for a similar number of connections or counts are utilized in the network for 

anomaly detection [3]. An in-depth analysis is proposed to be made for malware detection performance using 

FEB-PVL with respect to three different parameters, attack detection time, attack detection overhead, and 

precision for estimating the malware detection performance. Attack detection time symbolizes the time 

consumed in detecting different types of attacks, namely, DDoS, probing, U2R, and R2L, respectively. This 

is mathematically formulated as given in (13). 

 

𝐴𝐷𝑇 = ∑ 𝐶𝑜𝑢𝑛𝑡𝑖 ∗ 𝑇𝑖𝑚𝑒 (𝐴𝐷[𝐶𝑏𝑎𝑠𝑒𝑑 + 𝐵𝑏𝑎𝑠𝑒𝑑])𝑛
𝑖=1  (13) 

 

From (13), the attack detection time 𝐴𝐷𝑇 is measured based on the number of connections taken 

into consideration for simulation 𝐶𝑜𝑢𝑛𝑡𝑖 and the time consumed in detecting the content-based 𝐶𝑏𝑎𝑠𝑒𝑑 and 

behavior-based 𝐵𝑏𝑎𝑠𝑒𝑑 network feature, respectively. It is measured in terms of milliseconds (ms). The 

second parameter of significance is the attack detection overhead. A small portion of memory is said to be 

consumed during the attack detection process and this is mathematically formulated as given in (14).  

 

𝐴𝐷𝑂 = ∑ 𝐶𝑜𝑢𝑛𝑡𝑖 ∗ 𝑀𝑒𝑚 (𝐴𝐷[𝐶𝑏𝑎𝑠𝑒𝑑 + 𝐵𝑏𝑎𝑠𝑒𝑑])𝑛
𝑖=1  (14) 

 

From (14), the attack detection overhead 𝐴𝐷𝑂 is measured based on the connections involved 

𝐶𝑜𝑢𝑛𝑡𝑖 and the memory consumed in detecting content-based 𝐶𝑏𝑎𝑠𝑒𝑑 and behavior-based network features 

𝐵𝑏𝑎𝑠𝑒𝑑. It is measured in terms of kilobytes (KB). Finally, precision quantifies the number of positive class 

predictions that belong to the positive class. This is mathematically formulated as given in (15), where the 

precision rate 𝑃 is estimated based on the number of malware cases identified as malware 𝑁𝑢𝑚𝑀−𝑀 and the 

number of benign cases identified as malware 𝑁𝑢𝑚𝐵−𝑀 respectively.  
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𝑃 =  
𝑁𝑢𝑚𝑀−𝑀  (𝑇𝑃)

𝑁𝑢𝑚𝑀−𝑀 (𝑇𝑃)+𝑁𝑢𝑚𝐵−𝑀(𝐹𝑃)
 (15) 

 

3.1.  Dataset details 

In this section, the detailed analysis of the network anomaly dataset [37] considered for detecting 

different types of malwares is discussed. The majority of anomaly-based detection techniques have been the 

subject of extensive research in the intrusion detection field for a very long period, whereas anomaly 

detection is frequently thought of as a more potent technique in academic research because of its theoretical 

potential for addressing various attacks. Three different types of network connection vectors are called basic 

features of each network connection vector; content-related features of each network connection vector are 

analyzed. 

 

3.2.  Performance analysis of attack detection time 

Table 2 shows the results of attack detection time using three methods, FEB-PVL, hypervisor 

content-based malware detection [21], and behavior-based malware detection [22] respectively. From the 

results, it is evident that FEB-PVL consumes comparatively minimum attack detection time than hypervisor 

content-based malware detection [21] and behavior-based malware detection [22]. For a detailed comparison 

of the methods, the indicator line chart is shown in Figure 2.  

 

 

Table 2. Attack detection time using FEB-PVL, hypervisor content-based malware detection [21] and 

behavior-based malware detection [22] 
Count Attack detection time (ms) 

FEB-PVL Hypervisor content-based malware detection Behavior-based malware detection 
15 6.075 6.375 7.275 
30 7.085 10.115 13.315 
45 9.325 13.255 19.255 
60 11.515 15.125 20.215 
75 15.355 18.315 25.325 
90 19.215 25.215 34.135 
105 21.535 29.315 40.55 
120 28.595 40.235 49.215 
135 35.455 45.155 53.585 
150 41.255 51.255 60.215 

 

 

 
 

Figure 2. Graphical representation of attack detection time 

 

 

From Figure 2, performances were compared in terms of average attack detection time for distinct 

numbers of connections (i.e., count) ranging from 15 to 150. The results obtained show that the attack 

detection time of the proposed method FEB-PVL is better and rise more steadily than the other methods, 

[21], [22]. Moreover, it can also be inferred from Figure 2 that the proposed FEB-PVL method consumes less 

time to detect both the content and behavior types of attacks. Both of the models outperform [21], [22] in 

terms of both qualities of services and convergence speed. Also from the figure, when the overall network 

connection vector (i.e., count) increases, the proposed method exhibits more stability. But in the case of [21], 

[22], the probability of identifying attack detection time becomes robust. Hence, the FEB-PVL method 

discloses adequate convergence features. The attack detection time is minimized considerably upon the 

increase in the number of connections. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Fisher exact Boschloo and polynomial vector learning for … (Sheelavathy Veerabhadrappa Kudrekar) 

2949 

3.3.  Performance analysis of attack detection overhead 

Table 3 lists the results of attack detection overhead using three methods, FEB-PVL, Hypervisor 

content-based malware detection [21] and behavior-based malware detection [22], respectively. From the 

results, it is evident that FEB-PVL is better than, Hypervisor content-based malware detection [21] and 

behavior-based malware detection [22] in terms of attack detection overhead. Figure 3 illustrates the average 

attack detection overhead of the FEB-PVL, hypervisor content-based malware detection [21], and behavior-

based malware detection [22]. 

 

 

Table 3. Attack detection overhead using FEB-PVL, hypervisor content-based malware detection [21]  

and behavior-based malware detection [22] 
Count Attack detection overhead (KB) 

FEB-PVL Hypervisor content-based malware detection Behavior-based malware detection 
15 45 60 75 
30 60 90 120 
45 90 135 180 
60 120 180 240 
75 225 300 375 
90 270 360 450 
105 315 420 525 
120 360 480 600 
135 405 540 675 
150 450 600 750 

 

 

Attack detection overhead is an essential performance parameter as it denotes the detection 

overhead and also measures to which extent the network connection vectors were busy to detect the malware. 

The result represents that the attack detection overhead of FEB-PVL is maintained at a high level which 

means that it has the lowest detection overhead compared with hypervisor content-based malware detection 

[21] and behavior-based malware detection [22]. Moreover, hypervisor content-based malware detection [21] 

shows good performance in comparison with behavior-based malware detection [22]. However, the 

divergence between the proposed method and these state-of-the-art methods, [21], [22] is predominant and 

hence corroborates the significance of the proposed method based on learning. Therefore, the FEB-PVL 

method has the adaptability to probe, explore and detect both content-based and behavior-based malware 

intelligently. The comparison between the proposed method FEB-PVL shows that [22] exhibit less 

performance than [21]. Also, the proposed FEB-PVL detects both the types of malwares. 

 

 

 
 

Figure 3. Graphical representation of attack detection overhead 

 

 

4. COMPARATIVE ANALYSIS OF PRECISION 

Finally, Table 4 lists the results of precision rate using three methods, FEB-PVL, hypervisor 

content-based malware detection [21] and behavior-based malware detection [22] respectively. From the 

results, it is inferred that with the deployment of the FEB-PVL method, precision is comparatively increased 

than enhanced heterogeneous earliest finish time based on rule (EHEFT-R) [21] and quantitative risk 

assessment system (QRAS) [22]. Figure 4 illustrates the precision rate for 150 different network connections. 

From Figure 4, it is inferred that the precision rate is neither directly proportional nor inversely 

proportional to the number of network connection vectors provided as input. In other words, increasing the 
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number of network connection vectors neither increases the precision rate nor decreases the precision rate. 

However, the precision rate was higher for the existing methods [21], [22] when compared to the proposed 

FEB-PVL method. The hyper-geometric fisher exact Bernoulli feature extraction algorithm can efficiently 

control the drawback of [21], [22], therefore extracting the precise content-related and behavior-related 

features via hyper-geometric distribution function. This in turn increases the true positive rate (i.e., the 

number of malicious is identified as malicious and the number of benign is identified as benign cases) and 

reduces the false positive rate and hence increasing the precision rate using FEB-PVL by 7% compared to 

[21] and 14% compared to [22] respectively.  

 

 

Table 4. Precision using FEB-PVL, hypervisor content-based malware detection [21]  

and behavior-based malware detection [22] 

Count 
Precision (%) 

FEB-PVL Hypervisor content-based malware detection Behavior-based malware detection 
15 0.86 0.8 0.73 
30 0.85 0.79 0.73 
45 0.83 0.77 0.72 
60 0.81 0.76 0.72 
75 0.81 0.76 0.72 
90 0.81 0.77 0.73 
105 0.82 0.78 0.74 
120 0.83 0.78 0.74 
135 0.85 0.79 0.75 
150 0.87 0.79 0.75 

 

 

 
 

Figure 4. Graphical representation of precision 

 

 

5. CONCLUSION  

Detection of malicious code or malware at an early stage saves the time and money involved in the 

software engineering process. Malicious code detection in recent years has been designed using learning 

techniques. In this work, a fisher exact Boschloo and polynomial vector learning (FEB-PVL) performs both 

content and behavioral-based malware detection with early convergence and speed. First, fisher exact 

Boschloo’s test Bernoulli feature extraction model is designed based on a contingency table and hyper-

geometric distribution function. The polynomial regression support vector learning for early malware 

detection is proposed by employing quadratic kernel feature mapping for significant classification between 

benign classes and attack classes. The simulation results demonstrate the proposed FEB-PVL method 

achieved a 7% improvement in precision when compared with existing hypervisor-assisted dynamic malware 

analysis. Also, comparison simulation results disclosed that the proposed method outperforms recent state-of-

the-art malware detection methods in terms of attack detection time, attack detection overhead, and precision 

rate. 
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