
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 13, No. 3, June 2023, pp. 2589~2599

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i3.pp2589-2599  2589

Journal homepage: http://ijece.iaescore.com

Convolutional neural network based key generation for security

of data through encryption with advanced encryption standard

Ismail Negabi, Smail Ait El Asri, Samir El Adib, Naoufal Raissouni
Remote Sensing and GIS Unit, National School of Applied Sciences, University of Abdelmalek Essaadi, Tetuan, Morocco

Article Info ABSTRACT

Article history:

Received Apr 4, 2022

Revised Aug 5, 2022

Accepted Sep 2, 2022

 Machine learning techniques, especially deep learning, are playing an

increasingly important role in our lives. Deep learning uses different models

to extract information from the data. They have already had a huge impact in
areas such as health (i.e., cancer diagnosis), self-driving cars, speech

recognition, and data encryption. Recently, deep learning models, including

convolutional neural networks (CNN), have been proven to be more

effective in the security field. Moreover, the National Institute of Standards
and Technology (NIST) recommends the advanced encryption standard

(AES) algorithm as the most often utilized encryption method in several

security applications. In this paper, a crypt-intelligent system (CIS) capable

of securing data is proposed. It is based on the combination of the
performance of CNN with the AES, by substituting the key expansion unit

of AES with a CNN architecture that performs the key generation. Our CIS

is described using very high-speed integrated circuit (VHSIC) hardware

description language (VHDL), simulated by ModelSim, synthesized, and

implemented with Xilinx ISE 14.7. Finally, the Airtex-7 series XC7A100T

device has achieved an encryption throughput of 965.88 Mbps. In addition,

the CIS offers a high degree of flexibility and is supported by

reconfigurability, based on the experimental results, if sufficient resources
are available, the architecture can provide performance that can satisfy

cryptographic applications.

Keywords:

Advanced encryption standard

Convolutional neural networks

Cryptography

Deep learning

Embedded systems

Field programmable gate arrays

Hardware description language

This is an open access article under the CC BY-SA license.

Corresponding Author:

Ismail Negabi

Remote Sensing and Geographic Information System Unit, National School of Applied Sciences,

University of Abdelmalek Essaadi

Tetuan, Morocco

Email: ismail.negabi@etu.uae.ac.ma

1. INTRODUCTION

In the context of deep learning models [1]–[4], a convolutional neural network (CNN) is a type of

intelligent system intended to imitate the biological neurons network found in the human mind [2], [5]. CNN

is used to classify data, detect objects, encryption and decryption data, and generate encryption keys [6].

Generally, CNN architecture is composed of a number of convolutional layers, pooling layers, and fully

connected layers [1], [7], [8]. CNNs are linear layers that share their weights in space and are able to

recognize patterns at different locations. The pooling layers are non-linear, reducing the size of the space to

minimize the number of parameters. The most popular pooling functions are max pooling [4], [8], which

returns the highest value in a specified range, average pooling, which returns the average value for a given

range, and fully connected layers which return results that depend on the entire input.

Data security [9] is becoming crucial for a variety of embedded applications. Resilience to attacks

on cryptographic systems is one of the main properties that cryptographic algorithms have to offer. In many

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 2589-2599

2590

security applications, advanced encryption standard (AES) [10]–[12] has surpassed data encryption standard

(DES) [13]–[15] as the most extensively utilized and secure encryption algorithm. It provides the perfect

integration of security and different encryption key sizes, efficiency, performance, ease of implementation

and flexibility [11], [12], [16], although the size of the key influences security strength. The problem of

energy consumption has lately become more prominent, particularly in embedded systems used in digital

devices, where smaller space and reduced energy consumption are critical. The AES algorithm requires

extensive hardware/software implementation. In embedded system applications, hardware implementation is

the most expensive component [10]–[12], [16].

In this article, a CNN architecture is proposed to generate encryption keys used by the AES [12],

[17] algorithm to build smart cryptosystems capable of protecting data. This technique is simpler to

implement than using standard AES and non-linear operations. CNN [7] should be reversible and capable of

encrypting and decrypting plaintext/ciphertext with very small error rates. This includes considering the

architectural design of the CNN, modifying it in software, and testing the simulation results to provide an

AES-128 based CNN. The internal structure of CNN components will be considered in the design, and

further research will be conducted on issues that have a significant impact on the implementation of CNNs.

2. BACKGROUND

CNNs are a subset of artificial neural networks (ANN) that use convolution rather than general

matrix multiplication in at least one of their layers. The combination of CNN performance and the AES

algorithm improves data security. This section provides detailed information on CNN and the AES algorithm.

2.1. Convolutional neural networks

Deep learning performs best than other network learning algorithms [1], [2], [4], [18], as it can

obtain more abstract high-level features from the raw input. Today, deep learning is a class of machine

learning [7], [9] algorithms with different variants of deep architecture. CNN and stacked auto-encoders

(SAE) are the most prevalent and popular architectures [2], [7]. However, they are extremely slow to train,

especially when dealing with huge databases. CNNs are deep neural networks (DNNs) and biologically

inspired variants of multilayer perceptron [7]. It is often used in images/videos, computer vision, and data

encryption/decryption. We distinguish two parts, the first part, which we call the convolutional part of the

model, and the second part, which we will call the classification part of the model corresponding to a

multilayer perceptron model. The general architecture of CNN is shown in Figure 1.

− Convolution layer (Conv): This layer is essential to CNN and is always present as at least the first layer.

Its goal is to identify the existence of a certain set of characteristics in the input data. Its data are

convolved with some filters, while the convolution operators' function which is based on three hyper-

parameters (depth, pitch, and margin) allows sizing of the volume of the convolution layer.

− Max pooling layer (Pool): Frequently, the pooling layer is inserted between two convolution layers: it

takes a set of feature maps as input and performs the pooling operation. The purpose of this process is to

reduce the size of the data while retaining their vital properties. Using the max operation, this layer

operates independently on each depth slice of the input data and resizes it spatially.

- Fully connected layer (FC): This is the final layer of a CNN. It performs a weighted sum and potentially

an activation function to the values received as input, which is a vector and generates a new vector as

output.

Figure 1. Basic CNN architecture

https://www.upgrad.com/blog/basic-cnn-architecture/

Int J Elec & Comp Eng ISSN: 2088-8708 

Convolutional neural network based key generation for security of data through … (Ismail Negabi)

2591

2.2. Advanced encryption standard (AES)

The advanced encryption standard (AES) is a block cipher that employs a 4 × 4 array with input,

output and state block 128-bit [3], [7], [10], [19]. This is identified by Nb = 4 which illustrates the number of

words of 32-bits in the state matrix. The length of the encryption key on the AES algorithm is 128, 192, or

256-bit, these lengths are identified by Nk [11], [12], [16]. It determines the number of rounds to execute

when running the AES, this number is identified by Nr, where Nr = 10 when Nk = 4, Nr = 12 when

Nk = 6, and Nr = 14 when Nk = 8 [20]. Table 1 shows the AES parameters (key, block, and round) that meet

this requirement.

Table 1. AES parameters
Algorithm AES Key Length (Nk words) Block Size (Nb words) No of Rounds (Nr)

AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

The AES encryption algorithm performs a round function consisting of 4 operations for encryption

and decryption as shown in Figure 2: i) the SubBytes transformation, which is based on the S-box table; ii) the

ShiftRows transformation; iii) the MixColumns transformation, which shuffles data in each column of the state

matrix, and iv) the AddRoundKey transformation, which adds a round key to the state matrix [10], [19], [20].

Figure 2. Block diagram for AES encryption and decryption

2.2.1. Encryption

The input data is sent to the “State” matrix for encryption. After the first round of encryption key

addition, the state matrix is modified, using 10, 12, or 14 rounding functions (depending upon the key size),

with the last round notably deviating from the first Nr-1 rounds. After that, the last state is transmitted to the

output data. The round function is configured with a key expansion schedule, which consists of a 1-D vector

of 4-byte words. The transformations of the AES algorithm are SubBytes (SB), ShiftRows (SR), MixColumns

(MC), and AddRoundKey (AK) [10], [16], [19], [21].

𝑆𝑡𝑎𝑡𝑒 = [

𝑑15 𝑑11 𝑑7 𝑑3

𝑑14 𝑑10 𝑑6 𝑑2

𝑑13

𝑑12

𝑑9

𝑑8

𝑑5

𝑑4

𝑑1

𝑑0

] (1)

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 2589-2599

2592

a. SubBytes (SB) transformation

The SB transformation is a nonlinear byte change that uses a substitution table S-box to work

separately on each byte of the state using the S-box table. The values these 256 integers (0 to 255) create are

listed in this table. Thus, the SB transformation on the state is described by (2).

𝑆𝐵(𝑆𝑡𝑎𝑡𝑒) =

[

 𝑆𝐵(𝑑15) 𝑆𝐵(𝑑11) 𝑆𝐵(𝑑7) 𝑆𝐵(𝑑3)

 𝑆𝐵(𝑑14) 𝑆𝐵(𝑑10) 𝑆𝐵(𝑑6) 𝑆𝐵(𝑑2)
𝑆𝐵(𝑑13)
𝑆𝐵(𝑑12)

𝑆𝐵(𝑑9)
𝑆𝐵(𝑑8)

𝑆𝐵(𝑑5)
𝑆𝐵(𝑑4)

𝑆𝐵(𝑑1)
𝑆𝐵(𝑑0)

]

 (2)

b. ShiftRows (SR) transformation

The bytes in the final three rows of the report are shifted to the left during SR transformation by

varying amounts of bytes. The first row (r = 0) is unshifted, the second row (r=1) is shifted by one byte, the

third row (r=2) by two bytes, and the last row (r=3) by three bytes. As a result, the SR transformation is

described by (3).

𝑍 = 𝑆𝑅(𝑆𝐵(𝑆𝑡𝑎𝑡𝑒)) =

[

 𝑆𝐵(𝑑15) 𝑆𝐵(𝑑11) 𝑆𝐵(𝑑7) 𝑆𝐵(𝑑3)

𝑆𝐵(𝑑10) 𝑆𝐵(𝑑6) 𝑆𝐵(𝑑2) 𝑆𝐵(𝑑14)

𝑆𝐵(𝑑5)
𝑆𝐵(𝑑0)

𝑆𝐵(𝑑1)
 𝑆𝐵(𝑑12)

𝑆𝐵(𝑑13)
𝑆𝐵(𝑑8)

𝑆𝐵(𝑑9)
𝑆𝐵(𝑑4)

]

 (3)

c. MixColumns (MC) transformation

Each column of the State is treated as a four-term polynomial by the MC transformation, which acts

column-by-column. Considered to be polynomials over GF(28), the columns are multiplied modulo x4+1 by a

constant polynomial a(x), which is (4).

𝑎(𝑥) = {03}𝑥3 + {01}𝑥2 + {01}𝑥 + {02} (4)

This may be represented by the matrix multiplication function (5) and (6).

𝑅(𝑥) = 𝑎(𝑥) ⨂ 𝑍(𝑥) (5)

[

𝑅0,𝑐

𝑅1,𝑐

𝑅2,𝑐

𝑅3,𝑐]

= 𝑀𝐶 (𝑆𝑅(𝑆𝐵 (𝑆𝑡𝑎𝑡𝑒))) = [

02
01

03
02

01 01
03 01

01 01 02 03
03 01 01 02

]⨂

[

𝑍0,𝑐

𝑍1,𝑐

𝑍2,𝑐

𝑍3,𝑐]

 𝑓𝑜𝑟 0 ≤ 𝑐 ≤ 𝑁𝑏 (6)

This multiplication matrix replaces the 4-bytes in each column with:

𝑅0 = ({02}. 𝑍0) ⊕ ({03}. 𝑍1) ⊕ 𝑍2 ⊕ 𝑍3

𝑅1 = 𝑍0 ⊕ ({02}. 𝑍1) ⊕ ({03}. 𝑍2) ⊕ 𝑍3

𝑅2 = 𝑍0 ⊕ 𝑍1 ⊕ ({02}. 𝑍2) ⊕ ({03}. 𝑍3)
𝑅3 = ({03}. 𝑍0) ⊕ 𝑍1 ⊕ 𝑍2 ⊕ ({02}. 𝑍3)

d. AddRoundKey (AK) transformation

During AddRoundKey (AK), each bit of the state is added with the round key (rk) using the

xor function. Each round key is composed of Nb words from the key schedule. Each of these Nb words are

added to the state’s columns, resulting in (7).

𝐴𝐾(𝑅) = [

𝑅15 𝑅11 𝑅7 𝑅3

𝑅14 𝑅10 𝑅6 𝑅2

𝑅13

𝑅12

𝑅9

𝑅8

𝑅5

𝑅4

𝑅1

𝑅0

] ⊕ [

𝑟𝑘15 𝑟𝑘11 𝑟𝑘7 𝑟𝑘3

𝑟𝑘14 𝑟𝑘10 𝑟𝑘6 𝑟𝑘2

𝑟𝑘13

𝑟𝑘12

𝑟𝑘9

𝑟𝑘8

𝑟𝑘5

𝑟𝑘4

𝑟𝑘1

𝑟𝑘0

] (7)

In the AES-128 algorithm, the first (rk0), which is the initial encryption key, is used in the additional

AK at the beginning of the first round. For each AK transformation, the round key (𝑟𝑘) is calculated with the

key schedule. 𝑟𝑘𝑖, where 1 ≤ 𝑖 ≤ 10, is determined from the last 𝑟𝑘𝑖−1. Let 𝑞(𝑗) (0 ≤ 𝑗 ≤ 3) be the column 𝑗 of

𝑟𝑘𝑖−1 and let 𝑤(𝑗) be the column 𝑗 of 𝑟𝑘𝑖. Then the updated 𝑟𝑘𝑖 is determined as:

Int J Elec & Comp Eng ISSN: 2088-8708 

Convolutional neural network based key generation for security of data through … (Ismail Negabi)

2593

w(0) = q(0) ⊕ (Rot (SB(q(3))) ⊕ rconi

w(1) = q(1) ⊕ w(0)
w(2) = q(2) ⊕ w(1)
w(3) = q(3) ⊕ w(2)

The rconi (round constant) contain values [02𝑖−1; {00}; {00}; {00}]. Rot is a function that shifts over 1-byte

from a 4-byte input.

2.2.2. Key expansion

The AES encryption algorithm uses an encryption key and a key expansion to build a key schedule

[20]. It produced a total of Nb (Nr+1) words: a first set of Nb words are needed by the algorithm, and every

round Nr needs Nb words of key data. The final key schedule [wi] is a linear array of 4-byte words, with i

being a value between 0 and Nb(Nr + 1).

SubWord, which is a function, takes four bytes as the input words and generates output words by

applying the S-box table to each of them. The RotWord takes as input words [a1, a2, a3, a4], executes a cyclic

shift, and returns the word [a1, a2, a3, a4]. The values of the round constant word array, Rcon[i] has the values

given by [xi−1, {00}, {00}, {00}], with xi−1 are powers of x (denoted as {02}) in the GF(28) field.

In order to fill the encryption Key, the expanded key’s first Nk words are used. Every word after

that, w[i], is the xor function of the word before it, w[i − 1] and Nk place earlier w [i − Nk]. For words in place

that are a multiple of Nk, a process is done to w [i − 1] before to the xor function, followed by a xor with a

Rcon[i]. This process is a cyclic rotation of the bytes in a RotWord, followed by a table search on the 4-bytes

of the SubWord. It is significant to mentioned that the key expansion process for 256-bit encryption keys

(Nk = 8) is somewhat various from that for 128 and 192-bit. The SubWord is performed to w[i − 1] before

the xor function if Nk = 8 and i − 4 is a multiple of Nk as shown in Algorithm 1.

Algorithm 1. Key expansion
Key expansion (byte key[4*Nk], word w[Nb*(Nr+1)]Nk

begin

 word temp

 i=0

 while (i<Nk)

 w[i]=word(key[4*i+1], key[4*i+2], key[4*i+3])

 i=i+1

 end while

 i=Nk

 while(i<Nb*(Nr+1))

 temp=w[i-1]

 if(i mod Nk=0)

 temp=subword(rotword(temp)) xor rcon[i/Nk]

 else if(Nk>6 and i mod Nk=4)

 temp=subword (temp)

 end if

 w[i]=w[i-Nk] xor temp

 i = i+1

 end while

end

2.2.3. Decryption

The reverse encryption transformations (InvSubBytes (Inv SB), InvShiftRows (Inv SR),

InvMixColumns (Inv MC), and AddRoundKey (AK)) for the AES encryption algorithm are built in the

opposite direction of the encryption process. Each encryption transformation step is carried out in the

opposite direction as shown in Figure 2. The main reverse encryption rounds are likewise performed in the

opposite direction. AK is followed by a byte substitution, a reverse row shift, a reverse column shuffle, and a

key addition round. The regulations for the final round remain unchanged. The reverse column shuffle step is

similar to the encryption column shuffle step, but it uses a different fixed polynomial. The bytes in the row

are cycled by an appropriate offset in the row. The first row has not been altered in any manner. The second

and third rows have been shifted to the right [16], [20].

3. RELATED WORK

In the past decades, research on combining deep learning models with cryptographic algorithms has

gained importance. Many academic researchers have proposed various methods for designing intelligent

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 2589-2599

2594

systems capable of encrypting and decrypting data. The majority of these architectures are also efficient in

terms of execution time, security level, and propagation latency.

Jogdand and Bisalapur [22] suggested a key generation technique based on neural networks. This

technique’s performance has been assessed in terms of security, synchronization time, and unpredictability.

While performing key generation, the current work also performs randomization. They recommended that in

the future, the generated keys should be distributed securely. For encryption and decryption, Satapathy et al.

[23] described a neural key generation using a Hopfield network (HNBNKG). Instead of providing the secret

key, their solution assures that the weight vectors of the trained network may be exchanged between the

sender and receiver to prevent attacks. This has also been prioritized in the work given.

The AES encryption algorithm can manage any plaintext and key size combination (128, 192, or

256-bit). Many researchers have used various approaches for implementation based on various technical

criteria, such as AES strength execution, AES for executing with efficiency or effectiveness, and AES for

implementing hardware and software. In the literature, several hardware solutions have been published, some

of them make use of field programmable gate arrays (FPGAs), while others make use of application-specific

integrated circuits (ASICs) [17]. Adib and Raissouni [16] explain that Rijmen suggested an AES hardware

implementation based on composite fields, which was the first important step in compacting the AES

implementation. Rijmen also presented a similar approach concept that has been used in FPGA and ASIC.

Unfortunately, the majority of those solutions are too expensive for use in real-world embedded applications.

4. PROPOSED CRYPT-INTELLIGENT SYSTEM

In this section, the main idea is to design a crypt-intelligent system (CIS) based on CNN and

AES-128, which can perform encryption and decryption processes with high performance and extremely low

error rates. CNNs are a powerful tool for controlling nonlinear systems. Because the network’s purpose is to

limit the system’s cracking ability by utilizing non-linear activation functions, its non-linear approximation

characteristic makes it more effective in practical applications. Our proposed cryptosystem is based on the

AES algorithm, a CNN network, a memory unit module, and a control unit module as shown in Figure 3.

These units are presented in the following subsections.

Figure 3. The proposed CIS for AES-128 implementation with CNN

4.1. CNN execution on CIS

The authors proposed the use of CNN for key generation, which has included the performance of

CNN in the encryption/decryption process. The combination of CNN with AES is achieved by substituting

Int J Elec & Comp Eng ISSN: 2088-8708 

Convolutional neural network based key generation for security of data through … (Ismail Negabi)

2595

the key expansion module in the AES with CNN architecture capable of generating the keys similar to the

substituted module with the introduction of nonlinearity of CNNs. The CNN module takes as input a matrix

of size 4 × 32 that corresponds to the encryption key divided into four blocks of size 32-bits. The output is a

matrix of size 10 × 128, with each row representing a generated key that will be used in the steps of the AES

algorithm. This module generates 10 keys at a time and stores them in the RAM, the control unit is

responsible for using them at specific moments in the system operation.

In order to train the CNN module, a script programmed in Python language is used to generate a

dataset that consists of the input keys and those generated based on the operation of the key expansion

module of the AES. The module was trained on the generated dataset using “Adam” as the weight

optimization algorithm. The activation function utilized in the output layer is Softmax, whereas the activation

function used in the other layers is rectified linear unit (ReLU). Binary-cross entropy was used as the error

function. The 128-bit input keys are randomly generated, which ensures that most possible cases for an

encryption key are covered. The generated dataset is divided into two parts: 80% for training the module and

20% for validation.

4.2. AES execution on CIS

The AES performs 4 transformations (SubBytes (SB), ShiftRows (SR), MixColumns (MC), and

AddRoundKey (AK)) on each round. The description below explains how the lookup tables and

corresponding operations of the AES round are obtained: The first quarter of the round’s SubBytes (SB) and

MixColumns (MC) operations can be described as (8) and (9).

𝐻 = 𝑀𝐶 (𝑆𝐵(𝑆𝑅(𝑆𝑡𝑎𝑡𝑒))) = 𝐴(𝑥) ⊗ 𝑆𝐵(𝑆𝑅(𝑆𝑡𝑎𝑡𝑒)) (8)

𝐴(𝑥) = [

02 03 01 01
01 02 03 01
01
03

01
01

02
01

03
02

] (9)

The state matrix is the transformed data, H is the result of the transformation of MC, where A(x) is

the multiplicative vectors matrix. It is possible to use a logarithm table to do the aforementioned

multiplication. The implementation of the AES is based on combining the MC and SB transformations in one

convenient table. Compared to the 8 × 32 bit wide T-box tables, the 4 tables (G0 to G3) used are 8 × 8 bit,

containing 256 values (0 to 255) given as [16]:

𝐺0(𝑎) = 𝐿𝑜𝑔′ ((𝐿𝑜𝑔(01)) + (𝐿𝑜𝑔(𝑆𝐵(𝑎))))

𝐺1(𝑎) = 𝐿𝑜𝑔′ ((𝐿𝑜𝑔(01)) + (𝐿𝑜𝑔(𝑆𝐵(𝑎))))

𝐺2(𝑎) = 𝐿𝑜𝑔′ ((𝐿𝑜𝑔(02)) + (𝐿𝑜𝑔(𝑆𝐵(𝑎))))

𝐺3(𝑎) = 𝐿𝑜𝑔′ ((𝐿𝑜𝑔(03)) + (𝐿𝑜𝑔(𝑆𝐵(𝑎))))

Such that 𝑎 represents the elements of the S-box table, SB represents the transformation 𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝑆𝐵) and

𝐿𝑜𝑔/𝐿𝑜𝑔′ represents Logarithm/Antilogarithm respectively. The results from 4 tables (G0 to G3) will be

XORed to produce the final result (H), as shown by:

𝐻15 = 𝐺2(𝑑15) 𝑥𝑜𝑟 𝐺3(𝑑10) 𝑥𝑜𝑟 𝐺1(𝑑5) 𝑥𝑜𝑟 𝐺0(𝑑0) 𝑥𝑜𝑟 𝑟𝑘15

𝐻14 = 𝐺0(𝑑15) 𝑥𝑜𝑟 𝐺2(𝑑10) 𝑥𝑜𝑟 𝐺3(𝑑5) 𝑥𝑜𝑟 𝐺1(𝑑0) 𝑥𝑜𝑟 𝑟𝑘14

𝐻13 = 𝐺1(𝑑15) 𝑥𝑜𝑟 𝐺0(𝑑10) 𝑥𝑜𝑟 𝐺2(𝑑5) 𝑥𝑜𝑟 𝐺3(𝑑0) 𝑥𝑜𝑟 𝑟𝑘13
𝐻12 = 𝐺3(𝑑15) 𝑥𝑜𝑟 𝐺1(𝑑10) 𝑥𝑜𝑟 𝐺0(𝑑5) 𝑥𝑜𝑟 𝐺2(𝑑0) 𝑥𝑜𝑟 𝑟𝑘12
𝐻11 = 𝐺2(𝑑11) 𝑥𝑜𝑟 𝐺3(𝑑6) 𝑥𝑜𝑟 𝐺1(𝑑1) 𝑥𝑜𝑟 𝐺0(𝑑12) 𝑥𝑜𝑟 𝑟𝑘11
𝐻10 = 𝐺0(𝑑11) 𝑥𝑜𝑟 𝐺2(𝑑6) 𝑥𝑜𝑟 𝐺3(𝑑1) 𝑥𝑜𝑟 𝐺1(𝑑12) 𝑥𝑜𝑟 𝑟𝑘10
𝐻9 = 𝐺1(𝑑11) 𝑥𝑜𝑟 𝐺0(𝑑6) 𝑥𝑜𝑟 𝐺2(𝑑1) 𝑥𝑜𝑟 𝐺3(𝑑12) 𝑥𝑜𝑟 𝑟𝑘9
𝐻8 = 𝐺3(𝑑11) 𝑥𝑜𝑟 𝐺1(𝑑6) 𝑥𝑜𝑟 𝐺0(𝑑1) 𝑥𝑜𝑟 𝐺2(𝑑12) 𝑥𝑜𝑟 𝑟𝑘8
𝐻7 = 𝐺2(𝑑7) 𝑥𝑜𝑟 𝐺3(𝑑2) 𝑥𝑜𝑟 𝐺1(𝑑13) 𝑥𝑜𝑟 𝐺0(𝑑8) 𝑥𝑜𝑟 𝑟𝑘7
𝐻6 = 𝐺0(𝑑7) 𝑥𝑜𝑟 𝐺2(𝑑2) 𝑥𝑜𝑟 𝐺3(𝑑13) 𝑥𝑜𝑟 𝐺1(𝑑8) 𝑥𝑜𝑟 𝑟𝑘6
𝐻5 = 𝐺1(𝑑7) 𝑥𝑜𝑟 𝐺0(𝑑2) 𝑥𝑜𝑟 𝐺2(𝑑13) 𝑥𝑜𝑟 𝐺3(𝑑8) 𝑥𝑜𝑟 𝑟𝑘5
𝐻4 = 𝐺3(𝑑7) 𝑥𝑜𝑟 𝐺1(𝑑2) 𝑥𝑜𝑟 𝐺0(𝑑13) 𝑥𝑜𝑟 𝐺2(𝑑8) 𝑥𝑜𝑟 𝑟𝑘4
𝐻3 = 𝐺2(𝑑3) 𝑥𝑜𝑟 𝐺3(𝑑14) 𝑥𝑜𝑟 𝐺1(𝑑9) 𝑥𝑜𝑟 𝐺0(𝑑4) 𝑥𝑜𝑟 𝑟𝑘3

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 2589-2599

2596

𝐻2 = 𝐺0(𝑑3) 𝑥𝑜𝑟 𝐺2(𝑑14) 𝑥𝑜𝑟 𝐺3(𝑑9) 𝑥𝑜𝑟 𝐺1(𝑑4) 𝑥𝑜𝑟 𝑟𝑘2
𝐻1 = 𝐺1(𝑑3) 𝑥𝑜𝑟 𝐺0(𝑑14) 𝑥𝑜𝑟 𝐺2(𝑑9) 𝑥𝑜𝑟 𝐺3(𝑑4) 𝑥𝑜𝑟 𝑟𝑘1
𝐻0 = 𝐺3(𝑑3) 𝑥𝑜𝑟 𝐺1(𝑑14) 𝑥𝑜𝑟 𝐺0(𝑑9) 𝑥𝑜𝑟 𝐺2(𝑑4) 𝑥𝑜𝑟 𝑟𝑘0

4.3. Memory unit module

The memory unit consists of two RAMs that operate in parallel. The memory may hold data as well

as 32-bit instruction words. Encrypting or decrypting data, input/output data, and any data necessary for the

encryption and decryption process. Therefore, advanced encryption standard (AES): S-box, logarithm tables,

and round keys (rk) which is generated by the CNN module, are saved in RAM0 and RAM1, respectively.

Each RAM is 512×8-bit dual ported for faster performance and access times.

4.4. Control unit module

Our proposed system is primarily built around a control unit module and a finite state machine

(FSM). Its primary role is to control other units based on instructions saved in the RAMs. The FSM is

responsible for controlling the processor of our CIS system in addition to producing status/control signals

during data transfer, encryption, and embedded block memories (BRAM) addresses for accessing and

modifying data in the memory. Through several multiplexers that were integrated into the architecture, the

controller is intelligent enough to conduct transformations on various iterations.

5. RESULTS AND DISCUSSION

Our proposed CIS was coded in very high-speed integrated circuit (VHSIC) hardware description

language (VHDL) and synthesized with Xilinx ISE 14.7 using the ModelSim simulator. The target device

selected was the Artix-7 (XC7A100T). According to the synthesis findings, 999 slices are utilized by the

synthetic device. The device operates at a clock speed of 377.301 MHz using just 2-BRAM 512×8 bits Dual-

Port Wide. The results obtained are well organized in the form of tables’ forms starting from Tables 2-7.

Table 2 lists the platform characteristics of our proposed CIS implementation (hardware and software

configurations). Table 3 summarizes the FPGA specifications utilized in the construction of our proposed

CIS. Tables 4 and 5 show the details of the device used for the implementation of AES-128 and the CNN key

generation. Table 6 shows the details of the timing summary.

Table 2. Implementation platform specifications
Implementation

Hardware Specification

Core processor Intel(R) Core i5@2.4 GHz
Operating system Windows 10 pro/Xilinx ISE 14.7 (64-bit)

RAM 8 GB

Table 3. FPGA characteristics
Parameters Values

Family Artix-7
Device XC7A100T
Package CSG324

Speed Grade -3

Table 4. Device utilization summary for AES-128 encryption
Slice Logic Utilization

Parameters Used Available Utilization
No. of Slice Registers 787 35200 2%

No. of Slice LUT’s 873 17600 4%
No. of Fully used LUT-FF Pairs 524 1136 46%

Table 5. Device utilization summary for CNN key generation
Slice Logic Utilization

Parameters Used Available Utilization
No. of Slice Registers 212 12480 1%

No. of Slice LUT’s 211 12480 1%
No. of Fully used LUT-FF Pairs 138 285 48%

Table 6. Timing summary for our implementation CIS
Parameters Values

Minimum Period 2.650 ns
Minimum Input arrival time before clock 0.976 ns

Maximum Output required time after clock 1.247 ns
Maximum Frequency

Maximum Combinational Path Delay
377.301 MHz

0.670 ns

Int J Elec & Comp Eng ISSN: 2088-8708 

Convolutional neural network based key generation for security of data through … (Ismail Negabi)

2597

In order to ensure a superior result in terms of both area and throughput, the proposed system is

implemented by Xilinx ISE 14.7 and FPGA device Artix-7 (XC7A100T) used for downloading. Table 7

displays a summary of the device use of the whole algorithm on the same hardware. Figure 4 shows the

simulation result of our proposed system (CIS). It takes as input a plaintext of size 128-bits and an encryption

key of size 128-bits. Its output is a ciphertext of size 128-bits.

Table 7. Implementation results of our CIS using FPGA devices of the Xilinx Artix-7
Parameters Values

Target FPGA device Artix-7 XC7A100T
Maximum Frequency 377.301 MHz
No. of Slice Registers 999

No. of Fully used LUT-FF Pairs 662
No. of Slice LUT’s 1084

Block RAMs 2

Figure 4. Simulation result of proposed CIS

A comparison is made between the proposed cryptosystem architecture and multiple

FPGA device implementations of diverse designs. The proposed device is built in Artix-7 in order to provide

sufficient memory to perform AES-128 Rijndael with a CNN key generator. For input recording, each round

is required in one clock cycle, so the total clock cycle required to process 128-bit data for AES-128 is 12

clocks. Table 8 displays the throughput determined by several studies. The throughput and efficiency are

calculated manually, defined as (10) and (11).

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑜𝑓 𝑏𝑖𝑡𝑠 × 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑜𝑓 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠
 (10)

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑜𝑓 𝑈𝑠𝑒𝑑 𝑆𝑙𝑖𝑐𝑒𝑠
 (11)

Table 8. Comparison of the CIS with other FPGA implementations
Design Year Platform Device Mode

(Enc/Dec)

Max. Freq.

[MHz]
Throughput

[Mbps]

Area

(Slices)
Efficiency

[Mbps]/Slices
[24] 2016 Virtex-7 XC7VX690T Enc 208.07 1280 3760 0.34
[25] 2018 Artix-7 XC7A100T Enc 291.63 888.80 989 0.90
[26] 2020 Artix-7 XC7A100T Enc 100 1792 4568 0.39

This Work (without CNN) 2022 Artix-7 XC7A100T Enc 282.65 347.87 588 0.59
This Work (with CNN) 2022 Artix-7 XC7A100T Enc 377.30 965.88 999 0.96

6. CONCLUSION

Deep learning models and the AES algorithm were used to design our proposed CIS. It has been

enhanced and updated for data encryption. The selection of these algorithms (AES and CNN) is accurate and

efficient and has been widely recognized by the scientific community. Our CIS has a higher throughput than

other cryptographic processors based on deep learning methods and the AES encryption algorithm. Even

when compared to some recent architecture, the implementation results are highly promising. The maximum

frequency achieved is 377.30 MHz, which is comparable to other designs presented in the literature.

Furthermore, our CIS provides a great level of flexibility and reconfigurability. According to the

https://www.google.com/search?client=opera&hs=DAK&sxsrf=APq-WBsGAp6oj6pkcyHnJFM13MF6W6iL3Q:1648577322584&q=reconfigurability&spell=1&sa=X&ved=2ahUKEwj54MmN9ev2AhVO_7sIHZrXA6cQkeECKAB6BAgCEDU

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 2589-2599

2598

experimental results obtained, if sufficient resources are available, the architecture can provide performance

that can satisfy cryptographic applications. Much better performance can be achieved if the network is

implemented as an integrated circuit chip instead of being prototyped on FPGA.

In the future, our CIS will be able to use different key sizes (128, 192, or 256 bits) for the encryption

or decryption of data (text, image). We will also add a detection unit for the different attacks to which our

CIS can be exposed. Deep learning models such as CNN, multilayer perceptron, or auto-encoders will be

used. Our CIS will be described using the VHDL.

REFERENCES
[1] A. Singhal, M. Phogat, D. Kumar, A. Kumar, M. Dahiya, and V. K. Shrivastava, “Study of deep learning techniques for medical

image analysis: A review,” Materials Today: Proceedings, vol. 56, pp. 209–214, 2022, doi: 10.1016/j.matpr.2022.01.071.

[2] A. Shrestha and A. Mahmood, “Review of deep learning algorithms and architectures,” IEEE Access, vol. 7, pp. 53040–53065,

2019, doi: 10.1109/ACCESS.2019.2912200.

[3] I. Negabi, S. E. Adib, S. A. Asri, and N. Raissouni, “Towards an intelligent cryptosystem design: deep learning cryptography for

embedded systems security and connected objects,” in Colloque sur les Objets et systemes Connectes-COC'2021, 2021.

[4] T. Kubota, K. Yoshida, M. Shiozaki, and T. Fujino, “Deep learning side-channel attack against hardware implementations of

AES,” Microprocessors and Microsystems, vol. 87, Nov. 2021, doi: 10.1016/j.micpro.2020.103383.

[5] J. Faraone et al., “AddNet: deep neural networks using FPGA-optimized multipliers,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 28, no. 1, pp. 115–128, Jan. 2020, doi: 10.1109/TVLSI.2019.2939429.

[6] H. A. Atee, R. Ahmad, N. M. Noor, and A. K. Ilijan, “Machine learning based key generating for cryptography,” Journal of

Engineering and Applied Sciences, vol. 11, no. 8, pp. 1829–1834, 2016, doi: 10.3923/jeasci.2016.1829.1834.

[7] C. Carlet, M. A. Hasan, and V. Saraswat, “Security, privacy, and applied cryptography engineering: 6th International Conference,

SPACE 2016 Hyderabad, India, December 14–18, 2016 proceedings,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016, pp. 3–26.

[8] M. Ibrahim, A. Shaawat, and M. Torki, “Covariance pooling layer for text classification,” Procedia Computer Science, vol. 189,

pp. 61–66, 2021, doi: 10.1016/j.procs.2021.05.070.

[9] R. Gupta, S. Tanwar, S. Tyagi, and N. Kumar, “Machine learning models for secure data analytics: A taxonomy and threat

model,” Computer Communications, vol. 153, pp. 406–440, Mar. 2020, doi: 10.1016/j.comcom.2020.02.008.

[10] S. K. Rao, D. Mahto, and D. A. Khan, “A survey on advanced encryption standard,” International Journal of Science and

Research (IJSR), vol. 6, no. 1, pp. 711–724, Jan. 2017, doi: 10.21275/ART20164149.

[11] I. Negabi and S. E. Adib, “Design of a reconfigurable cryptographic system on FPGA,” (in French) in Conception d'un système

cryptographique reconfigurable sur FPGA, Colloque sur les Objets et systèmes Connectés, Ecole Supérieure de Technologie de

Casablanca (Maroc), Institut Universitaire de Technologie d’Aix-Marseille (France), 2019.

[12] E. A. Samir and R. Naoufal, “Compact RIO based real time implementation of AES algorithm for embedded applications,”

International Journal of Embedded and Real-Time Communication Systems, vol. 10, no. 2, pp. 19–36, Apr. 2019, doi:

10.4018/IJERTCS.2019040102.

[13] A. Vuppala, R. S. Roshan, S. Nawaz, and J. Ravindra, “An efficient optimization and secured triple data encryption standard

using enhanced key scheduling algorithm,” Procedia Computer Science, vol. 171, no. 2019, pp. 1054–1063, 2020, doi:

10.1016/j.procs.2020.04.113.

[14] P. Kumar and S. B. Rana, “Development of modified AES algorithm for data security,” Optik, vol. 127, no. 4, pp. 2341–2345,

Feb. 2016, doi: 10.1016/j.ijleo.2015.11.188.

[15] A. A. Yazdeen, S. R. M. Zeebaree, M. M. Sadeeq, S. F. Kak, O. M. Ahmed, and R. R. Zebari, “FPGA implementations for data

encryption and decryption via concurrent and parallel computation: a review,” Qubahan Academic Journal, vol. 1, no. 2,

pp. 8–16, Mar. 2021, doi: 10.48161/qaj.v1n2a38.

[16] S. E. Adib and N. Raissouni, “AES encryption algorithm hardware implementation: throughput and area comparison of 128, 192

and 256-bits Key,” International Journal of Reconfigurable and Embedded Systems (IJRES), vol. 1, no. 2, pp. 67–74, Jul. 2012,

doi: 10.11591/ijres.v1.i2.pp67-74.

[17] N. Ahmad and S. M. R. Hasan, “A new ASIC implementation of an advanced encryption standard (AES) crypto-hardware

accelerator,” Microelectronics Journal, vol. 117, Nov. 2021, doi: 10.1016/j.mejo.2021.105255.

[18] P. Patel and A. Thakkar, “The upsurge of deep learning for computer vision applications,” International Journal of Electrical and

Computer Engineering (IJECE), vol. 10, no. 1, pp. 538–548, Feb. 2020, doi: 10.11591/ijece.v10i1.pp538-548.

[19] R. D. Bajaj, M. Gokhale, and M. T. Vlsi, “Design and simulation of AES algorithm for cryptography,” International Journal of

Engineering Science and Computing, vol. 6, no. 6, pp. 6340–6344, 2016.

[20] T. M. Kumar and P. Karthigaikumar, “FPGA implementation of an optimized key expansion module of AES algorithm for secure

transmission of personal ECG signals,” Design Automation for Embedded Systems, vol. 22, pp. 13–24, Jun. 2018, doi:

10.1007/s10617-017-9189-5.

[21] U. Arom-oon, “An AES cryptosystem for small scale network,” in 2017 Third Asian Conference on Defence Technology (ACDT),

Jan. 2017, pp. 49–53, doi: 10.1109/ACDT.2017.7886156.

[22] R. M. Jogdand and S. S. Bisalapur, “Design of an efficient neural key generation,” International Journal of Artificial Intelligence

and Applications, vol. 2, no. 1, pp. 60–69, Jan. 2011, doi: 10.5121/ijaia.2011.2105.

[23] S. C. Satapathy, B. N. Biswal, S. K. Udgata, and J. K. Mandal, Proceedings of the 3rd International Conference on Frontiers of

Intelligent Computing: theory and applications (FICTA) 2014, vol. 328. Cham: Springer International Publishing, 2015.

[24] N. S. S. Srinivas and M. Akramuddin, “FPGA based hardware implementation of AES Rijndael algorithm for encryption and

decryption,” in 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Mar. 2016,

pp. 1769–1776, doi: 10.1109/ICEEOT.2016.7754990.

[25] S. P. Guruprasad and B. S. Chandrasekar, “An evaluation framework for security algorithms performance realization on FPGA,”

in 2018 IEEE International Conference on Current Trends in Advanced Computing (ICCTAC), Feb. 2018, pp. 1–6, doi:

10.1109/ICCTAC.2018.8370396.

[26] Y. Bentoutou, E.-H. Bensikaddour, N. Taleb, and N. Bounoua, “An improved image encryption algorithm for satellite

applications,” Advances in Space Research, vol. 66, no. 1, pp. 176–192, Jul. 2020, doi: 10.1016/j.asr.2019.09.027.

Int J Elec & Comp Eng ISSN: 2088-8708 

Convolutional neural network based key generation for security of data through … (Ismail Negabi)

2599

BIOGRAPHIES OF AUTHORS

Ismail Negabi received a bachelor’s degree in electronics from the University of

Sidi Mohamed Ben Abdellah (USMBA), Fes, Morocco. Holds a research master’s degree in

signal processing and machine learning from the National School of Applied Sciences,

University of Abdelmalek Essaadi (UAE), Tetouan, Morocco, in 2017 and 2019, respectively.
Currently, he is a Ph.D. student in mathematics-physics and new technologies at the Remote

Sensing and Geographic Information System (RS and GIS) Laboratory, National School of

Applied Sciences, University of Abdelmalek Essaadi, Tetouan, Morocco. His research interests

include the design of intelligent cryptosystems based on deep learning modules. He can be
contacted at ismail.negabi@etu.uae.ac.ma.

Smail Ait El Asri received a bachelor’s degree in electronics and industrial

computer science from the University of Moulay Ismail (UMI), Meknes, Morocco. Holds a

research master’s degree in signal processing and machine learning from the National School
of Applied Sciences, University of Abdelmalek Essaadi (UAE), Tetouan, Morocco, in 2017

and 2019 respectively. Currently, he is a Ph.D. student in mathematics-physics and new

technologies at the Remote Sensing and Geographic Information System (RS and SIG)

Laboratory, National School of Applied Sciences, University of Abdelmalek Essaadi, Tetouan,
Morocco. His research interests include the design of an intelligent system for the automatic

detection of buildings on very high-resolution satellite remote-sensing images. He can be

contacted at smail.aitelasri@etu.uae.ac.ma.

Samir El Adib received a degree in Informatics, Electronics, Electrotechnics, and

Automatics (IEEA) and an M.S. degree in automatic and data processing from University
Abdelmalek Essaadi (UAE), Tetuan, Morocco, in 2004 and 2006 respectively. respectively.

He has been a professor of physics and remote sensing at the National Engineering School for

Applied Sciences of the UAE of Tetuan since 2015. Currently, he is a member of the Remote

Sensing and GIS Laboratory. His main research interests are FPGAs in custom-computing
applications, and more concretely, applications of reconfigurable hardware to cryptography.

He can be contacted at adibsamir@gmail.com.

Naoufal Raissouni received an M.S. and a Ph.D. degree in physics from the
University of Valencia, Spain, in 1997, and 1999, respectively. He has been a professor of

physics and remote sensing at the National Engineering School for Applied Sciences of the

University Abdelmalek Essaadi (UAE) of Tetuan, since 2003. He is also heading the Remote

Sensing and GIS Lab in the UAE. His research interests include atmospheric correction in
visible and infrared domains, the retrieval of emissivity and surface temperature from satellite

images, huge remote sensing computations, mobile GIS, ad hoc networks, and the

development of remote sensing methods for land cover dynamic monitoring. He can be

contacted at naoufal.raissouni.ensa@gmail.com.

https://orcid.org/0000-0002-6641-0817
https://scholar.google.com/citations?user=DjcfMOsAAAAJ&hl=fr
https://orcid.org/0000-0001-9877-8483
https://orcid.org/0000-0003-2874-4979
https://www.scopus.com/authid/detail.uri?authorId=57205734175
https://orcid.org/0000-0002-2786-4322
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=6602215636&zone=
https://www.webofscience.com/wos/author/record/482700

