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 Machine learning techniques, especially deep learning, are playing an 

increasingly important role in our lives. Deep learning uses different models 

to extract information from the data. They have already had a huge impact in 
areas such as health (i.e., cancer diagnosis), self-driving cars, speech 

recognition, and data encryption. Recently, deep learning models, including 

convolutional neural networks (CNN), have been proven to be more 

effective in the security field. Moreover, the National Institute of Standards 
and Technology (NIST) recommends the advanced encryption standard 

(AES) algorithm as the most often utilized encryption method in several 

security applications. In this paper, a crypt-intelligent system (CIS) capable 

of securing data is proposed. It is based on the combination of the 
performance of CNN with the AES, by substituting the key expansion unit 

of AES with a CNN architecture that performs the key generation. Our CIS 

is described using very high-speed integrated circuit (VHSIC) hardware 

description language (VHDL), simulated by ModelSim, synthesized, and 

implemented with Xilinx ISE 14.7. Finally, the Airtex-7 series XC7A100T 

device has achieved an encryption throughput of 965.88 Mbps. In addition, 

the CIS offers a high degree of flexibility and is supported by 

reconfigurability, based on the experimental results, if sufficient resources 
are available, the architecture can provide performance that can satisfy 

cryptographic applications. 
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1. INTRODUCTION  

In the context of deep learning models [1]–[4], a convolutional neural network (CNN) is a type of 

intelligent system intended to imitate the biological neurons network found in the human mind [2], [5]. CNN 

is used to classify data, detect objects, encryption and decryption data, and generate encryption keys [6]. 

Generally, CNN architecture is composed of a number of convolutional layers, pooling layers, and fully 

connected layers [1], [7], [8]. CNNs are linear layers that share their weights in space and are able to 

recognize patterns at different locations. The pooling layers are non-linear, reducing the size of the space to 

minimize the number of parameters. The most popular pooling functions are max pooling [4], [8], which 

returns the highest value in a specified range, average pooling, which returns the average value for a given 

range, and fully connected layers which return results that depend on the entire input. 

Data security [9] is becoming crucial for a variety of embedded applications. Resilience to attacks 

on cryptographic systems is one of the main properties that cryptographic algorithms have to offer. In many 

https://creativecommons.org/licenses/by-sa/4.0/
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security applications, advanced encryption standard (AES) [10]–[12] has surpassed data encryption standard 

(DES) [13]–[15] as the most extensively utilized and secure encryption algorithm. It provides the perfect 

integration of security and different encryption key sizes, efficiency, performance, ease of implementation 

and flexibility [11], [12], [16], although the size of the key influences security strength. The problem of 

energy consumption has lately become more prominent, particularly in embedded systems used in digital 

devices, where smaller space and reduced energy consumption are critical. The AES algorithm requires 

extensive hardware/software implementation. In embedded system applications, hardware implementation is 

the most expensive component [10]–[12], [16]. 

In this article, a CNN architecture is proposed to generate encryption keys used by the AES [12], 

[17] algorithm to build smart cryptosystems capable of protecting data. This technique is simpler to 

implement than using standard AES and non-linear operations. CNN [7] should be reversible and capable of 

encrypting and decrypting plaintext/ciphertext with very small error rates. This includes considering the 

architectural design of the CNN, modifying it in software, and testing the simulation results to provide an 

AES-128 based CNN. The internal structure of CNN components will be considered in the design, and 

further research will be conducted on issues that have a significant impact on the implementation of CNNs. 

 

 

2. BACKGROUND 

CNNs are a subset of artificial neural networks (ANN) that use convolution rather than general 

matrix multiplication in at least one of their layers. The combination of CNN performance and the AES 

algorithm improves data security. This section provides detailed information on CNN and the AES algorithm. 

 

2.1.  Convolutional neural networks 

Deep learning performs best than other network learning algorithms [1], [2], [4], [18], as it can 

obtain more abstract high-level features from the raw input. Today, deep learning is a class of machine 

learning [7], [9] algorithms with different variants of deep architecture. CNN and stacked auto-encoders 

(SAE) are the most prevalent and popular architectures [2], [7]. However, they are extremely slow to train, 

especially when dealing with huge databases. CNNs are deep neural networks (DNNs) and biologically 

inspired variants of multilayer perceptron [7]. It is often used in images/videos, computer vision, and data 

encryption/decryption. We distinguish two parts, the first part, which we call the convolutional part of the 

model, and the second part, which we will call the classification part of the model corresponding to a 

multilayer perceptron model. The general architecture of CNN is shown in Figure 1. 

− Convolution layer (Conv): This layer is essential to CNN and is always present as at least the first layer. 

Its goal is to identify the existence of a certain set of characteristics in the input data. Its data are 

convolved with some filters, while the convolution operators' function which is based on three hyper-

parameters (depth, pitch, and margin) allows sizing of the volume of the convolution layer. 

− Max pooling layer (Pool): Frequently, the pooling layer is inserted between two convolution layers: it 

takes a set of feature maps as input and performs the pooling operation. The purpose of this process is to 

reduce the size of the data while retaining their vital properties. Using the max operation, this layer 

operates independently on each depth slice of the input data and resizes it spatially. 

- Fully connected layer (FC): This is the final layer of a CNN. It performs a weighted sum and potentially 

an activation function to the values received as input, which is a vector and generates a new vector as 

output. 

 

 

 
 

Figure 1. Basic CNN architecture 

https://www.upgrad.com/blog/basic-cnn-architecture/
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2.2.  Advanced encryption standard (AES) 

The advanced encryption standard (AES) is a block cipher that employs a 4 × 4 array with input, 

output and state block 128-bit [3], [7], [10], [19]. This is identified by Nb = 4 which illustrates the number of 

words of 32-bits in the state matrix. The length of the encryption key on the AES algorithm is 128, 192, or 

256-bit, these lengths are identified by Nk [11], [12], [16]. It determines the number of rounds to execute 

when running the AES, this number is identified by Nr, where Nr = 10 when Nk = 4, Nr = 12 when  

Nk = 6, and Nr = 14 when Nk = 8 [20]. Table 1 shows the AES parameters (key, block, and round) that meet 

this requirement. 

 

 

Table 1. AES parameters 
Algorithm AES Key Length (Nk words) Block Size (Nb words) No of Rounds (Nr) 

AES-128 4 4 10 
AES-192 6 4 12 
AES-256 8 4 14 

 

 

The AES encryption algorithm performs a round function consisting of 4 operations for encryption 

and decryption as shown in Figure 2: i) the SubBytes transformation, which is based on the S-box table; ii) the 

ShiftRows transformation; iii) the MixColumns transformation, which shuffles data in each column of the state 

matrix, and iv) the AddRoundKey transformation, which adds a round key to the state matrix [10], [19], [20]. 

 

 

 
 

Figure 2. Block diagram for AES encryption and decryption 

 

 

2.2.1. Encryption 

The input data is sent to the “State” matrix for encryption. After the first round of encryption key 

addition, the state matrix is modified, using 10, 12, or 14 rounding functions (depending upon the key size), 

with the last round notably deviating from the first Nr-1 rounds. After that, the last state is transmitted to the 

output data. The round function is configured with a key expansion schedule, which consists of a 1-D vector 

of 4-byte words. The transformations of the AES algorithm are SubBytes (SB), ShiftRows (SR), MixColumns 

(MC), and AddRoundKey (AK) [10], [16], [19], [21]. 

 

𝑆𝑡𝑎𝑡𝑒 = [

𝑑15 𝑑11 𝑑7 𝑑3

𝑑14 𝑑10 𝑑6 𝑑2

𝑑13

𝑑12

𝑑9

𝑑8

𝑑5

𝑑4

𝑑1

𝑑0

] (1) 
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a. SubBytes (SB) transformation 

The SB transformation is a nonlinear byte change that uses a substitution table S-box to work 

separately on each byte of the state using the S-box table. The values these 256 integers (0 to 255) create are 

listed in this table. Thus, the SB transformation on the state is described by (2). 

 

𝑆𝐵(𝑆𝑡𝑎𝑡𝑒) =

[
 
 
 
  𝑆𝐵(𝑑15) 𝑆𝐵(𝑑11) 𝑆𝐵(𝑑7) 𝑆𝐵(𝑑3)

  𝑆𝐵(𝑑14) 𝑆𝐵(𝑑10) 𝑆𝐵(𝑑6) 𝑆𝐵(𝑑2)
𝑆𝐵(𝑑13)
𝑆𝐵(𝑑12)

𝑆𝐵(𝑑9)
𝑆𝐵(𝑑8)

𝑆𝐵(𝑑5)
𝑆𝐵(𝑑4)

𝑆𝐵(𝑑1)
𝑆𝐵(𝑑0)

  

]
 
 
 

 (2) 

 

b. ShiftRows (SR) transformation 

The bytes in the final three rows of the report are shifted to the left during SR transformation by 

varying amounts of bytes. The first row (r = 0) is unshifted, the second row (r=1) is shifted by one byte, the 

third row (r=2) by two bytes, and the last row (r=3) by three bytes. As a result, the SR transformation is 

described by (3). 

 

𝑍 = 𝑆𝑅(𝑆𝐵(𝑆𝑡𝑎𝑡𝑒)) =

[
 
 
 
 𝑆𝐵(𝑑15) 𝑆𝐵(𝑑11) 𝑆𝐵(𝑑7) 𝑆𝐵(𝑑3)

𝑆𝐵(𝑑10) 𝑆𝐵(𝑑6) 𝑆𝐵(𝑑2) 𝑆𝐵(𝑑14)

 
𝑆𝐵(𝑑5)
𝑆𝐵(𝑑0)

𝑆𝐵(𝑑1)
  𝑆𝐵(𝑑12)

𝑆𝐵(𝑑13)
𝑆𝐵(𝑑8)

𝑆𝐵(𝑑9)
𝑆𝐵(𝑑4)

  

]
 
 
 

 (3) 

 

c. MixColumns (MC) transformation 

Each column of the State is treated as a four-term polynomial by the MC transformation, which acts 

column-by-column. Considered to be polynomials over GF(28), the columns are multiplied modulo x4+1 by a 

constant polynomial a(x), which is (4). 

 

𝑎(𝑥) = {03}𝑥3 + {01}𝑥2 + {01}𝑥  + {02}         (4) 

 

This may be represented by the matrix multiplication function (5) and (6). 

 

𝑅(𝑥) = 𝑎(𝑥) ⨂ 𝑍(𝑥)      (5) 
 

[
 
 
 
𝑅0,𝑐  

𝑅1,𝑐

𝑅2,𝑐

𝑅3,𝑐 ]
 
 
 

= 𝑀𝐶 (𝑆𝑅(𝑆𝐵 (𝑆𝑡𝑎𝑡𝑒))) = [

02
01

03
02

01 01
03 01

01 01 02 03
03 01 01 02

]⨂

[
 
 
 
𝑍0,𝑐

𝑍1,𝑐

𝑍2,𝑐

𝑍3,𝑐]
 
 
 

 𝑓𝑜𝑟 0 ≤ 𝑐 ≤ 𝑁𝑏 (6) 

 

This multiplication matrix replaces the 4-bytes in each column with:  

 

𝑅0 = ({02}. 𝑍0) ⊕ ({03}. 𝑍1) ⊕ 𝑍2 ⊕ 𝑍3 

𝑅1 = 𝑍0 ⊕ ({02}. 𝑍1) ⊕ ({03}. 𝑍2) ⊕ 𝑍3 

𝑅2 = 𝑍0 ⊕ 𝑍1 ⊕ ({02}. 𝑍2) ⊕ ({03}. 𝑍3) 
𝑅3 = ({03}. 𝑍0) ⊕ 𝑍1 ⊕ 𝑍2 ⊕ ({02}. 𝑍3) 

 

d. AddRoundKey (AK) transformation 

During AddRoundKey (AK), each bit of the state is added with the round key (rk) using the 

xor function. Each round key is composed of Nb words from the key schedule. Each of these Nb words are 

added to the state’s columns, resulting in (7). 

 

𝐴𝐾(𝑅) =  [

𝑅15 𝑅11 𝑅7 𝑅3

𝑅14 𝑅10 𝑅6 𝑅2

𝑅13

𝑅12

𝑅9

𝑅8

𝑅5

𝑅4

𝑅1

𝑅0

] ⊕ [

𝑟𝑘15 𝑟𝑘11 𝑟𝑘7 𝑟𝑘3

𝑟𝑘14 𝑟𝑘10 𝑟𝑘6 𝑟𝑘2

𝑟𝑘13

𝑟𝑘12

𝑟𝑘9

𝑟𝑘8

𝑟𝑘5

𝑟𝑘4

𝑟𝑘1

𝑟𝑘0

] (7) 

 

In the AES-128 algorithm, the first (rk0), which is the initial encryption key, is used in the additional 

AK at the beginning of the first round. For each AK transformation, the round key (𝑟𝑘) is calculated with the 

key schedule. 𝑟𝑘𝑖, where 1 ≤ 𝑖 ≤ 10, is determined from the last 𝑟𝑘𝑖−1. Let 𝑞(𝑗) (0 ≤ 𝑗 ≤ 3) be the column 𝑗 of 

𝑟𝑘𝑖−1 and let 𝑤(𝑗) be the column 𝑗 of 𝑟𝑘𝑖. Then the updated 𝑟𝑘𝑖 is determined as: 
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w(0) = q(0) ⊕ (Rot (SB(q(3))) ⊕ rconi 

w(1) = q(1) ⊕ w(0) 
w(2) = q(2) ⊕ w(1) 
w(3) = q(3) ⊕ w(2) 

 

The rconi (round constant) contain values [02𝑖−1; {00};  {00};  {00}]. Rot is a function that shifts over 1-byte 

from a 4-byte input. 

 

2.2.2. Key expansion 

The AES encryption algorithm uses an encryption key and a key expansion to build a key schedule 

[20]. It produced a total of Nb (Nr+1) words: a first set of Nb words are needed by the algorithm, and every 

round Nr needs Nb  words of key data. The final key schedule [wi] is a linear array of 4-byte words, with i 

being a value between 0 and Nb(Nr + 1). 

SubWord, which is a function, takes four bytes as the input words and generates output words by 

applying the S-box table to each of them. The RotWord takes as input words [a1, a2, a3, a4], executes a cyclic 

shift, and returns the word [a1, a2, a3, a4]. The values of the round constant word array, Rcon[i] has the values 

given by [xi−1, {00}, {00}, {00}], with xi−1 are powers of x (denoted as {02}) in the GF(28) field. 

In order to fill the encryption Key, the expanded key’s first Nk words are used. Every word after 

that, w[i], is the xor function of the word before it, w[i − 1] and Nk place earlier w [i − Nk]. For words in place 

that are a multiple of Nk, a process is done to w [i − 1] before to the xor function, followed by a xor with a 

Rcon[i]. This process is a cyclic rotation of the bytes in a RotWord, followed by a table search on the 4-bytes 

of the SubWord. It is significant to mentioned that the key expansion process for 256-bit encryption keys 

(Nk = 8) is somewhat various from that for 128 and 192-bit. The SubWord is performed to w[i − 1] before 

the xor function if Nk = 8 and i − 4 is a multiple of Nk as shown in Algorithm 1. 

 

Algorithm 1. Key expansion 
Key expansion (byte key[4*Nk], word w[Nb*(Nr+1)]Nk 

begin 

 word temp 

 i=0 

 while (i<Nk) 

  w[i]=word(key[4*i+1], key[4*i+2], key[4*i+3]) 

  i=i+1 

 end while 

 

 i=Nk 

 while(i<Nb*(Nr+1)) 

  temp=w[i-1] 

  if(i mod Nk=0) 

   temp=subword(rotword(temp)) xor rcon[i/Nk] 

  else if(Nk>6 and i mod Nk=4) 

   temp=subword (temp) 

  end if 

   w[i]=w[i-Nk] xor temp 

   i = i+1 

 end while 

end 

 

2.2.3. Decryption 

The reverse encryption transformations (InvSubBytes (Inv SB), InvShiftRows (Inv SR), 

InvMixColumns (Inv MC), and AddRoundKey (AK)) for the AES encryption algorithm are built in the 

opposite direction of the encryption process. Each encryption transformation step is carried out in the 

opposite direction as shown in Figure 2. The main reverse encryption rounds are likewise performed in the 

opposite direction. AK is followed by a byte substitution, a reverse row shift, a reverse column shuffle, and a 

key addition round. The regulations for the final round remain unchanged. The reverse column shuffle step is 

similar to the encryption column shuffle step, but it uses a different fixed polynomial. The bytes in the row 

are cycled by an appropriate offset in the row. The first row has not been altered in any manner. The second 

and third rows have been shifted to the right [16], [20]. 

 

 

3. RELATED WORK  

In the past decades, research on combining deep learning models with cryptographic algorithms has 

gained importance. Many academic researchers have proposed various methods for designing intelligent 
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systems capable of encrypting and decrypting data. The majority of these architectures are also efficient in 

terms of execution time, security level, and propagation latency. 

Jogdand and Bisalapur [22] suggested a key generation technique based on neural networks. This 

technique’s performance has been assessed in terms of security, synchronization time, and unpredictability. 

While performing key generation, the current work also performs randomization. They recommended that in 

the future, the generated keys should be distributed securely. For encryption and decryption, Satapathy et al. 

[23] described a neural key generation using a Hopfield network (HNBNKG). Instead of providing the secret 

key, their solution assures that the weight vectors of the trained network may be exchanged between the 

sender and receiver to prevent attacks. This has also been prioritized in the work given. 

The AES encryption algorithm can manage any plaintext and key size combination (128, 192, or 

256-bit). Many researchers have used various approaches for implementation based on various technical 

criteria, such as AES strength execution, AES for executing with efficiency or effectiveness, and AES for 

implementing hardware and software. In the literature, several hardware solutions have been published, some 

of them make use of field programmable gate arrays (FPGAs), while others make use of application-specific 

integrated circuits (ASICs) [17]. Adib and Raissouni [16] explain that Rijmen suggested an AES hardware 

implementation based on composite fields, which was the first important step in compacting the AES 

implementation. Rijmen also presented a similar approach concept that has been used in FPGA and ASIC. 

Unfortunately, the majority of those solutions are too expensive for use in real-world embedded applications. 

 

 

4. PROPOSED CRYPT-INTELLIGENT SYSTEM 

In this section, the main idea is to design a crypt-intelligent system (CIS) based on CNN and  

AES-128, which can perform encryption and decryption processes with high performance and extremely low 

error rates. CNNs are a powerful tool for controlling nonlinear systems. Because the network’s purpose is to 

limit the system’s cracking ability by utilizing non-linear activation functions, its non-linear approximation 

characteristic makes it more effective in practical applications. Our proposed cryptosystem is based on the 

AES algorithm, a CNN network, a memory unit module, and a control unit module as shown in Figure 3. 

These units are presented in the following subsections. 

 

 

 
 

Figure 3. The proposed CIS for AES-128 implementation with CNN 

 

 

4.1.  CNN execution on CIS 

The authors proposed the use of CNN for key generation, which has included the performance of 

CNN in the encryption/decryption process. The combination of CNN with AES is achieved by substituting 
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the key expansion module in the AES with CNN architecture capable of generating the keys similar to the 

substituted module with the introduction of nonlinearity of CNNs. The CNN module takes as input a matrix 

of size 4 × 32 that corresponds to the encryption key divided into four blocks of size 32-bits. The output is a 

matrix of size 10 × 128, with each row representing a generated key that will be used in the steps of the AES 

algorithm. This module generates 10 keys at a time and stores them in the RAM, the control unit is 

responsible for using them at specific moments in the system operation. 

In order to train the CNN module, a script programmed in Python language is used to generate a 

dataset that consists of the input keys and those generated based on the operation of the key expansion 

module of the AES. The module was trained on the generated dataset using “Adam” as the weight 

optimization algorithm. The activation function utilized in the output layer is Softmax, whereas the activation 

function used in the other layers is rectified linear unit (ReLU). Binary-cross entropy was used as the error 

function. The 128-bit input keys are randomly generated, which ensures that most possible cases for an 

encryption key are covered. The generated dataset is divided into two parts: 80% for training the module and 

20% for validation. 

 

4.2.  AES execution on CIS 

The AES performs 4 transformations (SubBytes (SB), ShiftRows (SR), MixColumns (MC), and 

AddRoundKey (AK)) on each round. The description below explains how the lookup tables and 

corresponding operations of the AES round are obtained: The first quarter of the round’s SubBytes (SB) and 

MixColumns (MC) operations can be described as (8) and (9). 

 

𝐻 = 𝑀𝐶 (𝑆𝐵(𝑆𝑅(𝑆𝑡𝑎𝑡𝑒))) = 𝐴(𝑥) ⊗ 𝑆𝐵(𝑆𝑅(𝑆𝑡𝑎𝑡𝑒)) (8) 

 

𝐴(𝑥) = [

02 03 01 01
01 02 03 01
01
03

01
01

02
01

03
02

]      (9) 

 

The state matrix is the transformed data, H is the result of the transformation of MC, where A(x) is 

the multiplicative vectors matrix. It is possible to use a logarithm table to do the aforementioned 

multiplication. The implementation of the AES is based on combining the MC and SB transformations in one 

convenient table. Compared to the 8 × 32 bit wide T-box tables, the 4 tables (G0 to G3) used are 8 × 8 bit, 

containing 256 values (0 to 255) given as [16]: 

 

𝐺0(𝑎) = 𝐿𝑜𝑔′ ((𝐿𝑜𝑔(01)) + (𝐿𝑜𝑔(𝑆𝐵(𝑎))))  

𝐺1(𝑎) = 𝐿𝑜𝑔′ ((𝐿𝑜𝑔(01)) + (𝐿𝑜𝑔(𝑆𝐵(𝑎))))  

𝐺2(𝑎) = 𝐿𝑜𝑔′ ((𝐿𝑜𝑔(02)) + (𝐿𝑜𝑔(𝑆𝐵(𝑎))))  

𝐺3(𝑎) = 𝐿𝑜𝑔′ ((𝐿𝑜𝑔(03)) + (𝐿𝑜𝑔(𝑆𝐵(𝑎))))  

 

Such that 𝑎 represents the elements of the S-box table, SB represents the transformation 𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝑆𝐵) and 

𝐿𝑜𝑔/𝐿𝑜𝑔′ represents Logarithm/Antilogarithm respectively. The results from 4 tables (G0 to G3) will be 

XORed to produce the final result (H), as shown by: 

 

𝐻15 = 𝐺2(𝑑15) 𝑥𝑜𝑟 𝐺3(𝑑10) 𝑥𝑜𝑟 𝐺1(𝑑5) 𝑥𝑜𝑟 𝐺0(𝑑0) 𝑥𝑜𝑟 𝑟𝑘15 

𝐻14 = 𝐺0(𝑑15) 𝑥𝑜𝑟 𝐺2(𝑑10) 𝑥𝑜𝑟 𝐺3(𝑑5) 𝑥𝑜𝑟 𝐺1(𝑑0) 𝑥𝑜𝑟 𝑟𝑘14 

𝐻13 = 𝐺1(𝑑15) 𝑥𝑜𝑟 𝐺0(𝑑10) 𝑥𝑜𝑟 𝐺2(𝑑5) 𝑥𝑜𝑟 𝐺3(𝑑0) 𝑥𝑜𝑟 𝑟𝑘13 
𝐻12 = 𝐺3(𝑑15) 𝑥𝑜𝑟 𝐺1(𝑑10) 𝑥𝑜𝑟 𝐺0(𝑑5) 𝑥𝑜𝑟 𝐺2(𝑑0) 𝑥𝑜𝑟 𝑟𝑘12 
𝐻11 = 𝐺2(𝑑11) 𝑥𝑜𝑟 𝐺3(𝑑6) 𝑥𝑜𝑟 𝐺1(𝑑1) 𝑥𝑜𝑟 𝐺0(𝑑12) 𝑥𝑜𝑟 𝑟𝑘11 
𝐻10 = 𝐺0(𝑑11) 𝑥𝑜𝑟 𝐺2(𝑑6) 𝑥𝑜𝑟 𝐺3(𝑑1) 𝑥𝑜𝑟 𝐺1(𝑑12) 𝑥𝑜𝑟 𝑟𝑘10 
𝐻9 = 𝐺1(𝑑11) 𝑥𝑜𝑟 𝐺0(𝑑6) 𝑥𝑜𝑟 𝐺2(𝑑1) 𝑥𝑜𝑟 𝐺3(𝑑12) 𝑥𝑜𝑟 𝑟𝑘9 
𝐻8 = 𝐺3(𝑑11) 𝑥𝑜𝑟 𝐺1(𝑑6) 𝑥𝑜𝑟 𝐺0(𝑑1) 𝑥𝑜𝑟 𝐺2(𝑑12) 𝑥𝑜𝑟 𝑟𝑘8 
𝐻7 = 𝐺2(𝑑7) 𝑥𝑜𝑟 𝐺3(𝑑2) 𝑥𝑜𝑟 𝐺1(𝑑13) 𝑥𝑜𝑟 𝐺0(𝑑8) 𝑥𝑜𝑟 𝑟𝑘7 
𝐻6 = 𝐺0(𝑑7) 𝑥𝑜𝑟 𝐺2(𝑑2) 𝑥𝑜𝑟 𝐺3(𝑑13) 𝑥𝑜𝑟 𝐺1(𝑑8) 𝑥𝑜𝑟 𝑟𝑘6 
𝐻5 = 𝐺1(𝑑7) 𝑥𝑜𝑟 𝐺0(𝑑2) 𝑥𝑜𝑟 𝐺2(𝑑13) 𝑥𝑜𝑟 𝐺3(𝑑8) 𝑥𝑜𝑟 𝑟𝑘5 
𝐻4 = 𝐺3(𝑑7) 𝑥𝑜𝑟 𝐺1(𝑑2) 𝑥𝑜𝑟 𝐺0(𝑑13) 𝑥𝑜𝑟 𝐺2(𝑑8) 𝑥𝑜𝑟 𝑟𝑘4 
𝐻3 = 𝐺2(𝑑3) 𝑥𝑜𝑟 𝐺3(𝑑14) 𝑥𝑜𝑟 𝐺1(𝑑9) 𝑥𝑜𝑟 𝐺0(𝑑4) 𝑥𝑜𝑟 𝑟𝑘3 
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𝐻2 = 𝐺0(𝑑3) 𝑥𝑜𝑟 𝐺2(𝑑14) 𝑥𝑜𝑟 𝐺3(𝑑9) 𝑥𝑜𝑟 𝐺1(𝑑4) 𝑥𝑜𝑟 𝑟𝑘2 
𝐻1 = 𝐺1(𝑑3) 𝑥𝑜𝑟 𝐺0(𝑑14) 𝑥𝑜𝑟 𝐺2(𝑑9) 𝑥𝑜𝑟 𝐺3(𝑑4) 𝑥𝑜𝑟 𝑟𝑘1 
𝐻0 = 𝐺3(𝑑3) 𝑥𝑜𝑟 𝐺1(𝑑14) 𝑥𝑜𝑟 𝐺0(𝑑9) 𝑥𝑜𝑟 𝐺2(𝑑4) 𝑥𝑜𝑟 𝑟𝑘0 

 

4.3.  Memory unit module 

The memory unit consists of two RAMs that operate in parallel. The memory may hold data as well 

as 32-bit instruction words. Encrypting or decrypting data, input/output data, and any data necessary for the 

encryption and decryption process. Therefore, advanced encryption standard (AES): S-box, logarithm tables, 

and round keys (rk) which is generated by the CNN module, are saved in RAM0 and RAM1, respectively. 

Each RAM is 512×8-bit dual ported for faster performance and access times. 

 

4.4.  Control unit module 

Our proposed system is primarily built around a control unit module and a finite state machine 

(FSM). Its primary role is to control other units based on instructions saved in the RAMs. The FSM is 

responsible for controlling the processor of our CIS system in addition to producing status/control signals 

during data transfer, encryption, and embedded block memories (BRAM) addresses for accessing and 

modifying data in the memory. Through several multiplexers that were integrated into the architecture, the 

controller is intelligent enough to conduct transformations on various iterations. 

 

 

5. RESULTS AND DISCUSSION 

Our proposed CIS was coded in very high-speed integrated circuit (VHSIC) hardware description 

language (VHDL) and synthesized with Xilinx ISE 14.7 using the ModelSim simulator. The target device 

selected was the Artix-7 (XC7A100T). According to the synthesis findings, 999 slices are utilized by the 

synthetic device. The device operates at a clock speed of 377.301 MHz using just 2-BRAM 512×8 bits Dual-

Port Wide. The results obtained are well organized in the form of tables’ forms starting from Tables 2-7. 

Table 2 lists the platform characteristics of our proposed CIS implementation (hardware and software 

configurations). Table 3 summarizes the FPGA specifications utilized in the construction of our proposed 

CIS. Tables 4 and 5 show the details of the device used for the implementation of AES-128 and the CNN key 

generation. Table 6 shows the details of the timing summary. 

 

 

Table 2. Implementation platform specifications 
Implementation 

Hardware Specification 

Core processor Intel(R) Core i5@2.4 GHz 
Operating system Windows 10 pro/Xilinx ISE 14.7 (64-bit) 

RAM 8 GB 
 

Table 3. FPGA characteristics 
Parameters Values 

Family Artix-7 
Device XC7A100T 
Package CSG324 

Speed Grade -3 
 

 

 

Table 4. Device utilization summary for AES-128 encryption 
Slice Logic Utilization 

Parameters Used Available Utilization 
No. of Slice Registers 787 35200 2% 

No. of Slice LUT’s 873 17600 4% 
No. of Fully used LUT-FF Pairs 524 1136 46% 

 
 

Table 5. Device utilization summary for CNN key generation 
Slice Logic Utilization 

Parameters Used Available Utilization 
No. of Slice Registers 212 12480 1% 

No. of Slice LUT’s 211 12480 1% 
No. of Fully used LUT-FF Pairs 138 285 48% 

 
 

Table 6. Timing summary for our implementation CIS 
Parameters Values 

Minimum Period 2.650 ns 
Minimum Input arrival time before clock 0.976 ns 

Maximum Output required time after clock 1.247 ns 
Maximum Frequency 

Maximum Combinational Path Delay 
377.301 MHz 

0.670 ns 
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In order to ensure a superior result in terms of both area and throughput, the proposed system is 

implemented by Xilinx ISE 14.7 and FPGA device Artix-7 (XC7A100T) used for downloading. Table 7 

displays a summary of the device use of the whole algorithm on the same hardware. Figure 4 shows the 

simulation result of our proposed system (CIS). It takes as input a plaintext of size 128-bits and an encryption 

key of size 128-bits. Its output is a ciphertext of size 128-bits. 

 

 

Table 7. Implementation results of our CIS using FPGA devices of the Xilinx Artix-7 
Parameters Values 

Target FPGA device Artix-7 XC7A100T 
Maximum Frequency 377.301 MHz 
No. of Slice Registers 999 

No. of Fully used LUT-FF Pairs 662 
No. of Slice LUT’s 1084 

Block RAMs 2 

 

 

 
 

Figure 4. Simulation result of proposed CIS 

 

 

A comparison is made between the proposed cryptosystem architecture and multiple  

FPGA device implementations of diverse designs. The proposed device is built in Artix-7 in order to provide 

sufficient memory to perform AES-128 Rijndael with a CNN key generator. For input recording, each round 

is required in one clock cycle, so the total clock cycle required to process 128-bit data for AES-128 is 12 

clocks. Table 8 displays the throughput determined by several studies. The throughput and efficiency are 

calculated manually, defined as (10) and (11). 

 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
# 𝑜𝑓 𝑏𝑖𝑡𝑠 × 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

# 𝑜𝑓 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠
  (10) 

 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

# 𝑜𝑓 𝑈𝑠𝑒𝑑 𝑆𝑙𝑖𝑐𝑒𝑠
  (11) 

 

 

Table 8. Comparison of the CIS with other FPGA implementations 
Design Year Platform Device Mode 

(Enc/Dec) 

Max. Freq. 

[MHz] 
Throughput 

[Mbps] 

Area 

(Slices) 
Efficiency 

[Mbps]/Slices 
[24] 2016 Virtex-7 XC7VX690T Enc 208.07 1280 3760 0.34 
[25] 2018 Artix-7 XC7A100T Enc 291.63 888.80 989 0.90 
[26] 2020 Artix-7 XC7A100T Enc 100 1792 4568 0.39 

This Work (without CNN) 2022 Artix-7 XC7A100T Enc 282.65 347.87 588 0.59 
This Work (with CNN) 2022 Artix-7 XC7A100T Enc 377.30 965.88 999 0.96 

 

 

6. CONCLUSION 

Deep learning models and the AES algorithm were used to design our proposed CIS. It has been 

enhanced and updated for data encryption. The selection of these algorithms (AES and CNN) is accurate and 

efficient and has been widely recognized by the scientific community. Our CIS has a higher throughput than 

other cryptographic processors based on deep learning methods and the AES encryption algorithm. Even 

when compared to some recent architecture, the implementation results are highly promising. The maximum 

frequency achieved is 377.30 MHz, which is comparable to other designs presented in the literature. 

Furthermore, our CIS provides a great level of flexibility and reconfigurability. According to the 

https://www.google.com/search?client=opera&hs=DAK&sxsrf=APq-WBsGAp6oj6pkcyHnJFM13MF6W6iL3Q:1648577322584&q=reconfigurability&spell=1&sa=X&ved=2ahUKEwj54MmN9ev2AhVO_7sIHZrXA6cQkeECKAB6BAgCEDU


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 3, June 2023: 2589-2599 

2598 

experimental results obtained, if sufficient resources are available, the architecture can provide performance 

that can satisfy cryptographic applications. Much better performance can be achieved if the network is 

implemented as an integrated circuit chip instead of being prototyped on FPGA. 

In the future, our CIS will be able to use different key sizes (128, 192, or 256 bits) for the encryption 

or decryption of data (text, image). We will also add a detection unit for the different attacks to which our 

CIS can be exposed. Deep learning models such as CNN, multilayer perceptron, or auto-encoders will be 

used. Our CIS will be described using the VHDL. 
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