
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 13, No. 1, February 2023, pp. 833~841

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i1.pp833-841  833

Journal homepage: http://ijece.iaescore.com

A hybrid modified lightweight algorithm for achieving data

integrity and confidentiality

Lamia A. Muhalha, Imad S. Alshawi
Department of Computer Science, College of Computer Science and Information Technology, University of Basrah, Basrah, Iraq

Article Info ABSTRACT

Article history:

Received Apr 2, 2022

Revised Jul 18, 2022

Accepted Aug 19, 2022

 Encryption algorithms aim to make data secure enough to be decrypted by

an attacker. This paper combines the Speck and the Salsa20 to make it

difficult for an attacker to exploit any weaknesses in these two algorithms

and create a new lightweight hybrid algorithm called Speck-Salsa20

algorithm for data integrity and confidentiality (SSDIC). SSDIC uses less

energy and has an efficient throughput. It works well in both hardware and

software and can handle a variety of explicit plaintext and key sizes. SSDIC

solves the difficulties of the Speck algorithm. The sequence generated by

Speck is not random and fails to meet an acceptable success rate when tested

in statistical tests. It is processed by generating a random key using the

Salsa20 algorithm. Salsa20 is a high-speed secure algorithm that is faster

than advanced encryption standard (AES) and can be used on devices with

low resources. It uses a 256-bit key hash function. The recovery of the right

half of the original key of the Speck algorithm is also handled by modifying

the Speck round function and the key schedule. Simulation results show,

according to a National Institute of Standards and Technology (NIST) test,

the performance achieved by the SSDIC is increased by nearly 66% more

than that achieved from the Speck in terms of data integrity and

confidentiality.

Keywords:

Hash function

Keystream generator Salsa20

NIST statistical test suite

Salsa20 algorithm

Speck algorithm

This is an open access article under the CC BY-SA license.

Corresponding Author:

Imad S. Alshawi

Department of Computer Science, College of Computer Science and Information Technology

University of Basrah

Basrah, Iraq

Email: emad.alshawi@uobasrah.edu.iq

1. INTRODUCTION

The protection of data from unauthorized access, disclosure, alteration, or destruction while

ensuring confidentiality, integrity, and availability is very important to information security [1]. As there are

unknown risks, threats, and vulnerabilities, there is no 100% guaranteed security [1]–[4]. Cryptography is

used to keep data secure while it is in transit (electronic or physical). The increasing demand for the

confidentiality of information necessitates the creation of new encryption techniques and algorithms [1], [2],

[5], [6]. According to William Stalling, the security of encrypted data is entirely dependent on two factors:

the strength of the cryptographic technology and the secrecy of the key [7]. These algorithms must be fast

and secure enough to prevent wasting resources in low constrain devices.

Modern encryption algorithms are essential in data transmission systems. Choosing an appropriate

encryption algorithm will have an impact on device longevity and performance in terms of battery life,

device memory, processing lag, and connection bandwidth [8], [9]. Conventional encryption techniques are

slow, complex, and very energy-intensive when dealing with resource-constrained systems [9], [10].

Solutions for resource-limited hardware lightweight algorithms are becoming more common and used [9],

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 1, February 2023: 833-841

834

[10]. The face of lightweight cryptography has been a popular research topic for decades. The lightweight

cipher design has better performance in resource-limited devices than conventional ciphers because of:

(limited block sizes, fewer key sizes, simpler rounds, reduced key tables, and few implementations) [8], [9].

Here are some lightweight algorithms like (Present, Simon, Speck, Rabbit, and Salsa 20/12) [8], [9], [11], [12].

Cryptographic analysts have successfully exploited any flaws in algorithm designs and there have

been security breaches in [7]–[9]. To prevent a cryptanalyst from exploiting algorithm weaknesses, two or

more algorithms are combined to create a new one called a hybrid cipher. Decrypting a hybrid text is more

difficult than decrypting a block or stream of ciphertext [8]. We propose a hybrid algorithm called

Speck-Salsa20 algorithm for data integrity and confidentiality (SSDIC) that combines a lightweight stream

with a lightweight block cipher to achieve data integrity and confidentiality. It is a secure and lightweight

hybrid cipher with greater energy efficiency and effective throughput, as well as good software and hardware

performance, and is a suitable choice for devices with low resources. SSDIC is a hybrid lightweight

algorithm combined (Speck-Salsa20) that generates a fast key using a hash function that generates a wide

range of plain text and key sizes that the SSDIC proposed to address Speck algorithm weaknesses.

When examining the Speck algorithm in statistical analysis, the Speck fails because the generated

sequence is not random, and it also restores the right half of the original key. To increase the randomness of

Speck, we generate the key using the Salsa20 method instead of using the Speck key. Due to Salsa20 being

faster than advanced encryption standard (AES) and is a suitable choice for devices with low resources. It

uses a hash function and has a key size of 128 or 256 bits updating the Speck round function and key tables

solved the problem of restoring the right half of the original key. SSDIC is more random, secure, and passes

all National Institute of Standards and Technology (NIST) SP 800-22 tests with better results rather than a

Speck algorithm.

The remaining portions of this work are organized as follows. Section 2 presents an overview of the

related work. Section 3 describes the encryption mechanism in detail. Section 4 goes through the proposed

encryption technique in detail. Section 5 addresses the system’s performance and security. Finally, in

section 6, there is a succinct conclusion.

2. RELATED WORK

Speck and Salsa20 are discussed separately in several papers. Almazrooie et al. [13] proposes a

Salsa20 modification based on the logistic map to improve the speed of the Salsa20-based encryption. After

the second cycle, an XOR network is used to raise the level of unpredictability by modifying each of the

64 bytes in the sequence, as well as to address the statistical leakage. It generates a 32-byte sequence as a

secret key. There is only 1-bit of difference at the inputs of any two sequential blocks of Salsa20. However,

there are 33-bits of differences in the proposed chaotic Salsa system. The enlargement of the differences in

the inputs can strengthen the system against different types of attacks. It is possible to achieve good diffusion

and a faster speed. Against differential attacks, the method performed admirably.

Fukushima et al. [14] proposed the ChaCha and Salsa20 algorithm to describe an incorrect injection

attack to obtain an X (20) matrix. By skipping add-ons and attacking the initial array, it was able to extract

the key. The proposed strategy is evaluated using a small countermeasure. In [15], reported the first quantum

attack that uses the cipher's diffusion to estimate add-rotate-XOR (ARX) round differences. At 8 rounds of

Salsa with a 256-bit key sequence length, the results were faster. The work is contained in [16]. This

algorithm was the first to employ a hybrid strategy (block and stream). It uses a 16-bit input and a 256-bit

key to perform twenty rounds. Hummingbird-2 accepts 64-bit input with a key length of 128 bits and is

optimized for low-end microprocessors. While it outperforms present, it does have a few disadvantages

(initialization before encryption and decryption, distinct encryption, and decryption functions). In [17],

Mouha et al.’s framework has concentrated on and created an auto-differential coding study of ARX block

ciphers for XOR variance. The suggested method significantly decreases search time and allows for the

discovery of differential properties of ARX block zeros with high word sizes, such as n=48.64. When

calculating several features, it takes into consideration the differential effect and finds that the differential

probability increases by a factor of 416 for Speck and more than 210 for lightweight encryption algorithm

(LEA). It demonstrated efficiency by improving Speck and LEA attacks, which attack 1, 1, 4, and 6 more

rounds of Speck48, Speck64, Speck96, and Speck128, respectively, and two more rounds of LEA than earlier

work.

AES block ciphers are used in the internal functionality of the current format-preserving standard

encryption, FF1 and FF3-1. The approach is implemented by altering the cipher to lightweight block ciphers

LEA and Speck to improve the speed of FF1 and FF3-1, according to the research. By splitting it into

high-performance computing environments and low-performance internet of things (IoT) environments, the

encryption speed is studied and compared with the present encryption speed. In comparison to FF1 and

Int J Elec & Comp Eng ISSN: 2088-8708 

 A hybrid modified lightweight algorithm for achieving data integrity and … (Lamia A. Muhalha)

835

FF3-1, the results revealed an increase in encoding speed. It will be easier to use format-preserving ciphers

across multiple systems if their coding speed is improved.

The evaluation is conducted using physical area (GEs): energy, latency, and throughput [8] and

found that the Speck software-based ciphers consume the least energy (1.6), have the highest throughput

(471.5), and have the lowest latency [8] are algorithms that are software-efficient and lightweight. Speck,

Simon, PRIDE, ITUbee, and IDEA are the top five. Algorithms with low latency Speck, Simon, PRIDE,

Hummingbird-2, and ITUbee are the top five [8]. The performance of random Speck exceeds the acceptable

success rate; we used SSDIC to solve the difficulties of the Speck algorithm.

3. BACKGROUND

3.1. Salsa20 algorithm

Salsa20 is a highly reliable stream cipher algorithm that encrypts quickly with a key size of 128 or

256 bits [18] that was submitted to eSTREAM, the encrypt stream cipher project. The hash function is used

in Salsa20, which takes 64-byte inputs and outputs 64 bytes [18], [19]. This hash function is implemented as

a stream cipher in counter mode [18], [19].

Hash functions include the quarter round (QR), row round (RR), column round (CR), and double

round functions (DR) as illustrated in algorithm 1 pseudocode and Figure 1. It accepts as input a 256-bit key

(k0, k1... k7), a 64-bit counter (t0, t1), a 64-bit nonce (v0, v1), and 128-bit constants (c0, c1... c3). Salsa20

operates on 32-bit words and maps inputs to a 4x4 matrix, as in (1) to (5) [18], [19]. The QR (a, b, c, d)

transformation updates the matrix X four 32-bit words as below [18], [19]. Where the symbol ≪ represents

the rotation to the left, + is arithmetic addition and ⊕ represents a bitwise XOR. There are various types of

rounds; for example, Salsa20/12 and Salsa20/8 are considered to be the fastest of the other stream cipher

algorithms. Salsa20 algorithm is faster than the AES cipher algorithm and is therefore recommended for

typical cryptosystems where speed is more important than confidence [18], [19].

Figure 1. Salsa20 algorithm hash function operating [18], [19]

𝑋 = [

𝑥0 𝑥1 𝑥2 𝑥3
𝑥4 𝑥5 𝑥6 𝑥7
𝑥8 𝑥9 𝑥10 𝑥11
𝑥12 𝑥13 𝑥14 𝑥15

] = [

𝜎0 𝑘0 𝑘1 𝑘2
𝑘3 𝜎1 𝑣0 𝑣1
𝑡0 𝑡1 𝜎2 𝑘4
𝑘5 𝑘6 𝑘7 𝜎3

] (1)

QR = {

𝑏 = 𝑏 ⊕ [(𝑎 + 𝑑) ⋘ 7]

𝑐 = 𝑐 ⊕ [(𝑏 + 𝑎) ⋘ 9]

𝑑 = 𝑑 ⊕ [(𝑐 + 𝑏) ⋘ 13]

𝑎 = 𝑎 ⊕ [(𝑑 + 𝑐) ⋘ 18]

 (2)

RR =

{

QR(𝑥0, 𝑥4, 𝑥8, 𝑥12)

QR(𝑥5, 𝑥9, 𝑥13, 𝑥1)

QR(𝑥10, 𝑥14, 𝑥2, 𝑥6)

QR(𝑥15, 𝑥3, 𝑥7, 𝑥11)

, CR =

{

QR(𝑥0, 𝑥1, 𝑥2, 𝑥3)

QR(𝑥5, 𝑥6, 𝑥7, 𝑥4)

QR(𝑥10, 𝑥11, 𝑥8, 𝑥9)

QR (𝑥15, 𝑥12, 𝑥13, 𝑥14)

 (3)

𝐷𝑅 = (𝑋) = 𝑅𝑅(𝐶𝑅(𝑋)) (4)

Keystream = 𝑋 + 𝐷𝑅𝑟(𝑋) (5)

Algorithm 1: Salsa20 keystream generator [18], [19]
Input: key (k), block counter (c) and nonce (n)

Output: keystream

 1: X ← IntMatrix(k,c,n)

 2: for i=0 to r=9 do

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 1, February 2023: 833-841

836

 3: (x0, x4, x8, x12) ← QR(x0, x4, x8, x12) ▷ Column Round (CR)
 4: (x5, x9, x13, x1) ← QR((x5, x9, x13, x1)

 5: (x10, x14, x2, x6) ← QR(x10, x14, x2, x6)

 6: (x15, x3, x7, x11) ← QR(x15, x3, x7, x11)

 7: (x0, x1, x2, x3) ← QR((x0, x1, x2, x3) ▷ Row Round (RR)
 8: (x5, x6, x7, x4) ← QR(((x5, x6, x7, x4)

 9: (x10, x11, x8, x9) ← QR(x10, x11, x8, x9)

 10: (x15, x12, x13, x14) ← QR(x15, x12, x13, x14)

 13: DR ← RR(CR(X))

 14: Keystream ← X + 〖DR〗^r(X)
 15: end for

3.2. Speck algorithm

The Speck algorithm is one of the lightweight block ciphers. It can handle a large number of

different blocks and key sizes [12], [20]. While there are numerous lightweight block ciphers available, the

majority is designed for a single platform, and it is not intended to perform well across a range of devices.

The purpose of Speck is to address the need for secure and high-performance computing on hardware and

software platforms [12], [20] while remaining flexible enough to support a range of implementations on a

given platform in a variety of devices running lightweight applications [12], [20].

The Speck is a 2n-bit block that denotes a wn-bit key. 2n/wn, where n must be a minimum of

(16, 24, 32, 48, 64) bits in length, and the key must be a minimum of m bits in length. m must be in the range

(2, 3, 4) and is version dependent [12], [20]. In the case of Speck 64/128, for instance, 64 block size divide

two-part (32-bit) words representing in (x, y) are encrypted using a key 128 divide four-part (32-bit) word

representing in k=(l[2], l[1], l[0], k[0]) Beaulieu et al. [12] as illustrated in Table 1 [20]. As illustrated in

Algorithm 2 pseudocode and Figure 2 of Speck algorithm consists of two iterative components: Figure 2(a) a

key schedule and Figure 2(b) a round function denoted by R, both of which require a round count (T) [12],

[20]. The main components include bitwise XOR (⊕), addition modulo 2 n (+), and rotation operations

(S^(-α), S^β), Speck gets its nonlinearity from the modular addition operation, below encryption and

decryption (6) to (9) [12], [20]. where (𝑆𝛽) is left-shift circular and (𝑆−𝛼) is right-shift circular, where β and

α are equal to 2 and 7 for block sizes equal to 32; and 3 and 8 for all other block sizes. Where k is the round

key, K can be denoted by (𝑙𝑚−2, · · ·, 𝑙0, 𝑘0) [12].

𝑅(𝑥, 𝑦) = ((𝑠−𝛼𝑥 + 𝑦) ⊕ 𝑘, 𝑠𝛽𝑦 ⊕ (𝑠−𝛼𝑥 + 𝑦) ⊕ 𝑘) (6)

𝑅𝑘
−1(𝑥, 𝑦) = (𝑠𝛼((𝑥 ⊕ 𝑘) − 𝑠−𝛽(𝑥 ⊕ 𝑦)), 𝑠−𝛽(𝑥 ⊕ 𝑦)) (7)

𝑙𝑖+𝑚−1 = (𝐾𝑖 + 𝑠
−𝛼𝑙𝑖) ⊕ 𝑖 (8)

𝐾𝑖+1 = 𝑠𝛽𝑘𝑖 ⊕ 𝑙𝑖+𝑚−1 (9)

Table 1. Speck parameters
Block size(2n) Key size (m*n) Word size (n) Key word (m) Rot α Rot Β Round T

32 64 16 4 7 2 22

48 72,96 24 3,4 8 3 22,23

64 96,128 32 3,4 8 3 26,27
96 96,144 48 2,3 8 3 28,29

128 128,192,256 64 2,3,4 8 3 32,33,34

Algorithm 2. Speck key schedules, Speck encryption, and decryption [20]
Input: (k_0, l_0, ..., l_(m-2)), round number (t), plaintext(x,y)

Output: (k_0, k_10, ..., k_(t-1)), ciphertext(x,y)

 1: for i=m to t-1 do ▷ Speck key schedules
 2: 〖 l〗_(i+m-1) ← (K_i+s^(-α) l_i)⊕i

 3: K_(i+1) ← s^β k_i⊕l_(i+m-1)

 4: end for

 5: for i=0 to t-1 do ▷ Speck encryption

 6: x ← (s^(-α) x+y)⊕k

 7: y ← s^β y ⊕ x

 8: y ← S^(-β) (X+Y) ▷ Speck decryption
 9: x ← S^α ((X⊕K)-Y)

 10:end for

Int J Elec & Comp Eng ISSN: 2088-8708 

 A hybrid modified lightweight algorithm for achieving data integrity and … (Lamia A. Muhalha)

837

(a) (b)

Figure 2. Speck algorithm consists of two iterative components: (a) a key schedule and (b) a round function

denoted by R, both of which require a round count (T) [20]

4. SPECK-SALSA20 FOR DATA INTEGRITY AND CONFIDENTIALITY

The performance of random Speck exceeds the acceptable success rate, indicating that the

algorithm’s sequence is insecure [21], [22]. Because Speck requires the key to be supplied alongside the

plaintext to be encrypted, as well as the good attack point in a side-channel attack is where the plaintext

directly mixes with the key. The first XOR operation of the round function in Speck is where the plaintext

directly mixes with the key. In [23] have already demonstrated that using random plaintext to attack the first

round of XOR operation can recover the right half of the original key using a correlation power analysis

(CPA) attack, because the round key used in the first round is the right half of the original key [24], as

illustrated in Figure 2.

When an attacker can recover the right half of the original key of the Speck method using a CPA

attack the Speck method is not secure, as it allows for predictability and provides cryptanalysts with partial

understanding as part of the known key. This proposed paper addresses the issue of non-random Speck as

well as restoring the right half of the original key by combining Speck and the Salsa20 algorithm as a block

cipher and stream cipher called SSDIC method, respectively, and exploiting the strengths of the two

algorithms. It is optimized for lightweight applications to ensure performance is applied during software and

hardware implementation. The Speck algorithm’s key will not be used; instead, the Salsa20 stream’s keys will

be used as the SSDIC algorithm’s key to circumvent the Speck algorithm’s weakness. As a result, Figure 1

illustrates the key generated using the Salsa20 hash function.

The ten Speck variants are designated as Speck 2n/wn. For instance, Speck 128/256 denotes the

Speck block cipher with a block size of 128 bits and a key size of 256 bits. Thus, n=64, w=4, α=8, β=3 and

T=34 is obtained from Table 1. Because no Speck algorithm key is used, a Salsa20 algorithm key must be

generated to overcome a weakness, as previously indicated. As a result, Salsa20 must generate a key with a

length commensurate with the lengths of the keys listed in Table 1. In this case, Salsa20 must generate

256 keys and then pass them to the Speck algorithm, as illustrated in algorithm 3 pseudocode. Also, Figure 3

shows that the SSDIC method which consists of two iterative components: Figure 3(a) a key schedule and

Figure 3(b) a round function denoted by R.

As illustrated in Figure 1, the keystream is generated using Salsa20 hash functions. It accepts a

(((m∗n)/16)∗8)-bit key (k0, k1, ..., k7), a (((m∗n)/16)∗2)-bit counter (t0, t1), a (((m∗n)/16)∗2)-bit nonce (v0,

v1), and (((m ∗ n)/16) ∗ 4)-bit constants (c0, c1, c2, c3) as input. Equation maps the inputs to a 4X4 matrix

(1). As shown in (1) to (5) are used to generate a keystream with a length of (m*n). All inputs to Salsa20 are

displayed in Table 2. Following the process of generating the key for use in encryption and decryption using

the Speak algorithm, the encryption and decryption (6) and (7) were modified to eliminate the restoring of the

right half of the original key, as illustrated in Figure 3. A benefit of any stream cipher-based system is its ease

of implementation. However, the strength of such systems is entirely dependent on how the keystream is

generated. The ten instances of Speck have been designed to provide excellent performance in both hardware

and software, but have been optimized for performance on microcontrollers [20].

𝑅(𝑋, 𝑌) = ((𝑆−𝛼𝑋 + (𝑋 ⊕ 𝑌)) ⊕ 𝐾, (𝑆𝛽(𝑋 ⊕ 𝑌)) ⊕ (𝑆−𝛼𝑋 + (𝑋 ⊕ 𝑌)) ⊕ 𝐾) (10)

𝑅𝐾
−1 = (𝑆𝛼((𝑋 ⊕ 𝐾) − 𝑆−𝛽(𝑋 ⊕ 𝑌)), 𝑆−𝛽(𝑋 ⊕ 𝑌)⊕ 𝑆𝛼((𝑋 ⊕ 𝐾) − 𝑆−𝛽(𝑋 ⊕ 𝑌))) (11)

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 1, February 2023: 833-841

838

(a) (b)

Figure 3. SSDIC method consists of two iterative components: (a) a key schedule of SSDIC and

(b) a round function of SSDIC

Table 2. Table parameters input Salsa20 in a bit
Key Stream Key in bit (k0, ..., k7) Counter in bit (b0, b1) Nonce in bit (v0, v1) Constant in bit (c0, ..., c3)

32 64 16 4 7

48 72, 96 24 3, 4 8

64 96, 128 32 3, 4 8
96 96, 144 48 2, 3 8

128 128, 192, 256 64 2, 3, 4 8

Algorithm 3. SSDIC algorithm

Input: key (k), block counter (c), nonce (n), (𝑘0, 𝑙0, ..., 𝑙𝑚−2), round number (t),
plaintext(x,y)

Output: keystream(KG), (𝑘0, 𝑘10, ..., 𝑘𝑡−1), ciphertext(x,y)

 1: X ← IntMatrix(k,c,n) ▷ SSDIC generating key
 2: for i=0 to r=9 do

 3: (x0, x4, x8, x12) ← QR(x0, x4, x8, x12) ▷ Column Round (CR)
 4: (x5, x9, x13, x1) ← QR((x5, x9, x13, x1)

 5: (x10, x14, x2, x6) ← QR(x10, x14, x2, x6)

 6: (x15, x3, x7, x11) ← QR(x15, x3, x7, x11)

 7: (x0, x1, x2, x3) ← QR((x0, x1, x2, x3) ▷ Row Round (RR)
 8: (x5, x6, x7, x4) ← QR(((x5, x6, x7, x4)

 9: (x10, x11, x8, x9) ← QR(x10, x11, x8, x9)

 10: (x15, x12, x13, x14) ← QR(x15, x12, x13, x14)

 11: DR ← RR(CR(X))

 12: KG ← X + 𝐷𝑅𝑟 (X)
 13: end for

 14: for i=m to t-1 do ▷ SSDIC key schedules
 15: 𝑙𝑖+𝑚−1 ← (KG𝑖 + 𝑠

−𝛼𝑙𝑖) ⊕ 𝑖

 16: 𝐾𝐺𝑖+1← 𝑠
𝛽𝐾𝐺𝑖⊕ 𝑙𝑖+𝑚−1

 17: end for

 18: for i=0 to t-1 do

 19: x ← ((𝑠−𝛼X + (X ⊕ Y)) ⊕ K ▷ SSDIC encryption

 20: y ← (𝑠𝛽 (X ⊕ Y)) ⊕ x

 21: y ← (𝑠𝛼 ((X ⊕ K) − 𝑠−𝛽 (X ⊕ Y)) ▷ SSDIC decryption

 22: x ← 𝑠−𝛽 (X ⊕ Y) ⊕ y

 23: end for

5. RESULTS AND DISCUSSION

In this paper, we propose a hybrid algorithm called SSDIC that combines a lightweight stream with

a lightweight block cipher (Speck and Salsa20) to achieve data integrity and confidentiality to create a

flexible and secure hybrid cipher, a remarkable fusion that combines the qualities of both the Speck

algorithm and the Salsa20 algorithm. We proposed SSDIC to improve the vulnerabilities of the Speck

algorithm. Speck fails to pass an acceptable success rate in the statistical analysis because the generated

sequence is not random, and the right half is retrieved from Speck's original main algorithm. Although a lot

Int J Elec & Comp Eng ISSN: 2088-8708 

 A hybrid modified lightweight algorithm for achieving data integrity and … (Lamia A. Muhalha)

839

of research has been done to exploit Speck's security in terms of linear and differential cipher analysis, few

have attempted to address non-randomness, a basic need of all encryption methods.

The SSDIC method is built and implemented in a Python 3.9.7 environment, on a machine with an

Intel(R) Xeon(R) CPU E3-1545M v5 running at 2.90 GHz and 8 GB of RAM running Windows 10, Intel(R)

Xeon(R) CPU E3-1545M v5 running at 2.90 GHz. The run-time is determined by a timer running in the

visual studio code environment. The run-time for the SSDIC and the Speck is 0.0019991 and 0.0010006 μs,

respectively. Where a small difference in execution time is observed between SSDIC and the Speck

algorithm, but it has high randomness and security based on NIST test results shown in Table 3.

Table 3. NIST statistical test suite
NIST Tests Speck Proposed Algorithm

Frequency 0.2888 0.4795

Block frequency 0.2888 0.4795
Cumulative sums 0.6548 0.8920

Runs 0.2509 0.4507

Longest run 0.5126 0.9693
Rank 0.1601 0.3601

FFT 0.8711 0.5741

Non-overlapping 0.9999 0.9999
Overlapping template 0.1515 0.9891

Universal 0.2248 0.4455
Approximate entropy 0.4999 0.9999

Random excursions 0.6999 0.7924

Random excursions variant 0.9999 0.9999
Serial 0.4989 0.7134

Linear complexity 0.1746 0.5434

Several statistical tests are also available to evaluate the randomness features of cryptographic

algorithms. The statistical analysis is evaluated using NIST SP 800-22. Based on the significance value, the

NIST tests determine whether the sequence ratio is random. When the P-value is less than 0.01, the sequence

is considered random or vice versa and is called a non-random sequence [25], [26]. The SSDIC method and

Speck encryption algorithm are subject to each of the fifteen NIST tests [26]. Test results will also be

discussed below.

− Frequency (Monobit) test: passing this test is required for all subsequent tests [25]. In this test, the SSDIC

method is generally superior to the Speck, as shown in Table 3. SSDIC increases nearly 0.1907 more than

the Speck algorithm, according to NIST tests.

− Frequency block test: in this test, the SSDIC is generally superior to the Speck, as shown in Table 3.

SSDIC increases nearly 0.1907 more than the Speck, according to NIST tests.

− Runs test: in this test, SSDIC is generally superior to the Speck, as shown in Table 3. SSDIC increases

nearly 0.1998 more than the Speck algorithm, according to NIST tests.

− Longest run test: in this test, SSDIC is generally superior to the Speck, as shown in Table 3. SSDIC

increases nearly 0.4567 more than the Speck, according to NIST tests.

− Binary matrix rank test: in this test, SSDIC is generally superior to the Speck, as shown in Table 3.

SSDIC increases nearly 0.2 more than the Speck, according to NIST tests.

− Discrete Fourier transform test: in this test, SSDIC is generally less than the Speck, as shown in Table 3.

SSDIC decreases nearly 0.297 more than the Speck, according to NIST tests.

− Non-overlapping template matching test in this test, SSDIC is generally equal to the Speck, as shown in

Table 3.

− Overlapping template matching test: in this test, SSDIC is generally superior to the Speck, as shown in

Table 3. SSDIC increases nearly 0.8376 more than the Speck, according to NIST tests.

− Maurer’s “Universal Statistical” Test: In this test, SSDIC is generally superior to the Speck, as shown in

Table 3. SSDIC increases nearly 0.2207 more than the Speck, according to NIST tests.

− Linear complexity test: in this test, SSDIC is generally superior to the Speck, as shown in Table 3. SSDIC

increases nearly 0.3688 more than the Speck, according to NIST tests.

− Serial test: in this test, SSDIC is generally superior to the Speck, as shown in Table 3. SSDIC increases

nearly 0.2145 more than the Speck, according to NIST tests.

− Approximate entropy test: in this test, SSDIC is generally superior to the Speck, as shown in Table 3.

SSDIC increases nearly 0.5 more than the Speck, according to NIST tests.

− Cumulative Sums (Cusum) test: in this test, SSDIC is generally superior to the Speck, as shown in

Table 3. SSDIC increases nearly 0.0925 more than the Speck, according to NIST tests.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 1, February 2023: 833-841

840

− Random excursions variant test: in this test, the SSDIC method is equal to the Speck, as shown in

Table 3 according to NIST tests.

− Random excursions test: in this test, SSDIC is generally superior to the Speck, as shown in Table 3.

SSDIC increases nearly 0.0925 more than the Speck, according to NIST tests.

6. CONCLUSION

The disadvantage of Speck's algorithm is that the performance of randomization exceeds the

allowable success rate. The Speck also requires that the key be supplied with the plaintext to be encrypted, as

well as part of the key and part of the known text in the first round. The Speck indicates that the algorithm

sequence is not secure because it allows for predictability and gives cryptanalysts partial understanding of the

key and plaintext. To increase the non-randomness, this study introduces the SSDIC algorithm to improve the

vulnerability of the Speck method by using the Salsa20 algorithm key instead of the Speck algorithm key.

Also, change the Speck round function and the key schedule to process recovery of the right half of the

original key and plaintext of the Speck algorithm. Random cipher performance was tested using 15 NIST

statistical tests, which were created to evaluate pseudo-random numbers of cryptographic applications and

successfully bypass the randomness of the SSDIC algorithm.

REFERENCES
[1] O. Z. Akif, S. Ali, R. S. Ali, and A. K. Farhan, “A new pseudorandom bits generator based on a 2D-chaotic system and diffusion

property,” Bulletin of Electrical Engineering and Informatics (BEEI), vol. 10, no. 3, pp. 1580–1588, Jun. 2021, doi:
10.11591/eei.v10i3.2610.

[2] D. Khwailleh and F. Al-balas, “A dynamic data encryption method based on addressing the data importance on the internet of

things,” International Journal of Electrical & Computer Engineering (IJECE), vol. 12, no. 2, 2022, doi:
10.11591/ijece.v12i2.pp2139-2146.

[3] M. D. Aljubaily and I. Alshawi, “Energy sink-holes avoidance method based on fuzzy system in wireless sensor networks,”
International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no. 2, pp. 1776–1785, Apr. 2022, doi:

10.11591/ijece.v12i2.pp1776-1785.

[4] I. S. Alshawi, Z. A. Abbood, and A. A. Alhijaj, “Extending lifetime of heterogeneous wireless sensor networks using spider
monkey optimization routing protocol,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 20, no. 1,

pp. 212–220, Feb. 2022, doi: 10.12928/telkomnika.v20i1.20984.

[5] A. H. Jabbar and I. S. Alshawi, “Spider monkey optimization routing protocol for wireless sensor networks,” International
Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 3, pp. 2432–2442, Jun. 2021, doi:

10.11591/ijece.v11i3.pp2432-2442.

[6] I. S. Alshawi, A.-K. Y. Abdulla, and A. A. Alhijaj, “Fuzzy dstar-lite routing method for energy-efficient heterogeneous wireless
sensor networks,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 19, no. 2, pp. 906–916,

Aug. 2020, doi: 10.11591/ijeecs.v19.i2.pp906-916.

[7] B. Kumar, M. Hussain, and V. Kumar, “BRRC: A hybrid approach using block cipher and stream cipher,” in Advances in
Intelligent Systems and Computing, vol. 563, Singapore: Springer Singapore, 2018, pp. 221–231.

[8] V. A. Thakor, M. A. Razzaque, and M. R. A. Khandaker, “Lightweight cryptography algorithms for resource-constrained IoT

devices: A review, comparison and research opportunities,” IEEE Access, vol. 9, pp. 28177–28193, 2021, doi:
10.1109/ACCESS.2021.3052867.

[9] A. Sevin and A. A. O. Mohammed, “A survey on software implementation of lightweight block ciphers for IoT devices,” Journal

of Ambient Intelligence and Humanized Computing, no. 0123456789, 2021, doi: 10.1007/s12652-021-03395-3.
[10] H. H. Al-Badrei and I. S. Alshawi, “Improvement of RC4 security algorithm,” Advances in Mechanics, vol. 9, no. 3,

pp. 1467–1476, 2021.

[11] A. Bogdanov et al., “PRESENT: An ultra-lightweight block cipher,” in Cryptographic Hardware and Embedded Systems - CHES
2007, vol. 4727, Springer Berlin Heidelberg, 2007, pp. 450–466.

[12] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers, “The Simon and Speck lightweight block

ciphers,” in Proceedings of the 52nd Annual Design Automation Conference, Jun. 2015, vol. 2015, pp. 1–6, doi:
10.1145/2744769.2747946.

[13] M. Almazrooie, A. Samsudin, and M. M. Singh, “Improving the diffusion of the stream cipher salsa20 by employing a chaotic

logistic map,” Journal of Information Processing Systems, vol. 11, no. 2, pp. 310–324, 2015, doi: 10.3745/JIPS.02.0024.
[14] K. Fukushima, R. Xu, S. Kiyomoto, and N. Homma, “Fault injection attack on salsa20 and ChaCha and a lightweight

countermeasure,” in 2017 IEEE Trustcom/BigDataSE/ICESS, Aug. 2017, pp. 1032–1037, doi:

10.1109/Trustcom/BigDataSE/ICESS.2017.348.
[15] A. Q. Cruz, “Conditional differential cryptanalysis of the post-quantum ARX symmetric primitive salsa20,” Univeristé Denis

Diderot Paris 7, 2018.

[16] D. Engels, X. Fan, G. Gong, H. Hu, and E. M. Smith, “Hummingbird: Ultra-lightweight cryptography for resource-constrained
devices,” in Financial Cryptography and Data Security, Springer Berlin Heidelberg, 2010, pp. 3–18.

[17] L. Song, Z. Huang, and Q. Yang, “Automatic differential analysis of ARX block ciphers with application to Speck and LEA,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 9723, Springer International Publishing, 2016, pp. 379–394.

[18] D. J. Bernstein, “The salsa20 family of stream ciphers,” in New Stream Cipher Designs, vol. 4986, Springer Berlin Heidelberg,

2008, pp. 84–97.
[19] Z. M. J. Kubba and H. K. Hoomod, “A hybrid modified lightweight algorithm combined of two cryptography algorithms

PRESENT and salsa20 using chaotic system,” in 2019 First International Conference of Computer and Applied Sciences (CAS),

Dec. 2019, pp. 199–203, doi: 10.1109/CAS47993.2019.9075488.

Int J Elec & Comp Eng ISSN: 2088-8708 

 A hybrid modified lightweight algorithm for achieving data integrity and … (Lamia A. Muhalha)

841

[20] A.-V. Duka and B. Genge, “Implementation of Simon and Speck lightweight block ciphers on programmable logic controllers,”
in 2017 5th International Symposium on Digital Forensic and Security (ISDFS), 2017, pp. 1–6, doi:

10.1109/ISDFS.2017.7916501.

[21] Y. S. S. Risqi and S. Windarta, “Statistical test on lightweight block cipher-based PRNG,” in 2017 11th International Conference
on Telecommunication Systems Services and Applications (TSSA), Oct. 2017, vol. 2018, pp. 1–4, doi:

10.1109/TSSA.2017.8272925.

[22] R. A. F. Lustro, A. M. Sison, and R. P. Medina, “Performance analysis of enhanced Speck algorithm,” in Proceedings of the 4th
International Conference on Industrial and Business Engineering, Oct. 2018, pp. 256–264, doi: 10.1145/3288155.3288196.

[23] H. Gamaarachchi, H. Ganegoda, and R. Ragel, “Breaking Speck cryptosystem using correlation power analysis attack,” Journal

of the National Science Foundation of Sri Lanka, vol. 45, no. 4, pp. 393–404, Dec. 2017, doi: 10.4038/jnsfsr.v45i4.8233.
[24] J. Tang, K. Iokibe, T. Kusaka, and Y. Nogami, “An approach for attacking speck on microcontroller with correlation power

analysis,” in 2020 Eighth International Symposium on Computing and Networking Workshops (CANDARW), Nov. 2020,

pp. 368–372, doi: 10.1109/CANDARW51189.2020.00076.
[25] L. E. Bassham III et al., “Sp 800-22 rev. 1a. a statistical test suite for random and pseudorandom number generators for

cryptographic applications.” National Institute of Standards & Technology, 2010.

[26] E. A. Luengo and L. J. G. Villalba, “Recommendations on statistical randomness test batteries for cryptographic purposes,” ACM
Computing Surveys, vol. 54, no. 4, May 2021, doi: 10.1145/3447773.

BIOGRAPHIES OF AUTHORS

Lamia A. Muhalhal is a student M.Sc. in the Computer Science Department,

College of Computer Science and Information Technology, University of Basra, located in his

hometown of Basra, Iraq. She received a B.Sc. degree in Computer Science at Shatt Al-Arab

College, Basra, Iraq, in 2018. Recently she has been interested in security and wireless sensor

networks. She can be contacted at email: allalemyaa@gamil.com.

Imad S. Alshawi received B.Sc. and M.Sc. degrees in computer science from the

College of Science, University of Basrah, Basrah, IRAQ. He received a Ph.D. degree in

wireless sensor networks at the School of Information Science and Technology, Information

and Communication System Department, Southwest Jiaotong University, Chengdu, China. Mr.

Alshawi has been a Prof. of Computer Science and Information Technology at, the University

of Basrah, for 20 years. He serves as a frequent Referee for more than fifteen journals. He is

the author and co-author of more than 40 papers published in prestigious journals and

conference proceedings. He is a member of the IEEE, the IEEE Cloud Computing Community,

and the IEEE Computer Society Technical Committee on Computer Communications. He can

be contacted at email: emad.alshawi@uobasrah.edu.iq.

https://orcid.org/0000-0003-1670-6799
https://scholar.google.com/citations?view_op=new_profile&hl=en
https://www.scopus.com/authid/
https://orcid.org/0000-0003-4334-6776
https://scholar.google.com/citations?hl=en&user=Db9OTTMAAAAJ&view_op=list_works
https://www.scopus.com/authid/detail.uri?authorId=55340940900
https://publons.com/researcher/1232931/dr-imad-alshawi/

