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 Particle swarm optimization (PSO) is the most widely used soft computing 

algorithm in photovoltaic systems to address partial shading conditions 

(PSC). The success of the PSO run heavily depends on the initial population 

size (NP). A higher NP increases the probability of a global peak (GP) 

solution, but at the expense of a longer convergence time. To find the 

optimal value of NP, a trade-off is typically made between a high success 

rate and a reasonable convergence time. The most used trade-off method is a 

trial-and-error approach that lacks explicit guidelines and empirical evidence 

from detailed analysis, which can affect data reproducibility when different 

systems are used. Hence, this study proposes an empirical trade-off method 

based on the performance index (PI) indicator, which takes into account the 

weighted importance of success rate and convergence time. Furthermore, the 

impact of NP on achieving a successful PSO was empirically investigated, 

with the PSO tested with 16 different NPs ranging from 3 to 50, and 10,000 

independent runs on various PSC problems. Overall, this study found that 

the best NP to use was 25, which had the best average PI value of 0.9373 for 

solving all PSC problems under consideration. 
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1. INTRODUCTION 

Recently, photovoltaic (PV) system is emerging as one of the most popular sources of renewable 

energy owing to its clean and inexhaustible nature [1]–[3]. Generally, the PV system is composed of a PV 

array, an intermediate DC/DC converter, and a DC/AC converter, which allows the flow of power in either 

grid-connected or stand-alone application. Generally, the performance of the PV system is negatively 

influenced by the occurrence of partial shading conditions (PSCs). Partial shading happens when different 

PV modules are subjected to different irradiance levels due to shading by buildings, trees, chimneys, dust, 

clouds or bird droppings [4]. Consequently, the power–voltage (P–V) characteristics curves exhibited 

multiple peaks with several local peaks (LPs) and one global peak (GP) to operate in maximum power point 

(MPP) of the PV system [3], [5]. As a result, these systems may produce lower power than the optimal 

operating point due to mismatch loss [6]. To mitigate this issue, many soft computing (SC)-based maximum 

power point tracking (MPPT) algorithms have been employed to drive the operating point towards the MPP 

on the P–V curve. The SC exploits the tolerance for imprecision, partial truth and uncertainty to achieve 

approximate, robust and low-cost optimal solutions [7], [8]. Since the SC algorithm search includes all the 

peaks over the entire P–V curve, it is possible to identify the GP. 

https://creativecommons.org/licenses/by-sa/4.0/
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Application of SC for MPPT has been extensively reviewed [9]–[13], which includes genetic 

algorithm, differential evolution, ant colony optimization, cuckoo search and particle swarm optimization. 

Each of these algorithms has specific and unique parameters which require adjustment to achieve the desired 

performance. A common parameter to all SCs is population size (NP). NP is the number of individuals/search 

agents/particles/chromosomes that exist in each generation/iteration of an algorithm and is one of the most 

important parameters which affect the achievement of GP solution. Traditionally, the NP is specified to be 

constant throughout the iteration process [14], [15]. At the initialization stage, the initial NP of search agents 

in the population known as a parent is randomly generated. Nevertheless, the random nature of the 

initialization stage causes uneven distribution of the initial population over the search space (SS). This lead 

the search towards unpromising regions (areas that do not contain GP solution) from the beginning [16]. It is 

recognized that large NP can ensure the diversity of search agents, hence improving the success rate of 

achieving GP solution. However, the larger the NP, the longer will be the sampling process runs, and the 

slower will be the convergence time. A previous study [17]–[20] suggested that NP should be in the range 

from 20 to 50 particles if there is no empirical study carried out to select the optimum NP. A good MPPT 

strategy should be able to successfully track the GP in a short time. Therefore, a trade-off is necessary 

between the success rate (SR) and the convergence time (CT) to attain the optimal value of NP. Commonly 

used trade-off methods include the trial and error method [21]–[23] which is time-consuming, the rule of 

thumb technique and the educated guess approach. These methods have no empirical guidelines or evidence 

from detailed performance analysis leading to challenges in reproducing experimental results, especially for 

different systems. Furthermore, limited previous studies have discussed the impact of NP on the successful 

performance of SC algorithms. 

Hence, the present work proposes an empirical trade-off method to select the optimal value of NP. 

The proposed method is based on the performance index (PI) indicator which incorporates the weighted 

importance of SR and CT. Also, the impact of various NP values on the successful performance of the PSO 

algorithm was studied. Particle swarm optimization (PSO) was selected to implement the proposed method as 

PSO is the most widely used SC algorithm in solving various PSC problems. Besides, PSO is preferred due 

to its simple mathematical expressions and implementation [24], [25]. In the current work, PSO was tested 

with 16 different NPs of 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, and 50, on three types of PSC 

problems. The combination of the three problems could represent the actual case of no prior information 

about the location of the GP in the SS. GP locations can be categorized into three types of patterns: pattern 1, 

2 and 3 with the GP located at the left side, middle and right side of the SS, respectively. To reduce the 

statistical errors, 10,000 independent runs of PSO were performed at each selected NP to solve each PSC 

problem. 

 

 

2. RESEARCH METHOD 

2.1.  Problem formulation of partial shading 

To study the impact of NP on the SR, PSO was applied to solve various PSC problems. The goal of 

optimization is to find the maximum value of fitness (PPVMax) as determined using (1). 

 

𝑓𝑚𝑎𝑥 = 𝑃𝑃𝑉𝑀𝑎𝑥 = max{𝑉𝑃𝑉 ∙ 𝑃𝐼𝑃𝑉} (1) 

 

In (1), the VPV and IPV variables are the PV array output voltage and current, respectively. To simplify the 

evaluation of (1), the lookup table method was employed in this work. The P–V data for the lookup table was 

generated using a MATLAB/Simulink simulator that was developed in a previous study [26]. The simulator 

utilized a two-diode PV cell model which is superior to the single-diode model, particularly at low irradiance 

level [26]–[29] as depicted in Figure 1. 
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Figure 1. A two-diode model of a PV cell 
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For a module with N number of cells in series (Ncell), the output current of the module can be 

calculated: 

 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑜1 (𝑒𝑥𝑝 (
𝑉𝑚𝑝𝑝+𝐼𝑚𝑝𝑝𝑅𝑆

𝑎1𝑉𝑇1
) − 1) −  

𝐼𝑜2 (𝑒𝑥𝑝 (
𝑉𝑚𝑝𝑝+𝐼𝑚𝑝𝑝𝑅𝑆

𝑎2𝑉𝑇2
) − 1) − (

𝑉𝑚𝑝𝑝+𝐼𝑚𝑝𝑝𝑅𝑆×𝑁𝑐𝑒𝑙𝑙

𝐼𝑚𝑝𝑝𝑅𝑃×𝑁𝑐𝑒𝑙𝑙
) (2) 

 

where 𝐼𝑜1 and 𝐼𝑜2 are the reverse saturation currents of diode 1 (D1) and diode 2 (D2), respectively; 𝑉𝑇1 and 

𝑉𝑇2 are the thermal voltages of D1 and D2, respectively; a1 and a2 represent the diode ideality constants; 

Vmpp and Impp are the voltage and current of the PV cell at MPP, respectively. Several series-parallel 

connected PV modules can be set in the simulator to form the PV array with the desired voltage and current 

level. The input electrical parameters used for the simulator were based on the Solarex MSX-60 PV module 

[30] and the specifications at standard test conditions (STC) are displayed in Table 1. 

 

 

Table 1. Electrical parameters of MSX-60 module at STC 
Parameters Values 

Maximum Power (Pmax) 60 W 

Voltage at Pmax (Vmpp) 17.1 V 

Current at Pmax (Impp) 3.5 A 
Open circuit voltage (Voc) 21.1 V 

Short circuit current (Isc) 3.8 A 

Temperature coeff. of Voc -(80±10) mV/C 

Temperature coeff. of Isc -(0.065±0.015)%/C 

Temperature coeff. of power -(0.5±0.05)%/C 

NOCT 47±2 C 

Operating Temperature 25 C 

 

 

In this work, the PV array was formed by two parallel five modules in series (5S2P) as illustrated in 

Figure 2. When partial shading occurs, different PV modules as illustrated in Figure 2 were subjected to 

different irradiance levels, which led to the appearance of multiple peaks in the P–V characteristic curve. In 

reality, the location of GP in the SS (P–V curves) is unknown. With no prior information provided, three PSC 

problems with different GP locations (pattern 1, 2 and 3 as mentioned earlier) in the SS were generated in 

this work as shown in Figure 3. The three patterns can be achieved when the PV modules as shown in  

Figure 2 are partially shaded with different values of irradiance as tabulated in Table 2. 
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Figure 2. Schematic illustration of partially shaded PV arrays with varying irradiance patterns 

 

 

The limit of SS for the PSC problems is in between the lower bound (LB) and upper bound (UB) of 

the PV array open-circuit voltage (Voc). The LB was equal to 0 while the UB was equal to 105.65 V. For 

analysis purpose, the SS was divided into three sections, namely, the 1st section (from LB to 1/3×UB), 2nd 

section (from 1/3×UB to 2/3×UB), and 3rd section (from 2/3×UB to UB) as exhibited in Figure 3. 

 

2.2.  Particle swarm optimization 

The PSO is a population-based SC algorithm developed by Eberhart and Kennedy [31] which was 

inspired by the social behavior and movement of bird flocking and fish schooling in the search of food 

sources. The search agent in the PSO is also known as a particle, while a group of particles is called a swarm 

or population. Each particle in the population carries a candidate solution for an optimization problem. 
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Iteratively, the particles explore the SS for an optimum solution by updating their position (x) and velocity 

(v). The global best position obtained by the population (Gbest) and the best position reached by each particle 

(Pbest) during movement was recorded at each ith iteration. The movement of a particle in the SS is as 

illustrated in Figure 4 and was manipulated according to (4). 
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Figure 3. The power–voltage curve of PV arrays under various PSCs 

 

 

Table 2. Module irradiance for shading patterns 
PSC 

Pattern 

Module Irradiance (G=1.0=1000 W/m2) PPV (W) and VPV (V) at the Multipeak 

GA GB GC GD GE LP1 LP2 LP3 LP4 GP 

Pattern 1 
(GP at 1st section) 

0.08 0.115 0.165 0.28 0.8 65.98 W 
33.47 V 

61.16 W 
53.58 V 

56.86 W 
72.99 V 

48.42 W 
90.16 V 

68.70 W 
12.53 V 

Pattern 2 

(GP at 2nd section) 

0.15 0.315 0.45 0.6 0.75 64.69 W 

12.59 V 

136.24 W 

31.70 V 

166.91 W 

73.57 V 

100.23 W 

95.99 V 

169.90 W 

52.23 V 
Pattern 3 

(GP at 3rd section) 

0.35 0.45 0.55 0.65 0.85 72.65 W 

12.48 V 

148.15 W 

31.74 V 

205.12 W 

51.42 V 

235.85 W 

72.06 V 

238.58 W 

93.47 V 
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Figure 4. The movement of particles in PSO [32] 

 

 

In the present study, to solve various PSC problems, benchmark stages of optimization process 

(initialization, reproduction, and selection) were implemented by PSO, as shown in Figure 5. In the 

initialization stage, the initial particles (xk-1) were randomly generated within the boundaries of the SS as 

expressed in the (3). 
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𝑓𝑜𝑟 𝑖 = 1:𝑁𝑃

𝑥𝑘−1(𝑖) = 𝐿𝐵 + (𝑈𝐵 − 𝐿𝐵) ⋅∗ 𝑟𝑎𝑛𝑑

𝑒𝑛𝑑

 (3) 

 

where NP is the number of particles in the population. The LB and UB of the SS were specified at 0 V and 

105.65 V, respectively which were the range limit of the Voc. Meanwhile, rand is the function that returns 

random numbers uniformly between 0 and 1. 

 

 

Start
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Figure 5. The benchmark optimization methodology for population-based SC algorithms [11] 

 

 

The fitness of each initial particle was then evaluated and selected as the parent (xk) population. To 

simplify, the lookup table method was used to evaluate the fitness (PPV) of each particle. The initial Gbest and 

Pbest were also recorded during the initialization stage. In the reproduction stage of the ith iteration, the 

offspring (xk+1) was produced from the parent (xk) population according to (4) based on a previous study 

[20], [33]. 

 

𝑣𝑖
𝑘+1 = 𝑤 ⋅ {𝑣𝑖

𝑘 + 𝑐1 ⋅ 𝑟𝑎𝑛𝑑(𝑃𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑘) + 𝑐2 ⋅ 𝑟𝑎𝑛𝑑(𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑘)} 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 (4) 

 

where c1 and c2 are two acceleration constants regulating the relative velocity (v) regarding Gbest and Pbest and 

were selected such that c1 = c2=1.49; w is the inertia weight controlling the influence of the previous velocity 

on the current velocity. The w decreased linearly from 0.9 to 0.4 over the entire iterations. Meanwhile, the 

initial particle velocities (vk) were randomly generated within 30% of the SS and were limited to the range 

during the run. All the parameter values applied were as proposed in previous studies [20], [34]. 

Next, in the selection stage, the best particles were selected to survive the next generation through a 

discriminatory process. In the selection stage, the highest potential particles within the population were 

selected while maintaining a constant NP for all the generations. In the present work, the competition 

selection method was selected due to its consistency (no randomness) which was proven to produce good 

results. The competition selection method enables both parent and offspring populations to compete with 

each other based on their corresponding fitness values. Then, the population with the best fitness value was 

selected as the winner to survive the next generation: 

 
𝑓𝑜𝑟 𝑖 = 1:𝑁𝑃

𝑖𝑓 𝑓(𝑥𝑖
𝑘) > 𝑓(𝑥𝑖

𝑘+1)

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘

𝑒𝑙𝑠𝑒 𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘+1

𝑒𝑛𝑑

 (5) 

 

Finally, the reproduction and selection stages were repeated iteratively until a pre-defined stopping 

criterion is satisfied. The stopping criterion was used to terminate the algorithm. Typically, an algorithm is 

stopped after a specified maximum number of generations is reached or after the accuracy of final solutions 

reached a pre-defined threshold value. Termination could also happen once the best solution remained over a 

specified number of generations. 

In the current study, the algorithm was stopped when the iteration reached the maximum number of 

50 generations (ITERMax=50). The ITERMax value of 50 is sufficient for the algorithm to reach the final 

solution of acceptable accuracy, wherein this study 0.1 W of the true GP was achieved. Generally, a higher 

maximum generation count produces more accurate final solutions despite the longer computational time. 

The entire simulation process was repeated by 10,000 independent trials (TRIALSMax=10,000) to reduce the 

statistical errors that could arise from the uncertainty of randomness as outlined in (3) and (4). 
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2.3.  Performance index analysis for optimal population size 

The PI formulation as proposed in previous studies [35], [36] was adopted in this work to obtain the 

optimal NP for PSO in solving various PSC problems. For case study analysis, NP was varied in the 

sequence of 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45 and 50. At each selected NP, PI values for all PSC 

problems that have been solved by PSO were calculated. The PI values were calculated based on the 

weighted importance (k1 and k2) of two important criteria in designing the MPPT which were the SR and the 

CT. In this study, the PSO successfully located the GP when the final solution was within the precision of  

0.1 W of the true GP. In the MPPT application, the SR was influenced by the internal constants and variables 

of an algorithm such as NP, c1, c2, w, as expressed in (3) and (4). Meanwhile, external constant such as 

MPPT sampling time (TS_MPPT) was included to determine the CT. The TS_MPPT is the time given to the MPPT 

controller to read all the inputs and solve all the calculations involved in the algorithm. The TS_MPPT is very 

much dependent on two main components of the converter circuit, the inductor and capacitor. For accurate 

MPPT, the TS_MPPT must be specified to be greater than the settling time of transient response of a converter 

circuit. All the readings and calculations involved in the algorithm must be completed within the specified 

period. Otherwise, the algorithm might fail to perform in the required manner. However, large TS_MPPT will 

reduce the speed of the CT and vice versa. In the present study, the TS_MPPT was specified at 0.1 s, which was 

according to the previous study [37]. For further understanding, a simulation of PSO based MPPT with NP of 

3 was carried out to solve pattern 1 (GP=68.70 W), and the MATLAB/Simulink model is as shown in  

Figure 6. An example of a successful GP tracking is illustrated in Figure 7. As observed after the 

initialization (Init.), the PSO successfully tracked the GP at the 5th iteration. Since NP=3, the input values 

(PV voltage, VPV and current, IPV) and calculations involved in the algorithm were completed within 0.3 s 

(NP×TS_MPPT) at each iteration/initialization. The CT was 1.8s as shown in Figure 7 which was calculated as 

ITER×NP×TS_MPPT=6×3×0.1s=1.8 s. Hence, on average, to determine the CT of the ith problem at different 

NP, the following general equation can be used: 

 

CT𝑖=ITERConv_Ave
𝑖 ×NP×TS_MPPT (6) 

 

where ITERCON_Ave is the average number of iterations required to reach the near GP solution from the 

successful trials of the ith problem. 

 

 

 
 

Figure 6. The MATLAB/Simulink model to simulate the PSO based MPPT 

 

 

Meanwhile, at the selected NP, the PI of the ith problem was calculated as (7): 

 

PI𝑖 = (𝑘1 ×
SR𝑖

𝑁𝑇
𝑖 ) + (𝑘1 ×

CT𝑖

CTMin
𝑖 ) (7) 
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where the SRi is the number of successful trials obtained using the PSO in solving the ith problem, NT is the 

total number of trials of the ith problem (i.e. 10,000 runs), CTMin refers to the minimum CT resulted from 

different NP in solving the ith problem, k1 and k2 are the weighted importance applied to the SR and CT, 

respectively. The k1 and k2 are user-specified constants which satisfy k1+k2=1 based on the priority level of 

SR and CT. In the present study, k1 and k2 were specified at 90% (0.9) and 10% (0.1), respectively. 
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Figure 7. An example of a successful GP tracking using the PSO based MPPT 

 

 

3. RESULTS AND DISCUSSION 

The simulations were carried out using a computer equipped with 64-bit OS Windows 10 

Professional with Intel(R) Core (TM) i5−3470 CPU @ 3.20 GHz processor and 8 GB of physical memory. 

Meanwhile, the PSO algorithm was coded in m-file of MATLAB environment and was tested on three PSC 

problems (pattern 1, 2 and 3). First, to study the impact of various NP values on successful PSO in solving 

the PSC problems, NP was varied in the sequence of 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45 and 50. 

Other PSO parameters were as discussed in Section 2.2. Due to randomness in the initialization stage as 

reflected in (3), the distribution of particles in the SS was different at each simulation trial. With a lower NP, 

the probability for the particles to be initialized from a bad location is high, where bad location can refer to 

an area which is far from the GP location, or the area that only contain a GP for a certain case only. Particle 

initialization from a bad location may increase the probability of the PSO getting trapped at a LP. For 

example, when the NP is equal to 3, the distribution of the particles in the SS generated by the first 100 trials 

of (3) is as shown in Figure 8. For analysis purpose, the SS was divided into three sections (1st, 2nd and 3rd 

section). A bad initial location of particles was noted at the 65th trial, where the particles generated were too 

close to each other around the center of the 3rd section of the SS, i.e. XInitial_bad = [89.26, 92.36, 96.77]. 

Therefore, the exploration process during optimization should focus more on the 3rd section of the SS, which 

only contains a GP for pattern 3. 

To prove this concept, the PSO was initialized with XInitial_bad point and was assigned to solve the 

three PSC problems. About 10,000 independent simulation trials of the PSO were carried out to obtain 

sufficient representative sample and the results are presented in Table 3. As expected, the PSO achieved 

100% of SR in solving pattern 3 as the exploration process was initialized around its GP. On the contrary, the 
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probability of the PSO to identify the GP for pattern 1 and pattern 2 was very low, which were 0.03% and 

4.97%, respectively. 
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Search Space
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Figure 8. The plot of the particle distribution in the SS for the first 100 trials of (3) 

 

 

Table 3. SR of the PSO when equipped with bad initial points of XInitial_bad = [89.26, 92.36, 96.77] 
Initialization PSCs Global peak (GP) Successful runs of PSO in finding GP (% out of 10,000 trials) 

VMPP PMPP 

XInitial_bad= 

[89.26, 92.36, 96.77] 

Pattern 1 

(Left GP) 

12.53 V 68.70 W 3 (0.03%) 

Pattern 2 

(Center GP) 

52.23 V 169.90 W 497 (4.97%) 

Pattern 3 
(Right GP) 

93.47 V 238.58 W 10,000 (100%) 

 

 

As recognized, a large NP is vital to reduce the probability of bad initial points or to distribute the 

particles more evenly in the SS. To prove this concept, 10 million independent trials of (3) were performed 

for each different NP as a large number of trials can produce stable probability distribution (PDIST). 

Subsequently, the PDIST of particles was analyzed and grouped according to the three sections of the SS. 

The overall results are as shown in Table 4. 

As can be observed in Table 4, when the NP is equal to 3, the percentage of particles distributed 

only in each section was about 3.7% (out of 10 million independent trials). Meanwhile, the percentage of 

particles scattered in all three sections of the SS, PDISTAll (at least one particle at each section) was about 

44.4%. As the NP increases up to 30, the PDISTAll percentage increases logarithmically as exhibited in Plot 1 

(dotted green line) of Figure 9 until an optimum level of 100% was reached, where each section was 

occupied with at least one particle. To investigate the impact of increasing NP on the SR, the PSO was 

equipped with different NP in solving the three PSC problems. Again, 10,000 independent trials of the PSO 

were performed with different NP values. The number of successful trials, i.e. when the PSO solves with a 

required accuracy of 0.1 W of the true GP were recorded as shown in Table 5. 
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Table 4. PDIST of particles in the SS with different NP of (3) 
SS Section NP 

3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 

PDIST (% out of 10 million trials) 

1st section 

[0, UB/3] 

3.70 1.24 0.41 0.14 0.05 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2nd section 

[UB/3, 2UB/3] 

3.72 1.23 0.41 0.14 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3rd section 
[2UB/3, UB] 

3.71 1.24 0.41 0.14 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

All sections, 

PDISTAll [0, UB] 

44.44 61.69 74.05 82.58 88.33 92.20 94.80 96.53 99.55 99.94 99.99 100 100 100 100 100 

 

 

Zoom-in

Plot 1    

Plot 2    

 
 

Figure 9. Probability plot of particle distribution for all SS sections and the trend of the PSO success rate 

 

 

Table 5. SR of the PSO for different NP and PSCs 
PSCs NP 

3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 
SR (% out of 10,000 trials) 

Pattern 1 

(Left GP) 

4155 5273 6348 6964 7659 8084 8452 8769 9537 9838 9933 9972 9988 9996 10000 10000 

(41.55) (52.73) (63.48) (69.64) (76.59) (80.84) (84.52) (87.69) (95.37) (98.38) (99.33) (99.72) (99.88) (99.96) (100) (100) 
Pattern 2 

(Center GP) 

8073 8856 9223 9534 9710 9834 9879 9918 9991 10000 10000 10000 10000 10000 10000 10000 

(80.73) (88.56) (92.23) (95.34) (97.10) (98.34) (98.79) (99.18) (99.91) (100) (100) (100) (100) (100) (100) (100) 

Pattern 3 
(Right GP) 

8912 9451 9752 9865 9947 9969 9978 9994 10000 10000 10000 10000 10000 10000 10000 10000 
(89.12) (94.51) (97.52) (98.65) (99.47) (99.69) (99.78) (99.94) (100) (100) (100) (100) (100) (100) (100) (100) 

Average, SRAve 21140 23580 25323 26363 27316 27887 28309 28681 29528 29838 29933 29972 29988 29996 30000 30000 

(70.47) (78.60) (84.41) (87.88) (91.05) (92.96) (94.36) (95.60) (98.43) (99.46) (99.78) (99.91) (99.96) (99.99) (100) (100) 

 

 

As can be observed in Table 5, when the NP is equal to 3, in solving pattern 1, the number of PSO 

successful runs was 4,155 out of 10,000 trials which was equal to 41.55% of SR. In contrast, the SR in 

solving pattern 2 and pattern 3 was 80.73% (8,073 trials out of 10,000 trials) and 89.12% (8,912 trials out of 

10,000 trials), respectively. The results implied that among the three PSC problems, pattern 1 was the most 

difficult one to solve. On average, the SR of PSO in solving all three problems when the NP is equal to 3 was 

70.47% (21,140 trials out of 30,000 trials). The mean SR of the PSO increased logarithmically with the NP 

and reached a maximum of 100% at the NP equal to 45 as demonstrated in Plot 2 (black line) of Figure 9. It 

can be observed that the trend of Plot 1 and 2 is consistent which implied that a greater distribution of 

particles in all sections of SS leads to higher detection of GP. Therefore, a larger NP is indispensable to 

achieve a higher SR. Also, it can be concluded that to ensure 100% of SR in GP identification for various 

PSC problems, the NP should be specified at 45. This finding is in agreement with that reported in a previous 

study where the NP was proposed to be in the range from 20 to 50 particles. However, a larger NP can 

contribute to a higher CT. In the actual MPPT application, the detection of the GP should be quick since PV 
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systems are frequently subjected to fast-changing partial shading conditions. Hence, a trade-off has to be 

performed between the SR and CT in determining the optimal number of NP where in this study, an 

empirical trade-off based on the PI as in (7) was conducted. First, the mean number of iterations that reached 

the near GP solution first was obtained from the total successful runs of the PSO. A convergence plot of best 

fitness until the maximum iteration number of 50 (stopping criterion) for the NP of 3 in solving pattern 1 is 

shown in Figure 10. 

As demonstrated in Figure 10, the dotted horizontal green line represents the true GP value of 68.70 

W; the blue lines are the convergence plot of the best fitness for every 4,155 successful runs as shown in 

Table 5, and the black line is the mean convergence plot values. As can be observed in zoom‐in view of 

Figure 10, the PSO reached the near true GP solution (i.e. when GP-PPVmax<0.1W) after an average 

convergence iteration, ITERCon of 26. The complete results of ITERCon for other NP and PSC problems are 

tabulated in Table 6 and plotted in Figure 11. The ITERCon values were noted to decrease as the NP increases 

for all the PSC problems solved. Next, the CT of the PSO was calculated using (6) as formulated in  

section 2.3. The overall CT results for different NP values and PSC problems (pattern 1, 2 and 3) are 

tabulated in Table 7, and the plot of CT versus varied NP is depicted in Figure 12. As can be seen for all 

three problems, the CT showed an increasing trend as the NP increased. The following example demonstrates 

how to calculate the CT for pattern 1 using the NP of 3 and the ITERCon of 26 from Table 6. 

 

CTAve
1 =ITERCon

1 × NP × 𝑇S_MPPT = (26) × (3) × (0.1)=7.8s 
 

 

Zoom-in

26

PVmax

Conv_Ave S_MPPT

Near GP Test = GP - P

                        = 68.70 W - 68.605 W

                        = 0.095 W (< 0.1 W)

                        = Converged

Hence, CT = ITER ×NP×T

               ( ) ( ) ( )    = 26 × 3 × 0.1 = 7.8 s 

26

Iteration Number 

P
V

 o
u
tp

u
t 

p
o
w

e
r 

(W
)

 
 

Figure 10. Convergence plot of best fitness for pattern 1 when the PSO was equipped with NP of 3 

 

 

Table 6. ITERCon of the PSO for different NP and PSCs 
PSCs NP 

3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 

ITERCon 

Pattern 1 

(Left GP) 

26 25 24 23 23 22 21 20 16 14 12 10 9 8 8 7 

Pattern 2 
(Center GP) 

22 21 19 17 16 15 14 13 10 8 6 6 5 5 4 4 

Pattern 3 

(Right GP) 

20 18 16 14 13 12 11 10 8 6 5 5 4 4 3 3 

Average, 

ITERCon_Ave 

22.7 21.3 19.7 18.0 17.3 16.3 15.3 14.3 11.3 9.3 7.7 7.0 6.0 5.7 5.0 4.7 
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Table 7. CT of the PSO for different NP and PSCs 
PSCs NP 

3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 

CT (s) 

Pattern 1 

(Left GP) 

7.8 10.0 12.0 13.8 16.1 17.6 18.9 20.0 24.0 28.0 30.0 30.0 31.5 32.0 36.0 35.0 

Pattern 2 

(Center GP) 

6.6 8.4 9.5 10.2 11.2 12.0 12.6 13.0 15.0 16.0 15.0 18.0 17.5 20.0 18.0 20.0 

Pattern 3 
(Right GP) 

6.0 7.2 8.0 8.4 9.1 9.6 9.9 10.0 12.0 12.0 12.5 15.0 14.0 16.0 13.5 15.0 

Average, 

CTAve 

6.8 8.5 9.8 10.8 12.1 13.1 13.8 14.3 17.0 18.7 19.2 21.0 21.0 22.7 22.5 23.3 

 

 

  
 

Figure 11. Plot of ITERCon versus NP 

 

Figure 12. Plot of CT versus NP 

 

 

Finally, the PI as derived from (7) was used to determine the optimal number of NP. An example of 

PI calculation for solving pattern 1 with the NP equals to 3, SR equals to 4,155 in Table 5, and CT equals to 

7.8 s in Table 7 is: 

 

PI1=k1 × (SR1/N𝑇
1)+k2 × (CTNP=3

1 /CTMin
1 )=0.9×(4,155/10,000)+0.1×(7.8/7.8)=0.4740 

 

The complete results for other NP values and PSC patterns are tabulated in Table 8 and bold values 

indicate the maximum value of PI for each tested PSC problem. The optimum NP for PSO in solving Pattern 

1 was noted to be 40 which produced the highest PI value of 0.9240 compared to other NP values. 

Meanwhile, for Pattern 2 and 3, the optimum NP was 25 and 7, respectively. As no prior information was 

available, the mean PI values for each NP for all three PSC problems were determined and presented in  

Table 8. Consequently, an optimum NP of 25 (PI=0.9373) was found for the PSO to successfully solve all the 

PSC problems. The relationship between the PI and NP is portrayed in Figure 13 where PI increases with 

increasing NP for all three problems solved. Furthermore, as can be seen from the zoom‐in image of  

Figure 13, NP greater than the optimum value of 25 resulted in no significant improvement in PI. 

For a clear observation of NP impacts on the PSO, PDISTAll in Table 4, SRAve in Table 5, CTAve in 

Table 6, ITERCon_Ave in Table 7, and PIAve in Table 8 were presented in Figure 14. Both PDISTAll (dotted 

green line) and SRAve (blue line) were found to increase logarithmically with increasing NP. The trend 

implied that higher NP distributes particles more evenly over the SS which in turn increase the SR. 

Furthermore, as NP increased from 3 to 50, the ITERCon_Ave decreased exponentially from 22.7 to 4.7, while 

CTAve increased logarithmically from 6.8 s to 23.3 s. The finding suggested that higher NP improves the 

iteration convergence speed of the PSO in identifying the GP. However, this inevitably led to a longer CT 

due to the use of a higher number of NP. Hence, an empirical trade‐off method based on the PI with the 

incorporation of SR and CT was employed in the present study. From the zoom-in image of Figure 14, the 

highest average PI of 0.9373 was achieved when NP was 25, the optimal value.  
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Table 8. PI of the PSO for different NP and PSCs 
PSCs NP 

3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 
PI 

Pattern 1 

(Left GP) 

0.4740 0.5526 0.6363 0.6833 0.7378 0.7719 0.8019 0.8282 0.8908 0.9133 0.9200 0.9235 0.9237 0.9240 0.9217 0.9223 

Pattern 2 

(Center GP) 

0.8266 0.8756 0.8995 0.9228 0.9328 0.9401 0.9415 0.9434 0.9432 0.9413 0.9440 0.9367 0.9377 0.9330 0.9367 0.9330 

Pattern 3 
(Right GP) 

0.9021 0.9339 0.9527 0.9593 0.9612 0.9597 0.9586 0.9595 0.9500 0.9500 0.9480 0.9400 0.9429 0.9375 0.9444 0.9400 

Average, 

PIAve 

0.7342 0.7874 0.8295 0.8551 0.8772 0.8905 0.9007 0.9104 0.9280 0.9348 0.9373 

(Opt.) 

0.9334 0.9348 0.9315 0.9343 0.9318 

 

 

Zoom-in

Optimal NP = 25 ( PIAve= 0.9373 )

 
 

Figure 13. Plot of PI versus NP 

 

 

Zoom-in

Optimal NP = 25

 ( PIAve= 0.9373 )

 
 

Figure 14. Plot of PDISTAll, SRAve, CTAve, ITERCon_Ave and PIAve versus NP 
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4. CONCLUSION 

The impact of NP on the successful application of PSO algorithm in solving various PSCs has been 

verified in the present study. The PSO was evaluated with 16 different NPs of 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 

25, 30, 35, 40, 45 and 50 for three PSC problems. All the PSC problems represent the case of no prior 

information about the location of GP in the SS. The PSC problems were categorized into pattern 1, 2 and 3 

with the GP located at the left side (1st section), middle (2nd section) and the right side (3rd section) of the SS, 

respectively. To reduce the statistical errors, 10,000 independent runs were performed for each NP. Based on 

the empirical results, NP was found to increase resulting in an increased success rate of the PSO. The results 

further confirmed previous findings where large NP was found to increase the probability of successful 

optimization. As expected, the convergence time also increased as a function of NP which caused the 

implementation of fast MPPT impractical. Therefore, an empirical trade-off methodology based on PI 

indicator was proposed to evaluate and select the optimum number of NP for the PSO considering the 

weighted importance of both success rate and convergence time. It was found that to achieve the desired 

performance of PSO in solving pattern 1, the optimal NP should be 40 which can produce the highest PI 

value of 0.9240. Meanwhile, for pattern 2 and 3, the optimal NP should be 25 and 7, respectively. It can be 

concluded that the selection of optimal NP should be specific for different cases or problems, with pattern 1 

being the most difficult one. Overall, all three PSC problems can be solved successfully if the optimal NP is 

specified at 25 to produce the best average PI value of 0.9373. The optimal NP of 25 is consistent with the 

range of NP (20-50 particles) reported in the literature. 
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