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 There are various linear and nonlinear one-dimensional partial differential 
equations that are the focus of this research. There are a large number of 

these equations that cannot be solved analytically or precisely. The 

evaluation of nonlinear partial differential equations, even if analytical 

solutions exist, may be problematic. Therefore, it may be necessary to use 
approximate analytical methodologies to solve these issues. As a result, a 

more effective and accurate approach must be investigated and analyzed. It 

is shown in this study that the Lagrange multiplier may be used to get an 

ideal value for parameters in a functional form and then used to construct an 
iterative series solution. Linear and nonlinear partial differential equations 

may both be solved using the variational iteration method (VIM) method, 

thanks to its high computing power and high efficiency. Decoding and 

analyzing possible Korteweg-De-Vries, Benjamin, and Airy equations 
demonstrates the method’s ability. With just a few iterations, the produced 

findings are very effective, precise, and convergent to the exact answer. As a 

result, solving nonlinear equations using VIM is regarded as a viable option. 
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1. INTRODUCTION  

There are numerous fields of science and engineering where nonlinear phenomena are fundamental. 

There are numerous fields of science and engineering where nonlinear phenomena are of fundamental 

importance, and this is no exception. Neither numerically nor analytically, it is still difficult to solve the 

nonlinear models of real-world problems [1]. The study of partial differential equations began in the 

eighteenth-century AD with a group of researchers such as Dalembert, Euler, and Lagrange such as issues 

related to heat, sound, elasticity, and fluid flow. Linear and nonlinear partial differential equations (PDE) are 

significant in many domains, including science and engineering, chemical reaction, fluid dynamics, nonlinear 

optics, dispersion, and plasma physics. Not all PDE problems in real-world models can be simply solved 

using differential equations. As a result, rather than solving those PDEs analytically, the optimal result can be 

obtained numerically or approximately. Also, we seek to obtain more accurate solutions for these problems 

which have great effectiveness in real life systems, such as the Adomian decomposition method (ADM) [2], 

[3], differential transform method (DTM) [4]–[6], homotropy perturbation method (HPM) [7]–[9], the local 

meshless method (LMM) [10]–[15], variational iteration method (VIM) [16], [17], the fractional iterative 

https://creativecommons.org/licenses/by-sa/4.0/
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algorithm [18], modified variational iteration algorithm-I (mVIA-I) [19], modified variational iteration 

algorithm [20], [21], and the modified Laplace variational iteration method [22]. 

The VIM was initially presented [23]–[26] in 1998. It has been used by many technologists to solve 

mathematical and physical problems due to its ability to reduce a complex problem to an easy one. It was 

chosen better than numerical methods because it is free from errors and can solve a wide range of equations 

(ordinary equations, partial equations, and integral and differential equations), whether they are linear or  

non-linear [27]–[29].  

Through research studies on this method, researchers have proven its importance and accuracy with 

the results, as well as its ability to reach an actual solution for most of the studied equations [30]–[34]. The 

variational iteration approach eliminates the drawbacks of the Adomian method. This method is a variant of 

the iteration method’s general Lagrange multiplier method. Because it is easy to find solutions and is very 

accurate, its applications have grown. 

Narayanamoorthy and Mathankumar [35] have claimed that VIM is more robust than other 

analytical methodologies like DTM and HPM. In contrast to HPM and DTM, which frequently use computer 

methods for nonlinear terms, VIM is used explicitly with no nonlinear term needs or restricted assumptions. 

Thus, with VIM, the series solutions obtained have a higher polynomial degree than those obtained by 

decomposition and perturbation methods. 

The variational iteration method (VIM) solves differential equations that can change the structure of 

solutions without making any restrictive assumptions. The calculator in VIM is essential and accessible [36]. 

The VIM eliminates the difficulties of measuring Adomian polynomials in ADM [37], giving it a 

considerable advantage over ADM. The VIM also eliminates the need for discretization in numerical 

methods, resulting in an approximate solution with high accuracy, minimal calculation, and no physically 

unreasonable assumptions. This research aims to examine and analyze the approximate solution by the 

approximate analytical method based on VIM to the type of Korteweg-De-Vries, Benjamin, and Airy 

equations. Also, it would be of interest to investigate the feasibility and accuracy of the proposed method 

compared with other existing methods. 

This paper is organized: in section 2, we present the mathematical formula for the VIM. In 

sections 3 to 5, we explained the applications of the method and how to create convergent solutions from 

exact solutions to the potential Korteweg-De-Vries, Benjamin, and Airy equations. Finally, the conclusions 

are in section 6. 

 

 

2. MATHEMATICAL FORMULATION FOR VIM  

To clarify the basic concepts of the VIM, we consider (1), 

 

𝐿𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) (1) 

 

where (L) is a linear operator, (N) is a nonlinear operator, and g(t) is an inhomogeneous term. A functional 

correction, according to the VIM, can be made: 

 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) + ∫ 𝜆(𝜉)[𝐿(𝑢𝑛(𝑥, 𝜉)) + 𝑁(𝑢�̃�(𝑥, 𝜉)) − 𝑔(𝑥, 𝜉)]
𝑡

0
𝑑𝜉             𝑛 ≥ 0 (2) 

 

where λ is a Lagrange factorial that can be optimally calculated using the covariance theory. The abbreviation 

𝑢𝑛 refers is an approximate solution of n, and 𝑢�̃� is a limited variant, i.e., 𝛿𝑢�̃� = 0. So, we must first identify 

the Lagrange multiplier that will be ideally determined by integration by parts. Using the resulting Lagrange 

multiplier and any selected function 𝑢0, the successive approximations 𝑢𝑛+1(𝑥, 𝑡), 𝑛 ≥ 0 of the solution 

𝑢(𝑥, 𝑡) will be easily obtained. Therefore, the solution is (3). 

 

𝑢(𝑥, 𝑡) = 𝑙𝑖𝑚
𝑛→∞

𝑢𝑛(𝑥, 𝑡) (3) 

 

 

3. ANALYSIS OF VIM FOR EQUATION FOR POTENTIAL KORTEWEG-DE-VRIES 

We look at how successfully potential Korteweg-De-Vries equation (p-KDV) approximation 

solutions are implemented and checked using the method that we suggested in section 2. In order to 

accomplish this, we make use of the nonlinear p-KDV as a physical problem [37] in (4). 

 

𝑢𝑡 + 𝑎(𝑢𝑥)2 + 𝑏𝑢𝑥𝑥𝑥 = 0 (4) 
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where 𝑢 (𝑥, 𝑡) represents the dependent variable, 𝑥 and 𝑡 represent the independent variables, and the parameters 

𝑎 and 𝑏 are nonzero real constants. The equation’s dark (topological) soliton solutions are provided by (5). 

 

𝑢(𝑥, 𝑡) = 𝐴 𝑡𝑎𝑛ℎ[𝐵(𝑥 − 𝑣𝑡)] (5) 

 

where 𝑣 denotes velocity and 

 

𝐴 =
6𝑏𝐵

𝑎
    ,    𝐵 =

1

2
√

𝑣

𝑏
 (6) 

 

Consider potential Korteweg-De-Vries (4) subject to the initial condition: 

 

𝑢(𝑥, 0) = 𝐴 𝑡𝑎𝑛ℎ(𝐵𝑥) (7) 

 

The correction functional for (4) is in (8). 

 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) + ∫ 𝜆(𝜉) [
𝜕

𝜕𝜉
𝑢𝑛(𝑥, 𝜉) + 𝑎 (

𝜕

𝜕𝑥
𝑢�̃�(𝑥, 𝜉))

2

+ 𝑏 (
𝜕3

𝜕𝑥3 𝑢�̃�(𝑥, 𝜉))] 𝑑𝜉
𝑡

0
 (8) 

 

where �̃�𝑛 is restricted variation 𝛿𝑢�̃� = 0,  𝑢0(𝑥, 𝑡) is an initial approximation or trial function and λ(ξ) is a 

Lagrange multiplier. With the above correction functional stationary, we have: 

 

𝛿𝑢𝑛+1(𝑥, 𝑡) = 𝛿𝑢𝑛(𝑥, 𝑡) + 𝛿 ∫ 𝜆(𝜉) [
𝜕

𝜕𝜉
𝑢𝑛(𝑥, 𝜉) + 𝑎 (

𝜕

𝜕𝑥
𝑢�̃�(𝑥, 𝜉))

2

+ 𝑏 (
𝜕3

𝜕𝑥3 𝑢�̃�(𝑥, 𝜉))] 𝑑𝜉
𝑡

0
 (9) 

 

𝛿𝑢𝑛+1(𝑥, 𝑡) = 𝛿𝑢𝑛(𝑥, 𝑡) + 𝛿 ∫ 𝜆(𝜉) [
𝜕

𝜕𝜉
𝑢𝑛(𝑥, 𝜉)] 𝑑𝜉

𝑡

0
 (10) 

 

From this we get the stability condition: 

 

𝛿𝑢𝑛 ∶ 1 + 𝜆(𝜉) = 0 (11) 

 

𝛿𝑢𝑛 ∶ 𝜆´(𝜉) = 0 (12) 

 

Therefore, the Lagrange multiplier can be identified as (13) 

 

𝜆(𝜉) = −1 (13) 

 

As a result, we can obtain the iteration (14). 

 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) −  ∫ [
𝜕

𝜕𝜉
𝑢𝑛(𝑥, 𝜉) + 𝑎 (

𝜕

𝜕𝑥
𝑢𝑛(𝑥, 𝜉))

2

+ 𝑏 (
𝜕3

𝜕𝑥3 𝑢𝑛(𝑥, 𝜉))] 𝑑𝜉
𝑡

0
 (14) 

 

Then, using the variational iteration (14), we begin with the initial approximation. 

 

 𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) = 𝐴 𝑡𝑎𝑛ℎ(𝐵𝑥) 

 

 𝑢1(𝑥, 𝑡) = 𝐴 𝑡𝑎𝑛ℎ(𝐵 𝑥) −  𝑎 𝐴2𝐵2𝑡 +  2 𝑎𝐴2𝐵2 𝑡𝑎𝑛ℎ2(𝐵 𝑥) 𝑡 −  𝑎𝐴2𝐵2 𝑡𝑎𝑛ℎ4(𝐵 𝑥) 𝑡 
−  8 𝑏 𝐴𝐵3 𝑡𝑎𝑛ℎ2(𝐵 𝑥) 𝑡 +  6 𝑏 𝐴𝐵3 𝑡𝑎𝑛ℎ4(𝐵 𝑥) 𝑡 +  2 𝑏 𝐴 𝐵3𝑡 

 

Similarly, the remaining components of the iteration (14) can be derived using Maple software. We 

set 𝑎 = 1, 𝑏 = 1, and 𝑣 = 0. 5 to test the correctness and dependability of the VIM solution for the p-KdV 

equation. The 4-order approximation solution derived by VIM compared to the exact solution and the 

reduced differential transform method (RDTM) solution [37] is summarized in Table 1 and Figures 1 and 2 

for different values of x, t ∈ [0,1]. The results we obtained are very close to the exact solution as well as the 

RDTM solution. According to Tables 1 and Figures 1 and 2, the 4-order VIM approximate solution satisfies 

the initial condition of p-KdV equation 𝑎 = 𝑏 = 1 𝑎𝑛𝑑 𝑣 = 0.5 with sufficient accuracy compared with the 

exact solution RDTM [37] of p-KdV equation. 
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Table 1. Comparison between the solutions of the approximate obtained by VIM and exact solutions,  

also a comparison between absolute errors in VIM and RDTM of (4), at 𝑎 = 𝑏 = 1 𝑎𝑛𝑑 𝑣 = 0.5 

x\t Exact solutions 
VIM solution 

 𝑢4(𝑥, 𝑡) 
Absolute error (VIM) 

| 𝑢(𝑥, 𝑡) − 𝑢4(𝑥, 𝑡)| 
Absolute error (RDTM) 

| 𝑢(𝑥, 𝑡) − 𝑢4(𝑥, 𝑡)| 

0.10 0.03749609425 0.03749606573 2.852 × 10−10 4.839076 × 10−10 
0.25 0.09368901252 0.09368693050 2.082035141 × 10−8 4.505072 × 10−8 
0.50 0.1870132399 0.1870085540 4.685844 × 10−6 1.204876 × 10−6 
0.75 0.2796135561 0.2800088572 3.953011 × 10−6 6.523635 × 10−6 
1.00 0.3711419684 0.3734682012 2.3262328 × 10−6 1.481861 × 10−5 
2.00 0.7202372565 0.6889158600 3.13213965 × 10−4 6.634832 × 10−4 
3.00 1.030183947 1.054746570 2.456277 × 10−4 4.331578 × 10−3 
4.00 1.291585757 1.4121069 1.205169 × 10−3 6.034309 × 10−3 
5.00 1.502657418 1.37114764 1.316 × 10−2 3.194238 × 10−4 

 

 

 
 

Figure 1. Exact and 4-order VIM approximate solution of p-KdV equation at 𝑎 = 𝑏 = 1 and 
𝑣 = 0.5  𝑎𝑡 𝑡 = 1  

 

 

 
 

Figure 2. The exact and 4-order VIM approximate solution of p-KdV equation for 𝑎 = 𝑏 = 1 𝑎𝑛𝑑 𝑣 = 0.5 

 

 

4. ANALYSIS OF VIM FOR BENJAMIN EQUATION 

We investigate the extent to which the method that was proposed in section 2 for implementing and 

verifying approximation solutions for the Benjamin equation is utilized successfully. In order to achieve this goal, 

we make use of the nonlinear Benjamin equation that has been provided for you below as a physical issue [37]. 
 

𝑢𝑡𝑡 + 𝛼(𝑢𝑢𝑥)𝑥 + 𝛽𝑢𝑥𝑥𝑥𝑥 = 0 (15) 
 

where 𝑢(𝑥, 𝑡) is the dependent variable, and 𝑥 and 𝑡 are independent variables. The parameters 𝛼 and 𝛽 are 

real constants. The bright (non-topological) soliton solutions to the equation are provided by (16), 
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𝑢(𝑥, 𝑡) = 𝐴 𝑠𝑒𝑐ℎ2[𝐵(𝑥 − 𝑣𝑡)] (16) 
 

where 𝑣 is velocity and 
 

𝐴 =
12𝛽𝐵2

𝛼
,    𝐵 =

1

2

𝑣

√−𝛽
 (17) 

 

We consider the Benjamin equation subject to initial condition: 
 

𝑢(𝑥, 0) = 𝐴 𝑠𝑒𝑐ℎ2(𝐵𝑥) (18) 

 

𝑢𝑡(𝑥, 0) = 2𝐴𝐵𝑣 𝑠𝑒𝑐ℎ2(𝐵𝑥)𝑡𝑎𝑛ℎ (𝐵𝑥) (19) 
 

The correction functional for (4) is in (20), 
 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) + ∫ 𝜆 [
𝜕2

𝜕𝜉2
𝑢𝑛(𝑥, 𝜉) + 𝛼(

𝜕

𝜕𝑥
(𝑢�̃�(𝑥, 𝜉) 

𝜕

𝜕𝑥
𝑢�̃�(𝑥, 𝜉))) + 𝛽 (

𝜕4

𝜕𝑥4
𝑢�̃�(𝑥, 𝜉))] 𝑑𝜉

𝑡

0
 (20) 

 

where 𝑢�̃� is restricted variation 𝛿𝑢�̃� = 0,  𝑢0(𝑥, 𝑡) is an initial approximation or trial function and λ(ξ) is a 

Lagrange multiplier. With the above correction functional stationary, we have: 

 

𝛿𝑢𝑛+1(𝑥, 𝑡) = 𝛿𝑢𝑛(𝑥, 𝑡) + 𝛿 ∫ 𝜆 [
𝜕2

𝜕𝜉2
𝑢𝑛(𝑥, 𝜉) + 𝛼(

𝜕

𝜕𝑥
(𝑢�̃�(𝑥, 𝜉) 

𝜕

𝜕𝑥
𝑢�̃�(𝑥, 𝜉))) + 𝛽 (

𝜕4

𝜕𝑥4
𝑢�̃�(𝑥, 𝜉))] 𝑑𝜉

𝑡

0
 (21) 

 

𝛿𝑢𝑛+1(𝑥, 𝑡) = 𝛿𝑢𝑛(𝑥, 𝑡) + 𝛿 ∫ 𝜆(𝜉) [
𝜕2

𝜕𝜉2
𝑢𝑛(𝑥, 𝜉)] 𝑑𝜉

𝑡

0
 (22) 

 

𝛿𝑢𝑛+1(𝑥, 𝑡) = 𝛿𝑢𝑛(𝑥, 𝑡) + 𝛿(𝜆
𝜕

𝜕𝜉
𝑢𝑛(𝑥, 𝜉)) − 𝛿(𝜆´𝑢𝑛(𝑥, 𝜉)) − 𝛿 ∫ 𝜆´´𝑢𝑛(𝑥, 𝜉)𝑑𝜉

𝑡

0
 (22) 

 

By using the stationary conditions:  

 

𝛿𝑢𝑛 ∶ 𝜆´´ − 𝜆 = 0 (24) 

 

𝛿𝑢𝑛 ∶ 1 − 𝜆´ = 0 (25) 

 

𝛿𝑢´𝑛 ∶ 𝜆 = 0 (26) 

 

𝛿𝑢𝑛 ∶ 𝜆´´ = 0 (27) 

 

Therefore, the Lagrange multiplier can be identified as (28). 
 

𝜆(𝜉) = 𝜉 − 𝑡 (28) 
 

As a result, we can obtain the iteration in (29). 
 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) + ∫ 𝜉 − 𝑡 [
𝜕2

𝜕𝜉2
𝑢𝑛(𝑥, 𝜉) + 𝛼(

𝜕

𝜕𝑥
(𝑢�̃�(𝑥, 𝜉) 

𝜕

𝜕𝑥
𝑢�̃�(𝑥, 𝜉))) + 𝛽 (

𝜕4

𝜕𝑥4
𝑢�̃�(𝑥, 𝜉))] 𝑑𝜉

𝑡

0
 (29) 

 

Then, using the variational iteration (29), we begin with the initial approximation. 
 

𝑢(𝑥, 0) = 𝐴 𝑡𝑎𝑛ℎ(𝐵𝑥), it follows that 

 𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) + 𝑡𝑢𝑡(𝑥, 0) 

 𝑢0(𝑥, 𝑡) = 𝐴 sech2(𝐵𝑥) +  2𝑡𝐴𝐵𝑣 sech2(𝐵𝑥) tanh(𝐵𝑥) 

 𝑢1(𝑥, 𝑡) =  + 𝐴 sech2(𝐵 𝑥) + 2 𝑡 𝐴 𝐵 𝑣 sech2(𝐵 𝑥) tanh(𝐵 𝑥) −
1

3
 𝛼𝑡4𝐴2𝐵4𝑣2 sech4(𝐵 𝑥)

−  5 𝑡2 𝛼𝐴2 sech4(𝐵 𝑥) 𝐵2 tanh2(𝐵 𝑥) −  60 𝑡2𝛽 𝐴 sech2(𝐵 𝑥) 𝐵4 tanh4(𝐵 𝑥)
+  60 𝑡2𝛽 𝐴 sech2(𝐵 𝑥) 𝐵4 tanh2(𝐵 𝑥) +  𝑡2 𝛼𝐴2 sech4(𝐵 𝑥) 𝐵2

−  8 𝑡2𝛽 𝐴 sech2(𝐵 𝑥) 𝐵4 −  7 𝛼𝑡4𝐴2𝐵4𝑣2 sech4(𝐵 𝑥) tanh4(𝐵 𝑥)

+
14

3
 𝛼𝑡4𝐴2𝐵4𝑣2 sech4(𝐵 𝑥) tanh2(𝐵 𝑥) −  10 𝑡3 𝛼𝐴2 sech4(𝐵 𝑥) 𝐵3 tanh3(𝐵 𝑥) 𝑣 

+
14

3
𝑡3 𝛼𝐴2 sech4(𝐵 𝑥) 𝐵3 tanh(𝐵 𝑥) 𝑣 −  120 𝑡3𝛽 𝐴 𝐵5𝑣 sech2(𝐵 𝑥) tanh5(𝐵 𝑥)

+  160 𝑡3𝛽 𝐴 𝐵5𝑣 sech2(𝐵 𝑥) tanh3(𝐵 𝑥) −
136

3
𝑡3𝛽 𝐴 𝐵5𝑣 sech2(𝐵 𝑥) tanh(𝐵 𝑥) 
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In a similar fashion, the rest of the components of the iteration (29) can be obtained by using Maple software. 

We set (𝛼 = −1, 𝛽 = −3 𝑎𝑛𝑑 𝑣 = 0.25) to test the correctness and dependability of the VIM 

solution for the Benjamin equation. The 4-order approximation solution derived by VIM compared to the 

exact solution and the RDTM solution [37] is summarized in Table 1 and Figures 1 and 2 for different values 

of 𝑥, 𝑡 ∈ [0,1]. The results we got were close to the exact solution, in addition to being better and more 

accurate than RDTM. According to Table 2 and Figures 3 and 4, the 4-order VIM approximate solution 

satisfies the initial condition of Benjamin equation 𝛼 = −1, 𝛽 = −3 and 𝑣 = 0.25 with better accuracy 

compared with RDTM [37] and the exact solution of Benjamin equation. 
 

 

Table 2. The numerical results for the 4-approximation solution obtained by VIM in comparison with the 

exact solutions of (15) and the RDTM solution at 𝛼 = −1, 𝛽 = −3 and 𝑣 = 0.25 

x\t 
Exact 

solutions 

VIM Solution 

 𝑢4(𝑥, 𝑡) 

RDTM Solution 

 𝑢4(𝑥, 𝑡) 

Absolute Error (VIM) 

| 𝑢(𝑥, 𝑡) − 𝑢4(𝑥, 𝑡)| 

Absolute Error (RDTM) 

| 𝑢(𝑥, 𝑡) − 𝑢4(𝑥, 𝑡)| 

0.10 0.1874945069 0.1874945069 0.1874961695 1.10 ×  10−10 1.662562 ×  10−6 

0.25 0.1874656719 0.1874656719 0.1874744689 5.645801890 ×  10−11 8.796962 ×  10−6 

0.50 0.1873627379 0.1873627380 0.1873871610 8.318579018 ×  10−11 2.442303 ×  10−5 

0.75 0.1871913487 0.1871913486 0.1872217567 2.72945 ×  10−11 3.040799 ×  10−5 

1.00 0.1869517547 0.1869517548 0.1869617528 4.62 ×  10−11 9.998060 ×  10−6 

2.00 0.1853197872 0.1853197871 0.1846516678 4.036710999 ×  10−11 6.681194 ×  10−5 

3.00 0.1826417751 0.1826417747 0.1796230788 3.194813670 ×  10−10 3.018696 ×  10−3 

4.00 0.1789784742 0.1789784710 0.1712874217 3.2 ×  10−9 7.691052 ×  10−3 

5.00 0.1744108363 0.1744108342 0.1596662760 2.000290866 ×  10−9 1.474456 ×  10−2 

 

 

 
 

Figure 3. The graph 2D exact and 4-approximation solution of Benjamin equation for 𝛼 = −1, 
𝛽 = −3 and 𝑣 = 0.25 𝑎𝑡 𝑡 = 1 

 
 

 
 

Figure 4. The graph 3D exact and 4-approximation solution of Benjamin equation for 𝛼 = −1, 
𝛽 = −3 and 𝑣 = 0.25   
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5. APPLYING VIM FOR AIRY EQUATION 

We conducted an investigation into the extent to which the method that was proposed in section 2 

for putting into practice and verifying approximation solutions for the Airy equation is successfully utilized. 

We make use of the linear Airy equation, which has been laid out for your perusal down below as a physical 

issue [38], in order to accomplish this objective. 

 

𝑢𝑡 + 𝑢𝑥𝑥𝑥 = 0 (30) 

 

with the initial condition as in (31), 

 

𝑢(𝑥, 0) = 𝑠𝑖𝑛 (𝑥) (31) 

 

the exact solution is given by (32). 

 

𝑢(𝑥, 0) = 𝑠𝑖𝑛 (𝑥 + 𝑡) (32) 

 

The correction functional for (30) is in (33): 

 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) + ∫ 𝜆(𝜉) [
𝜕

𝜕𝜉
𝑢𝑛(𝑥, 𝜉) +  

𝜕3

𝜕𝑥3 𝑢�̃�(𝑥, 𝜉)] 𝑑𝜉
𝑡

0
 (33) 

 

where ũn is restricted variation δuñ = 0,  u0(x, t) is an initial approximation or trial function and λ(ξ) is a 

Lagrange multiplier. With the above correction functional stationary, we have: 

 

𝛿𝑢𝑛+1(𝑥, 𝑡) = 𝛿𝑢𝑛(𝑥, 𝑡) + 𝛿 ∫ 𝜆(𝜉) [
𝜕

𝜕𝜉
𝑢𝑛(𝑥, 𝜉) +  

𝜕3

𝜕𝑥3 𝑢�̃�(𝑥, 𝜉)] 𝑑𝜉
𝑡

0
 (34) 

 

𝛿𝑢𝑛+1(𝑥, 𝑡) = 𝛿𝑢𝑛(𝑥, 𝑡) + 𝛿 ∫ 𝜆(𝜉) [
𝜕

𝜕𝜉
𝑢𝑛(𝑥, 𝜉)] 𝑑𝜉

𝑡

0
 (35) 

 

𝛿𝑢𝑛+1(𝑥, 𝑡) = 𝛿𝑢𝑛(𝑥, 𝑡)(1 + 𝜆(𝜉)) − 𝛿 ∫ 𝜆´(𝜉)𝑢𝑛(𝑥, 𝜉)𝑑𝜉
𝑡

0
 (36) 

 

From this we get the stability condition: 

 

𝛿𝑢𝑛 ∶ 1 + 𝜆(𝜉) = 0 (37) 

 

𝛿𝑢𝑛 ∶ 𝜆´(𝜉) = 0 (38) 

 

Therefore, the Lagrange multiplier can be identified as (39). 

 

𝜆(𝜉) = −1 (39) 

 

As a result, we can obtain the iteration in (40). 

 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) −  ∫ [
𝜕

𝜕𝜉
𝑢𝑛(𝑥, 𝜉) +  

𝜕3

𝜕𝑥3 𝑢�̃�(𝑥, 𝜉)] 𝑑𝜉
𝑡

0
 (40) 

 

Then, using the variational iteration (40), we begin with the initial approximation. 

 

 𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) = 𝑠𝑖𝑛 (𝑥)  

 𝑢1(𝑥, 𝑡) = 𝑠𝑖𝑛(𝑥) + 𝑐𝑜𝑠(𝑥) 𝑡 

 𝑢2(𝑥, 𝑡) = 𝑠𝑖𝑛(𝑥) + 𝑐𝑜𝑠(𝑥) 𝑡 − 𝑠𝑖𝑛(𝑥) 𝑡2 2⁄  

 𝑢3(𝑥, 𝑡) = 𝑠𝑖𝑛(𝑥) + 𝑐𝑜𝑠(𝑥) 𝑡 − 𝑠𝑖𝑛(𝑥) 𝑡2 2⁄ −  𝑐𝑜𝑠(𝑥) 𝑡3 6⁄  

 

Likewise, the remaining components of the iteration (40) can be derived by using maple. The  

20-approximation solution derived by VIM and the exact solution are summarized in Table 3 and Figures 5 

and 6 for different values of 𝑥, 𝑡 ∈ [0,1]. According to Table 3 and Figures 5 and 6, the 20-order VIM 

approximate solution satisfies the initial condition of Airy equation with sufficient accuracy compared with 

the exact solution of Airy equation. 
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Table 3. The numerical results for the approximate solutions obtained by VIM in comparison  

with the exact solutions of (30) 
x Time (t) Exact solutions VIM- 𝑢20 Absolute Error 

0.1 0.1 0.198669330795061 0.198669330795062 9 × 10−16 
0.2 0.2 0.389418342308650 0.389418342308650 0 
0.3 0.3 0.564642473395035 0.564642473395037 2 × 10−15 
0.4 0.4 0.717356090899523 0.717356090899524 1 × 10−15 
0.5 0.5 0.841470984807897 0.841470984807902 5 × 10−15 
0.6 0.6 0.932039085967226 0.932039085967228 2 × 10−15 
0.7 0.7 0.985449729988460 0.985449729988460 0 
0.8 0.8 0.999573603041505 0.999573603041509 4 × 10−15 
0.9 0.9 0.973847630878195 0.973847630878200 5 × 10−15 
1.0 1.0 0.909297426825682 0.909297426825680 2 × 10−15 

 

 

 
 

Figure 5. The graph 2D exact and approximate solution of Airy equation for −10 ≤ 𝑥 ≤ 10 

 

 

 
 

Figure 6. The graph 3D exact and approximate solution of Airy equation conformable to the values  

−10 ≤ 𝑥 ≤ 10,  0 ≤ 𝑡 ≤ 1 

 

 

6. CONCLUSION  

In this research, an approximate analytical method was introduced to solve partial differential 

equations in parabolic form. A scheme based on VIM to approximate the solution of the Korteweg-De-Vries 

equation, the Benjamin equation, and the Airy equation is analyzed and implemented. The research 

demonstrates that VIM can be implemented quickly without deconstructing the nonlinear variables in the 
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given test problem. The accuracy of VIM is determined through Lagrange multiplier analysis, which 

generates a series of solutions that are convergent to the exact solution, assisting an engineer or scientist in 

gaining a better understanding of a physical problem and may contribute to the improvement of future 

techniques and designs utilized to tackle their challenges. The nonlinear test problems showed good accuracy 

when compared with the exact solution. Due to its accuracy and compliance with the VIM, it appears to be a 

reliable method for solving parabolic partial differential equations. In the future, we will use this method to 

solve problems with elliptic and hyperbolic models. 
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