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 Precoding in orthogonal frequency division multiplexing (OFDM) system 
proved to reduce the peak-to-average power ratio (PAPR), so that it 

improves BER. However, from the existing literature, the effect of carrier 

frequency offset (CFO), in-phase and quadrature (IQ) imbalance on 

precoded wireless OFDM systems has not been carried out. Therefore, this 
study evaluated the precoded OFDM (P-OFDM) system performance by 

considering the impact of CFO and IQ imbalance. P-OFDM performance 

evaluation is expressed in signal-to-interference noise ratio (SINR) and bit 

error rates (BER). The communication channels used are the additive white 
Gaussian noise (AWGN) channel and the frequency-selective Rayleigh 

fading (FSRF) channel, while the channel equalization process is considered 

perfect. The results of the analysis and simulation show that P-OFDM is 

greater affected by the presence of CFO and IQ imbalance than conventional 
OFDM system. In AWGN channel, P-OFDM experiences different SINR for 

each subcarrier. This is different from conventional OFDM system, where 

all SINRs are the same for all subcarriers. In the FSRF channel, both the P-

OFDM system and the OFDM system experience different SINR for each 
subcarrier, where the SINRs fluctuation in the P-OFDM system is much 

larger than in the OFDM system. 
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1. INTRODUCTION  

Orthogonal frequency division multiplexing (OFDM) is still getting attention in wireless 

communication systems. This is because OFDM has the ability to face inter-symbol interference (ISI) in 

multipath channels. ISI can be avoided by using cyclic prefix (CP) [1], [2], or by a new method, namely 

interference cancellation scheme [3]. The OFDM optimization on Rayleigh channel can also increase the 

capacity per user as shown in [4]. Therefore, OFDM has been widely used by several wireless 

communication standards, like digital video broadcasting-2nd generation terrestrial (DVB-T2) [5], 

microwave access (WiMAX) [6], long term evolution (LTE)/LTE-advanced (LTE-A) [7], optical wireless 

communication (OWC) [8], and one of the candidates for the 5th-generation (5G) standards [9]. 

The high peak-to-average power ratio (PAPR) is one-of the weaknesses of the OFDM system. This 

can be seen from the wide dynamic range of the symbol waveform. Precoding is used to improve the OFDM 

https://creativecommons.org/licenses/by-sa/4.0/
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system performance due to PAPR [10]. Apart from PAPR, errors in synchronization caused by radio 

frequency (RF) front-end non-idealities are another weakness of OFDM. The RF front-end non-idealities are 

usually caused due to imperfect manufacturing accuracy, communication channels, and component 

mismatches. This can cause symbol time offset (STO), in-phase and quadrature (IQ) imbalance, and carrier 

frequency offset (CFO), which will lead to inter-carrier interference (ICI) in OFDM system. 

Like the conventional OFDM, precoded OFDM (P-OFDM) also has several disadvantages, 

including sensitivity to frequency offset, symbol timing error, and IQ imbalance. Precoded-OFDM using 

Walsh-Hadamard transform (WHT) performance has been evaluated and proven to improve energy and 

spectral efficiency in wireless communication systems [11]–[13]. The performance of P-OFDM was also 

evaluated in powerline communication with impulse noise [14], where the P-OFDM system excels the 

OFDM system in the respected scenarios. 

Estimating CFO and IQ imbalance and investigating the impact on the OFDM system has been done 

by many researchers [15]–[25]. In previous studies, it was customary to measure the performance 

degradation resulting from CFO and IQ imbalance via bit error rates (BER) [15], [18], [20]–[22]. In [17], the 

average carrier to interference ratio (CIR𝑄𝑃𝑆𝐾) is derived for OFDM with quadrature phase shift keying as 

data modulation, in case in the presence CFO and IQ imbalance. In [23], signal-to-interference noise ratio 

(SINR) analysis and performance evaluation in OFDM system in frequency-selective Rayleigh fading 

(FSRF) channel were carried out. The result is average SINR inversely proportional to RF-front-end  

non-idealities. In [24] performed a performance comparison between the OFDM and single-carrier with 

frequency-domain equalization (SC-FDE) systems due to CFO, IQ imbalance, and STO. The results are CFO 

induces a phase shift on SC-FDE system and ICI in OFDM system, whereas STO induces ISI on SC-FDE 

system and a phase shift in OFDM system. On the AWGN channel, the overall SC-FDE system is better than 

the OFDM system. Whereas in the FSRF channel, the SC-FDE system is more resistant to IQ imbalance 

while the OFDM system is more resistant to STO. In [25] studied the combined effects of RF non-idealities 

on a link-based mm-wave communication using OFDM system. As a result of RF non-idealities on the 

channel estimation in the form of carrier to interference ratio (CIR) is given. Particular attention should be 

given when using higher level of modulations, the use of low power, and low-cost RF transceivers in the 

mm-wave communications where ICI is one of the factors limiting its performance. Finally, in [26] evaluate 

the performance of P-OFDM in the present of CFO.  

As indicated in the previous discussion, the impact of CFO and IQ imbalance has been widely 

studied. Nevertheless, with the best of the authors’ knowledge, there is no open literature discussing the 

impact of CFO and IQ imbalance in the P-OFDM system where Walsh Hadamard transform (WHT) is used 

as a precoding transformation. In this study, the analysis of average SINR is given for P-OFDM in the 

additive white Gaussian noise (AWGN) channel and FSRF channel, as well as the simulation. The results of 

the analysis and simulation show that P-OFDM is greater affected than conventional OFDM with the 

presence of CFO and IQ imbalance. The SINR character in P-OFDM is different from conventional OFDM. 

In the AWGN channel, the SINR in P-OFDM is different for each subcarrier, while the OFDM is fixed. In 

the FSRF channel, the SINR fluctuations in the P-OFDM system are much larger than in the OFDM system. 

Therefore, although specific subcarriers are slightly affected by CFO and IQ imbalance, others will 

experience a severe decrease in SINR, which can decrease the overall BER. This causes the BER 

performance of P-OFDM to be inferior compare to conventional OFDM. 

The remainder of this paper is arranged. In section 2 give out P-OFDM with CFO and IQ imbalance. 

Section 3 presents the average SINR expressions with CFO and IQ imbalance in AWGN channel and FSRF 

channel. The results and discussion are given in section 4. Lastly, section 5 provides the conclusion.  

Notation: Vectors are represented by lower case bold letters and matrices are represented by upper 

case bold letters. The operator |∙| and 𝔼[∙] stand for absolute value and expectation, respectively. 

Additionally, (∙)𝐻, (∙)𝑇 , (∙)∗, (∙)−1 denote Hermitian transposition, transpose operations, complex conjugate, 

inverse operations, respectively. 

 

 

2. P-OFDM SYSTEM WITH CFO AND IQ IMBALANCE  

The complex data symbols sent by the P-OFDM system can be represented as (1):  

 

a = Wd   (1) 

 

where d = [𝑑0, 𝑑1, … , 𝑑𝑁−1]
𝑇 represents complex data symbols, W represents WHT, and a represents 

multiplication of W and d, respectively. The vector a can be represented:  
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𝑎𝑖 = w𝑖d =  ∑ 𝑊𝑖,𝑛𝑑𝑛 ,𝑁−1
𝑛=0  (2) 

 

where w𝑖 is the 𝑖-th row of the W matrix 

 

w𝑖 =  [𝑊𝑖,0, 𝑊𝑖,1 , … ,𝑊𝑖,𝑁−1] (3) 

 

𝑊𝑖,𝑛 represents the elements of the 𝑖-th row and 𝑛-th column of W, which is obtained from 

 

𝑊𝑖,𝑛 = 
1

√𝑁
(−1)∑ 𝑖𝑧𝑛𝑧

𝑙𝑜𝑔2(𝑁−1)
𝑧=0  (4) 

 

with 𝑖𝑧 and 𝑛𝑧 represent the bits of integer value of 𝑖 and 𝑛. The time domain sample of vector a after the 

inverse fast Fourier transform (IFFT) process can be shown as (5): 

 

x = FHa (5) 

 

where FH is the Hermitian transpose of the IFFT matrix with size 𝑁𝑥𝑁. Each element of FH is defined as 
1

√𝑁
𝑒𝑗2𝜋𝑘𝑛/𝑁 where 𝑘 and 𝑛 denote the index of row and column {𝑘, 𝑛} ∈ 0, 1, … ,𝑁 − 1. At the receiver, the 

received samples time domain vector (y) with a (CFO), can be expressed: 

 

y = C(ξ)HFHa (6) 

 

where H is the channel matrix with the number of multipath components 𝐿ℎ in the form of a circular matrix 

with size 𝑁𝑥𝑁, where ℎ0 is on the main diagonal and ℎ1 − ℎ𝐿ℎ−1 is on the minor diagonal. ξ is the 

normalization of CFO and C(ξ) expresses the overall phase shift in the sample time-domain due to the 

normalization of CFO. So that C(ξ) can be expressed: 

 

C(ξ) = diag([𝑒𝑗2𝜋𝜉×0/𝑁, 𝑒𝑗2𝜋𝜉×1/𝑁, … , 𝑒𝑗2𝜋𝜉×(𝑁−1)/𝑁 ]) (7) 

 

Due to the IQ imbalance, the time domain y̅ row at the receiver can be expressed as (8) [15]: 

 

y̅ = 𝛼y + 𝛽𝑦∗ + η (8) 

 

where  

 

𝛼 = cos(𝑞) + 𝑗𝑄 sin(𝑞)

𝛽 = 𝑄 cos(𝑞) − 𝑗sin(𝑞),
 (9) 

 

with 𝑞 denotes the phase imbalance and 𝑄 denotes the amplitude imbalance. The y̅ sequences after being 

processed by fast Fourier transform (FFT) can be expressed  

 

r = F(𝛼C(ξ)HFHa + 𝛽(C(ξ)HFHa)∗) + η (10) 

 

r = Sa + Ta∗ + η (11) 

 

where S = 𝛼FC(ξ)HFH, T = 𝛽FC(ξ)H(FH)∗, the 𝑖-th element of 𝑟 can be represented: 

 

𝑟𝑖 = 𝛼 ∑ 𝑆𝑖,𝑝𝑎𝑝 + 𝛽 ∑ 𝑇𝑖,𝑝𝑎𝑝
∗ + +𝜂𝑖 ,

𝑁−1
𝑝=0

𝑁−1
𝑝=0  (12) 

 

with 𝑆𝑖,𝑝 and 𝑇𝑖,𝑝 are the components of the 𝑖-th row and 𝑝-th column of S and T, which can be represented:  

 

𝑆𝑖,𝑝 =
1

𝑁
∑ ∑ ℎ𝑙𝑒

𝑗2𝜋𝑘(𝑝−𝑖+𝜉)/𝑁𝑒−𝑗2𝜋𝑙𝑝/𝑁,
𝐿ℎ−1
𝑙=0

𝑁−1
𝑘=0  (13) 

 

𝑇𝑖,𝑝 =
1

𝑁
∑ ∑ ℎ𝑙𝑒

𝑗2𝜋𝑘(𝑖−𝑝+𝜉)/𝑁𝑒𝑗2𝜋𝑙𝑝/𝑁.
𝐿ℎ−1
𝑙=0    𝑁−1

𝑘=0  (14) 

 

After being manipulated, (13) and (14) can be written  
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𝑆𝑖,𝑝 = 𝑓𝑖,𝑝𝐻𝑝 (15) 

 

𝑇𝑖,𝑝 = 𝑔𝑖,𝑝𝐻𝑝 
∗ ,         (16) 

 

where 𝐻𝑝 = ∑ ℎ𝑙𝑒
−𝑗2𝜋𝑙𝑝/𝑁𝐿ℎ−1

𝑙=0 , 

 

𝑓𝑖,𝑝 = 
sin(𝜋((𝑝−𝑖+𝜉)))

𝑁 sin(
𝜋

𝑁
((𝑝−𝑖+𝜉)))

,  (17) 

 

and 

 

𝑔𝑖,𝑝 = 
sin(𝜋((𝑖−𝑝+𝜉)))

𝑁 sin(
𝜋

𝑁
((𝑖−𝑝+𝜉)))

 (18) 

 

The data elements at the receiver after the inverse W process are  

 

�̂�𝑘 = w𝑘
−1r                                                                                        

      = ∑ 𝑊𝑘,𝑖
−1𝑟𝑖

𝑁−1
𝑖=0                                                                                

      = 𝛼 ∑ ∑ 𝑊𝑘,𝑖
−1𝑆𝑖,𝑝𝑑𝑝

𝑁−1
𝑝=0

𝑁−1
𝑖=0  + 𝛽 ∑ ∑ 𝑊𝑘,𝑖

−1𝑇𝑖,𝑝𝑑𝑝
∗𝑁−1

𝑝=0
𝑁−1
𝑖=0 + 𝜔𝑘,    

 (19) 

 

�̂�𝑘 =  𝛼𝛾𝑘,𝑘𝑑𝑘 + 𝛼 ∑ 𝛾𝑘,𝑛𝑑𝑛 + 𝛽 ∑ 𝛿𝑘,𝑛
𝑁−1
𝑛=0

𝑁−1
𝑛=0
𝑛≠𝑘

𝑑𝑛
∗  + 𝜔𝑘 (20) 

 

where 𝜔𝑘 = ∑ 𝑊𝑘,𝑖
−1𝜂𝑖

𝑁−1
𝑖=0  

 

𝛾𝑘,𝑛 = ∑ ∑ 𝑊𝑘,𝑖
−1𝑊𝑝,𝑛𝑆𝑖,𝑝

𝑁−1
𝑝=0

𝑁−1
𝑖=0  (21) 

 

and 

 

𝛿𝑘,𝑛 = ∑ ∑ 𝑊𝑘,𝑖
−1𝑊𝑝,𝑛𝑇𝑖,𝑝,𝑁−1

𝑝=0
𝑁−1
𝑖=0  (22) 

 

 

3. SINR ANALYSIS OF P-OFDM  

Regarding on (20), the average SINR for the 𝑘-th subcarrier can be expressed:  

 

SINR̅̅ ̅̅ ̅̅ ̅
𝑘 =

𝔼[|𝛼𝛾𝑘,𝑘𝑑𝑘|
2
]

𝔼[|𝛼 ∑ 𝛾𝑘,𝑛𝑑𝑛
𝑁−1
𝑛=0
𝑛≠𝑘

|

2

]+𝔼[|𝛽 ∑ 𝛿𝑘,𝑛𝑑𝑛
∗𝑁−1

𝑛=0 |
2
]+𝜎𝜔𝑘

2

  (23) 

 

The equation (23) can be rewrites as (assuming 𝑑𝑛 and 𝑑𝑛
∗  have the same average power, i.e. 𝑃𝑠) 

 

SINR̅̅ ̅̅ ̅̅ ̅
𝑘 =

𝔼[|𝛼𝛾𝑘,𝑘|
2
]

𝔼[|𝛼 ∑ 𝛾𝑘,𝑛
𝑁−1
𝑛=0
𝑛≠𝑘

|

2

]+𝔼[|𝛽 ∑ 𝛿𝑘,𝑛
𝑁−1
𝑛=0 |

2
]+𝜎𝜔𝑘

2

  (24) 

 

For the AWGN case where 𝐻𝑝 = 1 for all 𝑝. Therefore (24) can be reduced to 

 

SINR̅̅ ̅̅ ̅̅ ̅
𝑘 =

|𝛼|2|∑ ∑ 𝑊𝑘,𝑖
−1𝑊𝑝,𝑘𝑓𝑖,𝑝

𝑁−1
𝑝=0

𝑁−1
𝑖=0 |

2

|𝛼|2 ∑ |∑ ∑ 𝑊𝑘,𝑖
−1𝑊𝑝,𝑛𝑓𝑖,𝑝

𝑁−1
𝑝=0

𝑁−1
𝑖=0 |

2
𝑁−1
𝑛=0
𝑛≠𝑘

+|𝛽|2 ∑ |∑ ∑ 𝑊𝑘,𝑖
−1𝑊𝑝,𝑛𝑔𝑖,𝑝

𝑁−1
𝑝=0

𝑁−1
𝑖=0 |

2
+𝜎𝜔𝑘

2𝑁−1
𝑛=0

 (25) 

 

Furthermore, the output of the inverse WHT at the receiver can be represented in (26): 

 

d̂  = W−1H−1F(αC(ξ)HFHa + β(C(ξ)HFHa)∗) + η                                      
     = Gd + Kd∗ + ω,                                                                                               

 (26) 
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where ω = [𝜔0,𝜔1,…,𝜔𝑁−1]
𝑇
, G, and K as in (27), and (28), respectively.  

 

G =

[
 
 
 
 
 
 
 
 
 
 
𝑆0,0 0 0 0 0 0 0 0

0 𝑆1,1 0 0 0 0 0 0

0 0 𝑆2,2 𝑆2,3 0 0 0 0

0 0 𝑆3,2 𝑆3,3 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ 0 0 0
0 0 0 0 𝑆𝑁

2
,
𝑁

2

𝑆𝑁

2
,
𝑁

2
+1

… 𝑆𝑁

2
,𝑁−1

0 0 0 0 𝑆𝑁

2
+1,

𝑁

2

𝑆𝑁

2
+1,

𝑁

2
+1

… 𝑆𝑁

2
+1,𝑁−1

0 0 0 0 ⋮ ⋮ ⋮ ⋮
0 0 0 0 𝑆

𝑁−1,
𝑁

2

𝑆
𝑁−1,

𝑁

2
+1

… 𝑆𝑁−1,𝑁−1]
 
 
 
 
 
 
 
 
 
 

 (27) 

 

K =

[
 
 
 
 
 
 
 
 
 
 
𝑇0,0 0 0 0 0 0 0 0

0 𝑇1,1 0 0 0 0 0 0

0 0 𝑇2,2 𝑇2,3 0 0 0 0

0 0 𝑇3,2 𝑇3,3 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ 0 0 0
0 0 0 0 𝑇𝑁

2
,
𝑁

2

𝑇𝑁

2
,
𝑁

2
+1

… 𝑇𝑁

2
,𝑁−1

0 0 0 0 𝑇𝑁

2
+1,

𝑁

2

𝑇𝑁

2
+1,

𝑁

2
+1

… 𝑇𝑁

2
+1,𝑁−1

0 0 0 0 ⋮ ⋮ ⋮ ⋮
0 0 0 0 𝑇

𝑁−1,
𝑁

2

𝑇
𝑁−1,

𝑁

2
+1

… 𝑇𝑁−1,𝑁−1]
 
 
 
 
 
 
 
 
 
 

   (28) 

 

By referring to the block matrices G and K, it is shown that the impact of CFO and IQ on each 

subcarrier is different, some are minimal and some are severe. For example, the subcarrier that has minimal 

impact is the subcarrier �̂�0 = 𝑆0,0𝑑0 + 𝑇0,0𝑑0
∗ + 𝜔0 where the attenuation factor is 𝑆0,0 and the interference 

factor is 𝑇0,0𝑑0
∗. While the subcarrier that experienced severe impact is the subcarrier �̂�2 = 𝑆2,2𝑑2 +

𝑆2,3𝑑2 + 𝑇2,2𝑑2
∗𝑑2 + 𝑇2,3𝑑2

∗ + 𝜔2, where the attenuation factor is 𝑆2,2 and the interference factor is 𝑆2,3𝑑2 +

𝑇2,2𝑑2
∗𝑑2 + 𝑇2,3𝑑2

∗ . This causes SINR of �̂�0>SINR of �̂�2. 

 

 

4. RESULTS AND DISCUSSION  

In this section, we present the simulation results of the P-OFDM system on the AWGN channel and 

the FSRF channel. For the FSRF channel used in this simulation, it has 6 paths with a delay of 

[0, 1, 3, 5, 7, 10] samples and the average gain for each path is [0.6, 0.32, 0.16, 0.11, 0.08, 0.04]. Table 1 

shows the overall simulation of the parameters. Perfect channel knowledge and Zero-Forcing equalization 

have been assumed.  

 

 

Table 1. The parameters of simulation scenario 
No. Parameters Values 

1. Number of FFT point 𝑁 = 256 

2. Subcarrier spacing 15 khz 

3. OFDM symbol duration ( 𝑇𝑢)  𝑇𝑢 = 66.68 𝜇𝑠 

4. Total OFDM symbol duration ( 𝑇𝑡)  𝑇𝑡 = 75.015 𝜇𝑠 

5. Number of CP 𝑁/8 

6. Data modulation 4-QAM (quadrature amplitude modulation) 

 

 

Figure 1 shows the SINR̅̅ ̅̅ ̅̅ ̅
𝑘 to the subcarrier index for the AWGN channel and Figure 2 shows the 

SINR̅̅ ̅̅ ̅̅ ̅
𝑘 to the subcarrier index for the FSRF channel. In both simulations, SNR=20 dB and 𝜉 = 0.1 are used. 

In the AWGN channel as shown in Figure 1, the SINR for all subcarriers of the OFDM is identical, while in 

the P-OFDM the SINR is a function of the subcarrier index. In the FSRF channel as shown in Figure 2, the 

SINR in OFDM is not the same for each subcarrier, this is due to the effect of channel compensation on the 

signal with residuals from CFO and IQ imbalance. The same thing happens to the P-OFDM signal, where the 

SINR is a function of the subcarrier index with a lower value than the SINR in the AWGN channel. From 

these results, it is shown that the presence of CFO and IQ imbalance can cause a more severe reduction in 
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BER in the case of P-OFDM, which the entire BER system is likely to come mostly from subcarriers with 

low SINRs. 

 

 

 
 

Figure 1. Simulated SINR per subcarrier of P-OFDM and OFDM for AWGN channel  

 

 

 
 

Figure 2. Simulated SINR per subcarrier of P-OFDM and OFDM for FSRF channel 

 

 

The simulation results for 𝜉 = 0.1, 𝑄 = 0.1, and 𝑞 = 5° are shown in Figure 3 for the AWGN 

channel and Figure 4 for the FSRF channel. In the AWGN channel, it is shown that each subcarrier in the  

P-OFDM system has different interference, so some subcarriers have a higher BER performance than other 

subcarriers. This is because each subcarrier experiences a different level of interference. This is in 
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accordance with what is described in Figure 1. This is different from the OFDM system, where each 

subcarrier experiences almost the same level of interference. In the FSRF channel, the two systems 

experience different levels of interference for each subcarrier. This is in accordance with what is described in 

Figure 2, where the channel equalization process is disrupted due to CFO and IQ imbalance. 

 

 

 
 

Figure 3. Simulated average SINR of P-OFDM and OFDM for AWGN channel 

 

 

The simulation results of P-OFDM and OFDM under ideal RF conditions (CFO=0 and IQ=0) are 

depicted in Figure 5. On the AWGN channel, the performance of P-OFDM is almost the same as that of 

OFDM, but in the FSRF channel, the performance of P-OFDM is slightly decreased, especially at low SNR. 

This is because the channel equalization under high noise conditions is coupled with the overall BER system, 

which is likely to be dominated by subcarriers with low SINRs. 

 

 

 
 

Figure 4. Simulated average SINR of P-OFDM and OFDM for FSRF channel 
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Figure 5. BER versus SNR for P-OFDM and OFDM under AWGN channel and FSRF channel 

 

 

The simulation results (𝑄 = 0.05,𝑄 = 0.1, 𝑞 = 5°, and 𝑞 = 10°) are shown in Figure 6 for 

𝜉 = 0.05 and Figure 7 for 𝜉 = 0.1. It can be seen that the higher the CFO and IQ, the lower the performance 

of the two systems, both on the AWGN channel and the FSRF channel. P-OFDM performance on the 

AWGN channel is slightly decreased when compared to the conventional OFDM system. This also applies to 

FSRF channel, where P-OFDM performance decreases with increasing CFO and IQ imbalance. This is 

because the SINRs in P-OFDM fluctuate higher when compared to SINRs in OFDM, which causes the 

overall system BER to be lower. 

 

 

  
(a) (b) 

 

Figure 6. Simulated BER for P-OFDM and OFDM with 𝜉 = 0.05 under (a) AWGN channel and  

(b) FSRF channel 
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(a) (b) 

 

Figure 7. Simulated BER for P-OFDM and OFDM with 𝜉 = 0.1 under (a) AWGN channel and  

(b) FSRF channel  

 

 

5. CONCLUSION  

In this paper, the impact of CFO and IQ imbalance on the WHT-based P-OFDM system is analyzed 

for its performance in the form of BER, where the OFDM system is used as a comparison. The average SINR 

in the P-OFDM system was evaluated in the AWGN channel and the FSRF channel. The SINR̅̅ ̅̅ ̅̅ ̅
𝑘 expression 

was derived and analyzed for the AWGN channel and the FSRF channel. Simulations are provided to 

validate our analysis. From our simulation results can be seen that the P-OFDM system experiences different 

interference in each subcarrier due to CFO and IQ imbalance. Mitigation of bit loading on individual 

subcarriers can be done to reduce the overall BER. 
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