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 Load forecasting plays an essential role in power system planning. The 

efficiency and reliability of the whole power system can be increased with 

proper planning and organization. Residential load forecasting is 

indispensable due to its increasing role in the smart grid environment. 

Nowadays, smart meters can be deployed at the residential level for 

collecting historical data consumption of residents. Although the 

employment of smart meters ensures large data availability, the 

inconsistency of load data makes it challenging and taxing to forecast 

accurately. Therefore, the traditional forecasting techniques may not suffice 

the purpose. However, a deep learning forecasting network-based long  

short-term memory (LSTM) is proposed in this paper. The powerful 

nonlinear mapping capabilities of RNN in time series make it effective along 

with the higher learning capabilities of long sequences of LSTM. The 

proposed method is tested and validated through available real-world data 

sets. A comparison of LSTM is then made with two traditionally available 

techniques, exponential smoothing and auto-regressive integrated moving 

average model (ARIMA). Real data from 12 houses over three months is 

used to evaluate and validate the performance of load forecasts performed 

using the three mentioned techniques. LSTM model has achieved the best 

results due to its higher capability of memorizing large data in time series-

based predictions. 
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1. INTRODUCTION 

Due to the increased penetration of renewables and rapid power system growth, the complexity of 

the system has been significantly expanding [1], [2]. The variable and erratic nature of residential load 

consumption data make it challenging for the forecasts. Forecasting is the process of making predictions of 

the future, based on past and present data and most commonly by analyzing trends. Load forecasting refers to 

the prediction of power demand behavior for maintaining a balance between supply and demand. Load 

forecasting plays an essential role in the upfront planning and organization of the power system [3], [4]. 

Power system planning and reliability require accurate load forecasts for upfront planning of 

generation facilities, managing transmission line structures, properly controlling distribution systems, 

encouraging demand response (DR) programs, and participating in day-ahead electricity markets. The nature 

https://creativecommons.org/licenses/by-sa/4.0/
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of load consumption data is primarily time series based, and forecasting is used to predict time series-based 

information. These time series-based data have some output value corresponding to continuous and 

consecutive time sequences. Based on the nature of forecasting, techniques used for forecasting load demand 

can be broadly divided into two types, i) extrapolation and ii) correlation. Extrapolation refers to time series 

methods based on historical and present demand; future load demand is predicted. Forecasting based on 

correlation can be further divided into two types, econometric and determination to identify underlying 

factors that might affect load demand. In econometric forecasting, economic factors affecting the load profile 

such as pricing. are used for forecasting, whereas underlying factors that might contribute to the load demand 

includes temperature, weather, holidays, and events. are utilized for accurate load prediction. Based on the 

time duration of load forecasting, it can be classified into three types, short-term forecasts [5], [6], 

intermediate or medium-term forecasts [7]. 

Short-term forecasts primarily span over a few hours to several weeks, whereas medium and long-

term forecasts refer to the prediction of load demand over several months and years, respectively [8]. Long-

term forecasts are needed for the maintenance and scheduling of the power system, whereas medium-term 

forecasts enable fuel scheduling and hydro reservoir management. For the day-to-day and weekly operations 

of the power system, short-term load forecasts play an essential role. Short-term load forecasting is a time 

series-based prediction problem, and its vital role cannot be ignored in a smart grid environment [9]. 

Accurate and time-efficient load forecasting algorithms and techniques are a need of the hour. These 

techniques are primarily based on various machine learning algorithms in the smart grids ecosystem. Data 

monitoring of historically available data for a particular location considering the transient effects of weather 

over this load demand is an essential requirement from the perspective of different small power producers 

and end-users in commercial or industrial buildings. 

Several forecasting methods have been proposed over the past few years. The forecasting can divide 

into two models physical model and statistical model. The physical model needs measured data with good 

quality, and the statistical model needs historical data. The artificial neural network (ANN) model and auto-

regressive integrated moving average (ARIMA) model belong to statistical modeling [10]. Box-Jenkins’s 

approach [11] is an effective tool to identify parameters in time series while Kalman filter [12] technique, 

also a parametric model, both model based on historical data. The widely used single models include fuzzy 

logic, ANN [13], support vector machine (SVM) [14], [15], wavelet transform (WT), genetic algorithm, and 

expert system. The hybrid system is to integrate one or more algorithms to get more forecasting accuracy 

[16]. Therefore, with the arrival of the Covid-19 pandemic [17], people are forced to stay at their own 

residential houses more, which increases the electric load demand. Motivated by this, we attempt to predict 

the electric load demand. In this paper, three techniques have been chosen to forecast the electric load 

demand of residential houses. These techniques comprise of ANN model, ARIMA [18], [19], and 

exponential smoothing. In ANN, a sub-type recurrent neural network (RNN) [20] is used with some 

parameters and optimizer, whereas the other two techniques are used for comparison. For a fair comparison 

among these algorithms, data is acquired from 12 houses over a period of 3 consecutive months of a 

particular year. The real-world data is collected both from the real world and available online resources [21]. 

For ANN and ARIMA, the collected data set is divided into training and testing data set.  

This paper is organized as follows. Section 2 presents a comprehensive analysis of used algorithms, 

and the details of the proposed model of long short-term memory (LSTM) are discussed. Section 3 describes 

the characteristics and nature of the data set utilized and discusses a comparison performed over the data set 

based on the results of three algorithms. Section 4 provides the model performance evaluation, and finally,  

section 5 concludes the paper. 

 

  

2. RESEARCH METHOD 

This section provides the dataset description and the research methodology used in this study. The 

first section focuses on the data collection, while the remaining section focuses on exponential smoothing. 

Auto-regressive integrated moving average, and the proposed LSTM model, respectively. 

 

2.1.  Data collection and description 

Data is collected from two sources; source 1 data set consists of load consumption of 2 volunteer’s 

houses in one month, from March 2018 to April 2018, with a granularity of data being one hour, giving a 

total number of hours calculated as 745. For LSTM and ARIMA, data is divided into two parts; i) for 

training, 65% of data is used and ii) for testing, 35% of data is used. Source 2 data set consists of load 

consumption of 10 houses for the period of 3 consecutive months. This data is collected from available online 

resources [22]. The granularity of the acquired data was 5 minutes, but for comparison purposes, the time 

interval used is one hour, giving the total number of hours as 2,184. For ARIMA and LSTM models [23], 
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[13], data is divided into two parts as previously done for volunteer houses i.e., 65% of data is used for 

training, and 35% of the dataset is utilized for testing 5. Therefore, this paper uses three machine learning 

techniques for time series-based predictions and comparisons. These three methods are discussed in the 

following subsections.  

 

2.2. Exponential smoothing 

The exponential smoothing scheme uses exponentially decreasing weights to smooth past 

observations; it is a popular way to produce smoothed time series [24]. When the observation gets older, the 

weights decrease exponentially. 1/N is the weight assigned to the observations in moving averages. When 

applying exponential smoothing, it is necessary to determine (or estimate) at least one smoothing parameter 

and determine which weights should be assigned to each observation [25]. The smoothing parameter is 

alpha. Forecasting the next point as (1) :   

 

st+1=(α∗yt)+(1−α)∗st (1)  

 

where, st+1 is predicted value at time t+1, α is a parameter that decide the weightage of predicted and actual 

output, and yt is actual output at time (1) can be written as (2): 

 

st+1=st+α∗st  (2) 

 

where, st is the forecast error (actual-forecast) for time period t. Specifically, the new forecast is the old one 

plus an adjustment for the error that occurred in the last forecast [26]. Forgiven data set, forecasting α=0.5 is 

used. Exponential smoothing does not require any training. It is good only for comparison purposes. 

 

2.3. Auto-regressive integrated moving average (ARIMA) 

It combines auto-regressive (AR) and moving average (MA) models. The I stand for "integrated" 

represents the fact that the data have been substituted with a number, which is the difference between their 

values and the foregoing values [27]. ARIMA (p, d, q) [28] can be used to represent non-seasonal ARIMA. P 

is order (number of time lags) of the auto-regressive model, d is degree of difference (the number of times the 

data subtracted from past value), q is order of the moving-average model. 

 

If d = 0: yt = yt 

If d = 1: yt = yt - yt1 

If d = 2: yt = yt - (yt1) yt1 - yt2 

 

Where, yt is actual output at any time (t). And d is the degree, which represents the influence of past time at 

level d [26]. Forgiven data set forecasting p=3, d=2 and q=0 is used. Figure 1 shows the flow that is used to 

run the ARIMA algorithm. 

 

 

 
 

Figure 1. Flow chart for ARIMA algorithm 

 

 

2.4. Deep learning neural networks (DLNN) 

It is a nonlinear model where any prior knowledge of the relationship between input and output is 

needed [29]. Therefore, DLNN gives good results for pattern recognition [30], [31], sequence prediction [32], 
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[33] and forecasting problems [34]. The main parameters of DLNN are the number of input vectors, the 

number of layers, the number of neurons in each layer. In this paper, for forecasting load demand of multiple 

residential buildings, RNN is used among all the techniques due to its feasibility and nature of the load 

forecast. Additionally, the human mind does not begin from scratch every second. It makes use of previous 

knowledge to come up with answers and analyze problems. This is a major shortcoming of traditional neural 

networks [35]. Consider an example where you want to categorize the events that occur in a movie. It is 

unclear how a conventional neural network could use earlier occurrences in the film to inform subsequent 

events [36]. This issue is addressed by recurrent neural networks. They are networks that contain loops, 

which enable information to endure [37], [38]. 

Figure 2 shows a chunk of the neural network is depicted with an input xt and an output ht. A loop 

enables data to be transmitted from one network stage to the LSTM. The LSTM algorithm is a type of RNN 

that is capable of learning long-term dependencies. All recurrent neural networks have the form of a chain of 

neural network modules. In standard RNNs, this repeating module will have a simple structure [39].  

Figure 3(a) can be described as; ft, ct, ot, and it is activation functions for hidden, context, output, and input 

layers, respectively. All these are sigmoid functions, where t represents time instance, ht is output at time t, xt 

is input at time t, Bias values (bo (output bias), bi is the input bias, and bf Hidden layer bias, Crosses(X) 

represents multiplication operation, and T represents the activation function. 

 

2.5. Proposed model of LSTM 

LSTM is used to forecast the given data set and root mean square propagation (RMSprop) optimizer 

to propagate the error. In which learning rate=0.1, decay=0.9, momentum=0.0, epsilon=1 e−10. The learning 

rate is step size, whereas decay is discounting factor for the history/coming gradient. Momentum is a 

floating-point value, which helps to avoid getting stuck in the local minimum. Epsilon is a small value to 

avoid zero denominators. Four active hidden nodes and three active context nodes with one layer is used. A 

deep learning tool TensorFlow [31] is used to add the LSTM model. The tensor flow determines activation 

functions and bias values. Figure 3(b) shows the flow of LSTM. Mean absolute error (MAE) is computed for 

accuracy measure using (3) [40]. 

 

𝑀𝐴𝐸 =
1

𝑛
 ∑ |𝑋𝑃 − 𝑋|𝑛   (3) 

 

 

 
 

Figure 2. Recurrent neural network architecture [34] 
 

 

  
(a) (b) 

 

Figure 3. Illustrations of (a) LSTM model architecture and (b) algorithm flow chart for LSTM 
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3. EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental results used in this study are discussed in detail in this section for both real-world 

and benchmark datasets. The first section is providing the LSTM model testing results with source 1 houses. 

While section 2 provides the source 1 houses results using ARIMA model and the last section shows the 

results using the exponential smoothing technique.  

 

3.1. Source 1 houses results using LSTM 

From Figure 4 (a), it can be seen that predicted load behavior is similar to the tested load demand, 

but the foretasted values differ appreciably from the original load values. It can be concluded that due to a 

large variety of load patterns with respect to increasing time intervals, it becomes difficult for the model to 

predict the actual or approximately actual load demand for the tested time period. Figure 4(b) signifies that 

where the load nature of the profile is relatively consistent, the results obtained are quite proximate to the 

original data. Further, Figure 5 also shows that even though the nature of the aggregated residential load is 

erratic, forecasting through LSTM gives quite reasonable approximates to the original values. 
 

 

  
(a) (b) 

 

Figure 4. Illustrations of (a) LSTM results for house 1 and (b) LSTM results for house 2 

 
 

 
 

Figure 5. LSTM results for aggregated load of house 1 and house 2 
 

 

3.2. Source 1 houses results using ARIMA 

As presented in Figures 6(a) and 6(b) and Figure 7, it can be verified that accepting the values, 

ARIMA [36], perform like LSTM. The trend of load pattern is maintained in the tested results, but the tested 

values differ significantly from the original data. These results obtained from ARIMA manifest that LSTM 

models outperform them for individual and aggregated residential load demand.  
 

3.3.  Exponential smoothing results source 1 

Figures 8(a) and 8(b) and Figure 9 show the testing results based on the exponential smoothing 

technique. These results show that the load profile is maintained during the testing compared to the original 

values. Exponential smoothing performs better than ARIMA, but results confirm that LSTM performance is 

better than both algorithms. Further, to validate the results, analysis is performed for ten more individual 

houses over three months. As mentioned earlier, data is collected through available online resources, and 

evaluation is done for the time granularity of one hour. The details of training and testing data sets are similar 

to the source 1 data i.e., 65% of data is used for training purposes, and the rest of the data is used for 

validation and testing the results. 

Original 

Original 

Original 

Predicted Test 

Predicted Test 

Predicted Test 
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(a) (b) 

 

Figure 6. Illustrations of (a) ARIMA results of house 1 and (b) ARIMA results of house 2 

 

 

 
 

Figure 7. ARIMA results for aggregated load of house 1 and house 2 

 

 

  
(a) (b) 

 

Figure 8. Illustrations of (a) exponential smoothing results for house 1 and (b) exponential smoothing results 

for house 2 

 

 

 
 

Figure 9. Exponential smoothing results for aggregated load of house 1 and house 2 
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4. PROPOSED MODEL EVALUATION  
Table 1 shows a comparison among techniques used based on MAE values for source 1. It justifies 

the use of LSTM as a novel and effective method for accurate and precise load forecasts. LSTM proves to be 

the best among the available algorithms for time series-based predictions for individual and aggregated 

residential load demands. MAE rationalizes the fact that the on average lowest possible error is obtained 

from its results and analysis. ARIMA and exponential smoothing provide quite acceptable results based on 

MAE, but precise and exact load forecasts are quite necessary for the smart grid environment. To encourage 

the users or consumers to participate in DR based programs, actual or near actual load demand must be 

known so that control action can be correspondingly initiated for maintaining a balance between supply and 

demand. Further, to engage customers in day-ahead electricity markets, the utility and customer must know 

accurate load information. Consequently, the application of LSTM models for time series-based load forecasts can 

prove to be a viable solution to all the mentioned problems. 

 

 

Table 1. Compression among proposed algorithms using MAE for source 1 (volunteer houses) 
House# LSTM (MAE) ARIMA (MAE) Smoothing (MAE) 

House 1 4.8679 10.8033 13.0061 

House 2 6.8028 15.2129 16.2681 

Aggregated 2.4473 14.6014 16.7663 

 

 

Additionally, the proposed three models have been further validated using an online benchmark 

dataset for 10 different houses. Some of the LSTM forecasting results for source two are shown in  

Figures 10(a) and 10(b). LSTM gives quite accurate and exact results when compared with the original 

values. It can be observed that where the nature of the load profile is volatile, the tested results deviate from 

the actual values quite significantly. Although the load pattern or load curve is precisely replicated in all 

scenarios as shown in the results of LSTM, whether the load demand curve is erratic or consistent, the 

predicted values differ notably where the load demand becomes inconsistent. Figures 10(a) and 10(b) 

presented an example of the forecasting results obtained using LSTM for two random cases for house one 

and house 5 in the second dataset 

 

 

  
(a) (b) 

 

Figure 10. An example of (a) LSTM results for house 1 and (b) LSTM results for house 5 

 

 

Figures 11(a) and 11(b) shows that exponential smoothing does not perform very acceptably. The 

results are not accurate and exact; rather, only a similar trend as original data is observed. Thus, it serves 

inferior to the other two models, LSTM and ARIMA. The consideration here to make is that LSTM performs 

better on average for all the houses and proves to be the prime choice for time series-based load forecasts. 

Table 2 shows compassion between the three technologies used, exponential smoothing, ARIMA, 

and LSTM, based on MAE calculated for all ten houses. It signifies the fact that due to, on average lowest 

values of MAE for LSTM, it substantiates as the viable algorithm for accurate and precise load demand 

predictions. Further, ARIMA performs better than exponential smoothing due to the autoregressive and 

integrated nature of the used algorithm. Exponential smoothing can only be used for load forecast at 

immediate next time interval based on the historical load demand values, but it cannot predict weekly or 

monthly load demands based on the past load data values and trends. As presented in the comparative 

analysis in Table 2, the LSTM method has outperformed the other two methods in all the houses load 

predictions in term of MAE. 

Original 

Original 

Predicted Test 

Predicted Test 
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(a) (b) 

 

Figure 11. An example of (a) exponential smoothing results for house 3 and (b) exponential smoothing 

results for house 6 
 

 

Table 2. Compression between proposed algorithms using MAE for source 2 (benchmark dataset) 
House# LSTM (MAE) ARIMA (MAE) Smoothing (MAE) 

House 1 36.133 40.330 54.994 

House 2 65.232 95.687 108.363 

House 3 74.937 98.490 142.259 
House 4 2.049 2.434 3.224 

House 5 9.1396 10.877 16.031 
House 6 11.365 13.708 14.117 

House 7 11.812 13.705 14.142 

House 8 112.242 137.198 124.569 
House 9 25.603 32.433 36.896 

House 10 35.812 48.524 50.648 

 

 

For short-term residential load forecasting, we were unable to obtain any study contribution that 

were evaluated on the same experimental scenario. However, we have compared the results with the two 

recently proposed approaches for short-term residential load forecasting [4], [6], [8] shown in Table 3. This 

study presents comparisons for only available metrics, but essentially demonstrates to the reader the 

promising results of the proposed model. 
 

 

Table 3. A comparison of the approach proposed with relevant literature contribution 
House# LSTM (MAPE) ARIMA (MAPE) Smoothing (MAPE) 

Proposed model  22.13 28.63 42.97 

Kong et al. [4] 44.39 % N/A N/A 

Kong et al. [6] 21.99% N/A N/A 
Nair et al. [8] N/A 54.61% N/A 

 

 

5. CONCLUSION 

This paper proposes a novel model based-LSTM technique for accurate and precise short-term load 

forecasts. The suggested model is validated and compared with the other two models, exponential smoothing 

and ARIMA, based on MAE performance evaluation metrics. LSTM models, due to their higher capability of 

memorizing large data establish their utilization in time series-based predictions. Results from both source 1 

and source 2 confirm that LSTM outperforms all other models keeping in view the erratic and volatile nature 

of residential load demand. It can be inferred that accurate load forecasts are required to encourage customers 

to participate in DR programs. 

Moreover, for engaging customers in day-ahead electricity markets, load forecasting proves to be 

very pertinent to the problems arising in the smart grid environment. LSTM model and the data from smart 

progressed meters ensure the power system's valid and effective planning and operation. Further, the 

technique can be extended for application in home area networks (HAN), enabling smart energy management 

of individual devices within a home. 
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