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 Image segmentation consists of partitioning the image into different objects 

of interest. For a biological image, the segmentation step is important to 

understand the biological process. However, it is a challenging task due to 

the presence of different dimensions for cells, intensity inhomogeneity, and 

clustered cells. The marker-controlled watershed (MCW) is proposed for 
segmentation, outperforming the classical watershed. Besides, the choice of 

markers for this algorithm is important and impacts the results. For this 

work, two foreground markers are proposed: kernels, constructed with the 

software Fiji and Obj.MPP markers, constructed with the framework 
Obj.MPP. The new proposed algorithms are compared to the basic MCW. 

Furthermore, we prove that Obj.MPP markers are better than kernels. 

Indeed, the Obj.MPP framework takes into account cell properties such as 

shape, radiometry, and local contrast. Segmentation results, using new 
markers and illustrated on real Drosophila dataset, confirm the good 

performance quality in terms of quantitative and qualitative evaluation. 
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1. INTRODUCTION 

The segmentation of biological images is an important step to analyze biological mechanisms. For 

example, the study of the density and the repartition of cytoplasmic ribonucleoprotein (RNP) granules helps 

in understanding the different cellular processes of Drosophila. In fact, the RNP granules contain the IGF-II 

mRNA-binding protein (Imp) that influences the growth of the nervous system of Drosophila. Therefore, the 

segmentation step is used to detect the cytoplasm that contains the RNP granules, to analyze the growth of 

the nervous system. The presence of clusters and intensity inhomogeneity complicate the segmentation task. 

Plenty of segmentation approaches have been proposed to segment biological images. Some of the most 

widely used are: i) the deformable model approaches [1], where the energy minimization is based on internal 

and external forces that make contours converge to the boundaries of interest and ii) the region growing 

approaches [2], where regions are growing by connecting neighboring pixels with similar measures. 

Thresholding belongs to the region growing approaches, the idea is to separate the object and the background 

according to a selected intensity threshold. In this category, Otsu [3] and Kapur et al. [4] algorithms are 

widely used, however both suffer from high computational cost. Therefore, they are combined with 

optimization algorithms. Erwin et al. [5] proposed an improved harmony search algorithm (IHSA) with the 

Otsu algorithm to improve its efficiency. Recently, the deep learning techniques are largely exploited for 
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image segmentation with variety of applications such as medical [6] and biological ones [7]. For example,  

in [8] an interesting application for glioblastomas brain tumor segmentation is proposed. The framework 

consists on segmenting the tumor cells using simple linear iterative clustering algorithm, then classify the 

brain image as healthy or pathological by applying the convolutional neural networks (CNN). The watershed 

[9], is a region growing approach, comes from the field of mathematical morphology. It is largely used in 

image segmentation for different applications. The watershed finds the crest lines in the image gradient using 

the flooding process [10]. The image gradient is considered as topographic surface, immersed in the water. 

Each time, the height of the water meets the height of a label, we obtain a new basin with color of the label. 

The fusion of two basins of different colors is prevented by creating a line. This line presents the watershed. 

Grau et al. in [11] used the watershed to segment gray and white matter from magnetic resonance (MR) 

images. Besides, it was applied to segment cancer [12] and nuclei in DNA channel for high throughput 

ribonucleic acid interference (RNAi) fluorescent cellular images [13]. However, the watershed leads either to 

oversegmentation caused by the background noise or to under segmentation caused by regions with low 

contrast. Besides, the segmentation depends on the estimation quality of the gradient. To overcome these 

issues, the marker controlled watershed (MCW) [14] was proposed. The algorithm shows more effectiveness 

and practicability. The MCW uses predefined markers that represent objects of interest, it starts from these 

markers. The detected contours divide only the marked regions. The performance of the segmentation 

depends on the choice of foreground markers. In [15], we have applied the basic algorithm of MCW that uses 

opening-by-reconstruction and closing-by-reconstruction as foreground markers. These operations are related 

to the morphology of features in the image which helps in the construction of markers [16]. However, the 

basic MCW leads to poor performance because foreground markers did not take into account the cell 

properties within the image. Besides, the opening and closing by reconstruction sometimes reconstructs 

undesirable regions.  

In this paper, we focus on the segmentation of Drosophila cells. The latter is particularly difficult 

due to: i) presence of nonhomogeneous intensities, ii) cell dimensions are different (big, small...), and iii) 

clustered cells with weak boundaries. In this work, two foreground markers are designed to segment 

Drosophila cells which are: cell kernels, constructed with the software Fiji [17] and Obj.MPP markers, 

constructed with the software Obj.MPP [18]. Based on these markers, new algorithms are proposed and 

compared to the basic MCW. Results, evaluated on Drosophila cells, confirm the good segmentation 

performance, evaluated with the Dice and F1 score [19], [20]. Furthermore, the use of foreground markers 

constructed with Obj.MPP gives better segmentation results compared to kernels. Contours are more refined 

and desired object are clearly segmented. The paper may be summarized. Section 2 presents MCW for 

Drosophila cell segmentation. Simulation results on Drosophila cells are presented and discussed in section 3. 

We draw our conclusion in section 4. 

 

 

2. PROPOSED METHOD: MCW FOR DROSOPHILA CELL SEGMENTATION 

2.1.  Method description 

The MCW segments the image, based on predefined markers. The flooding considers the predefined 

markers rather than all minima of watershed. For segmentation, it is important to use relevant foreground 

markers to avoid erroneously detected contours and poor results. As described in [11], the MCW algorithm 

follows five basic steps: 

− Step 1: Compute the segmentation function, where dark region represent object to segment. In this paper, 

the image gradient is considered as the segmentation function. The Sobel operator [21] is calculated to 

obtain the gradient. 

− Step 2: Compute foreground markers which represent a set of connected pixels within each object. 

− Step 3: Compute background markers. Pixels that do not belong to any object present the Background. A 

thresholding operation is used to mark the background. The watershed is performed on the distance 

transform of the thresholding result. Then, the obtained watershed ridge lines are used as background. 

− Step 4: Adjust the segmentation function so that the gradient magnitude image has local minima at 

constructed new markers. 

− Step 5: Compute the watershed of the modified segmentation function. 

Here, three algorithms are compared. Steps 1, 3, 4, and 5 are the same for the three algorithms, while the 

difference is in the step 2 where three foreground markers are presented. The algorithms are detailed. 

 

2.2.  Basic MCW 

For the basic MCW, foreground markers are constructed using opening-by-reconstruction and 

closing-by-reconstruction [22]. Opening and closing by reconstruction are an erosion and dilation followed 
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by a morphological reconstruction. Following the opening with a closing can remove the dark spots and stem 

marks. Besides, these operations lead to flat maxima in objects, located using imregionalmax (for the 

MATLAB software). Reconstruction based opening and closing are found effective at eliminating small 

imperfections. In some cases, markers go straight up to the object boundaries. To shrink them, a closing 

followed by erosion is applied. The algorithm is applied for medical image segmentation [10], [23]. 

Although, the performance is improved with regards to the classical watershed in particular when dealing 

with the oversegmentation, the algorithm fails with Drosophila images where the number of objects is high, 

cell dimensions are different (small, big, ...) in addition to the presence of clustered cells. 

 

2.3.  MCW Fiji 

For the MCW Fiji, kernels are used as foreground markers. These central parts cover all cells to 

segment within the image. The Fiji software [24] is used to extract kernels from biological images. It is a 

public software, dedicated to biological image analysis. Since the extracted kernels are very small, we add a 

dilation step which prevents also kernels to be too far from cell edges. 

 

2.4.  MCW Obj.MPP 

For the MCW Obj.MPP, the marked point process (MPP) [25] is presented. The MPP was largely 

used for image segmentation and it is particularly relevant for biological image segmentation [26]. The 

algorithm successfully addresses issues related to biological images such as the sensitivity to the noise, the 

shape variability and the background heterogeneity. For the MPP implementation, the Obj.MPP framework 

[18] developed by Dr. Eric Debreuve was used. The framework provides a whole segmentation algorithm, 

besides, here the idea is to consider Obj.MPP results as foreground markers, then the previous described 

steps (section 2.1) are applied. The framework fixes sets of shapes on the image plane and selects the ones 

best suited with the predefined characteristics provided by the biologist [27]. To compute the framework, a 

number of parameters is defined such as: i) the value of the quality function, ii) the number of iterations, and 

iii) the number of birth cells per iteration. These parameters are fixed empirically by considering a panel of 

choice, and retaining the set of parameters providing better segmentation performance. 

 

2.5.  Data description 

The three compared algorithms are applied to segment Drosophila cells. These images are the most 

challenging ones in the dataset. They are produced in the context of an RNAi screen at a high throughput 

confocal microscope Opera (Perkin Elmer) and a 63X water objective. One image contains 686×518 pixels 

Furthermore, the dataset is provided by the biologist Dr. Fabienne De Grave as well as their corresponding 

kernels. These images are difficult to segment due to the presence of inhomogeneous values of intensities and 

clustered cells. They are named Drosophila j, with j varying from 1 to 5. The same for the kernel data noted 

Kernel j, with j varying from 1 to 5. Object markers (foreground markers), constructed with the Obj.MPP 

framework, are enumerated as Obj.MMP j, with j varying from 1 to 5. A normalization step is included to 

uniformize intensities [28].  

 

 

3. RESULTS AND DISCUSSION 

This section includes qualitative and quantitative evaluation of the three version of the MCW. For 

the quantitative evaluation, the Dice coefficient is used [19]. It measures the similarity between two different 

regions. In addition, the F1 score is measured [20]. The given F1 score is a mean calculated over all the F1 

score obtained for labelled objects in the image. The n [29], developed by Dr. Eric Debreuve is used to obtain 

F1 score values. The ground truth is given by Dr. Fabienne De Graeve. Obj.MPP parameters for Drosophila 

dataset are set: the minimum value of the quality is equal to 0.5, the number of iterations is equal to 8,000 

and the number of births cells per iteration is equal to 100. In the following, first the oversegmentation results 

obtained with the watershed algorithm is illustrated, second the three versions of the MCW: the basic MCW, 

the MCW Fiji, and the MCW Obj.MPP are compared. Performance is attested for noiseless and noisy 

images. 

 

3.1.  Watershed segmentation results  

Watershed segmentation results, obtained for Drosophila 2 are obtained in Figure 1. Figure 1(a) 

represents the normalized Drosophila image. The image gradient is given in Figure 1(b). Finally, Figure 1(c) 

corresponds to the segmentation result using the watershed algorithm. As observed, Drosophila 2 is 

oversegmented using the watershed algorithm. The information provided by Figure 1(c) is not informative 

and not useful for biologists. To overcome the watershed limit, another algorithm is proposed in the next 

section. 
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(a) (b) (c) 

 

Figure 1. Watershed segmentation result for Drosophila 2 (a) normalized image, (b) image gradient, and  

(c) watershed result 

 

 

3.2.  Segmentation results using basic MCW, MCW Fiji and MCW Obj.MPP 

In this section, qualitative and quantitative evaluations are presented. Moreover, the Otsu algorithm  

[3] is used for comparison as a reference method for image segmentation. The Otsu thresholding is largely 

used in literature for biological and medical image segmentation. 

 

3.2.1. Qualitative evaluation 

First, the basic MCW and the MCW Fiji are applied to segment Drosophila cells, results are 

presented in Figure 2. Figure 2(a) shows the normalized image, segmentation result using the basic MCW is 

illustrated in Figure 2(b). The kernels, used as foreground markers, are given in Figure 2(c). The 

segmentation result using these kernels is presented in Figure 2(d).  

 

 

    
(a) (b) (c) (d) 

 

Figure 2. Segmentation results for Drosophila 2 (a) normalized image, (b) result using basic MCW,  

(c) kernels 2, and (d) result using MCW Fiji 

 

 

Figure 2(b) illustrates the weak performance of segmentation given by the basic MCW. In fact, a 

number of cells are detected as background, furthermore; the algorithm cannot handle the case of clusters. On 

the other hand, with the MCW Fiji, almost all cells are detected as shown in Figure 2(d). This is due to the 

use of kernels as markers which represent pertinent details. Besides, the MCW Fiji correctly separates the 

clusters, since each cell in the cluster is defined by its own kernel. Second, segmentation results using the 

MCW Obj.MPP are illustrated in Figure 3 for Drosophila 2. Figure 3(a) presents the normalized image. 

Obj.MPP markers are illustrated in Figure 3(b). The segmentation result is given in Figure 3(c), and  

Figure 3(d) corresponds to the ground truth. 

Observations confirm that the MCW Obj.MPP properly segments the Drosophila cells and separates 

the clustered ones. The segmented image is comparable to the ground truth in terms of cell shapes and 

dimensions which notably simplify the interpretation and the use of results by the biologists. In Figure 4, 

comparison between the three algorithms is proposed for Drosophila 2. Figure 4(a) represents the normalized 

image, the segmentation results using the basic MCW and the MCW Fiji are given in Figure 4(b) and  

Figure 4(c). As shown in Figure 4(d), the MCW Obj.MPP outperforms the two others algorithms, the 

contours are better refined and cells boundaries are clearly determined. These results are expected since the 

Obj.MPP markers are based on prior information about cells as shape, dimension, and radiometry. Therefore, 

the segmentation is more accurate and focused on target cells. 
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(a) (b) (c) (d) 

 

Figure 3. MCW Obj.MPP for Drosophila 2 (a) normalized image, (b) Obj.MMP 2, (c) segmentation result, 

and (d) ground truth 

 

 

    
(a) (b) (c) (d) 

 

Figure 4. Comparison of segmentation results for Drosophila 2 (a) normalized image, (b) result using basic 

MCW, (c) result using MCW Fiji, and (d) result using MCW Obj.MPP 

 

 

3.2.2. Quantitative evaluation 

For the numerical evaluation, the Dice coefficient is calculated in Table 1. Over the five images, the 

mean of the Dice coefficient exceeds 72% for the MCW Obj.MPP while it is only 64% for the MCW Fiji, 

63% for the Otsu algorithm, and 49% for the basic MCW. These results attest the superiority of the MCW 

Obj.MPP, where the Dice similarity is high. The algorithm provides clear segmentation of the cells with 

different sizes and forms. 

 

 

Table 1. Dice and mean of F1 score for Drosophila images compared for basic MCW, MCW Fiji, MCW 

Obj.MPP and Otsu algorithm 
  Otsu algorithm Basic MCW MCW Fiji MCW Obj.MPP 

Drosophila1 Dice 0.7070 0.5705 0.6501 0.7008 

 F1 score 0.4159 0.3564 0.6136 0.7721 

Drosophila2 Dice 0.6311 0.4335 0.6819 0.7503 

 F1 score 0.3071 0.3539 0.6666 0.8143 

Drosophila3 Dice 0.6862 0.6730 0.6975 0.7218 

 F1 score 0.3613 0.4424 0.7362 0.7894 

Drosophila4 Dice 0.6267 0.4533 0.6422 0.7265 

 F1 score 0.2767 0.2471 0.6947 0.8111 

Drosophila5 Dice 0.4888 0.3352 0.5321 0.7040 

 F1 score 0.0520 0.3380 0.6250 0.8041 

 

 

While the Dice coefficient measures the similarity between two different regions, the F1 score 

measures good detections. Again, as illustrated in Table 1, the MCW Obj.MPP outperforms the three other 

algorithms with a F1 score larger than 77% for all the images and a mean of 80% over the five images. This 

mean equals to 67% for the MCW Fiji, 35% for the basic MCW, and only 28% for the Otsu algorithm. For 

the latter, the poor performance is due to the global considering of the threshold that divides the image into 

background and objects without considering the intensity variations between regions. Moreover, the 

foreground markers constructed with Fiji and Obj.MPP considerably improve the performance compared to 

the morphological techniques. Besides, since the Obj.MPP markers consider more details about cell 

properties than the kernels, especially in terms of shapes and radiometry, the segmentation accuracy is clearly 
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ameliorated, especially in terms of the smoothness of the detected contours, as observed in the qualitative 

evaluation (section 3.2.1). 

We conclude that the MCW Obj.MPP is more appropriate for Drosophila image segmentation. 

Moreover, the robustness of the MCW Obj.MPP is evaluated in noisy conditions, with adding Gaussian noise 

to the image. The Dice coefficient and the F1 score are calculated for: 15 dB and 30 dB, as illustrated in 

Table 2. 10 different noise realizations are considered and the given Dice and F1 score are the mean over 

these realizations. The mean of F1 score, over the five images, equals 80% for 15 dB and 30 dB. On the other 

hand, the Dice equals 71% for 30 dB and 70% for 15 dB. Performances are not degraded compared to the 

noiseless images. The pertinent choice of markers allows a net discrimination between cells and the noise. 

These results point out the robustness of the MCW Obj.MPP with regards to the noise, and confirm the 

overall efficiency of the algorithm. 

 

 

Table 2. Mean of F1 score and Dice for noisy Drosophila images using MCW Obj.MPP. Measures are 

calculated for SNR: 15 dB and 30 dB 
 DICE F1 score 

 30 dB 15 dB 30 dB 15 dB 

Drosophila1  0.6951 0.6999 0.7734 0.7835 

Drosophila2 0.7460 0.7280 0.8191 0.8239 

Drosophila3 0.7113 0.7000 0.7947 0.8013 

Drosophila4 0.7226 0.7134 0.8111 0.8111 

Drosophila5 0.7028 0.6615 0.8020 0.8041 

 

 

4. CONCLUSION  

For the MCW, the foreground marker choice has a great impact on the segmentation result, 

especially for biological images. In this paper, two new foreground markers are proposed: kernels, and 

Obj.MPP markers. They are constructed respectively with the Fiji and the Obj.MPP software’s, based on cell 

properties such as shape and radiometry. Qualitative and quantitative evaluations on real noisy and noiseless 

images of Drosohila are performed using three proposed algorithms: the basic MCW, the MCW Fiji, and the 

MCW Obj.MMP. Using the MCW Fiji improves results compared to the basic MCW where markers are 

obtained using morphological techniques. Besides, the MCW Obj.MPP outperforms the MCW Fiji and the 

basic MCW. The MCW Obj.MPP deals with the intensity inhomogeneity within Drosophila images as well 

as the presence of clustered cells where the basic MCW fails. Furthermore, the contours obtained with the 

Obj.MPP markers are more refined compared to the ones provided by the Fiji software. The more cell 

specificities are taken into account, the more the segmentation accuracy is improved. For future work, we 

aim to increase the precision of the segmentation result using a postprocessing step. The operations 

performed at the postprocessing can be morphological operations such as the objection elimination on the 

border edge or the elimination of unusual objects. Finally, the application can be extended to larger dataset 

and other fields such as medical one. 
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