
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 13, No. 2, April 2023, pp. 1483~1490 

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i2.pp1483-1490      1483  

 

Journal homepage: http://ijece.iaescore.com 

Alpha-divergence two-dimensional nonnegative matrix 

factorization for biomedical blind source separation 
 

 

Abd Majid Darsono, Toh Cheng Chuan, Nurulfajar Abd Manap, Nik Mohd Zarifie Hashim 
Centre for Telecommunication Research and Innovation, Faculty of Electronic and Computer Engineering,  

Universiti Teknikal Malaysia Melaka, Melaka, Malaysia 

 

 

Article Info  ABSTRACT 

Article history: 

Received May 23, 2021 

Revised Jul 27, 2022 

Accepted Sep 06, 2022 

 

 An alpha-divergence two-dimensional nonnegative matrix factorization 

(NMF2D) for biomedical signal separation is presented. NMF2D is a 

popular approach for retrieving low-rank approximations of nonnegative 

data such as image pixel, audio signal, data mining, pattern recognition and 

so on. In this paper, we concentrate on biomedical signal separation by using 

NMF2D with alpha-divergence family which decomposes a mixture into 

two-dimensional convolution factor matrices that represent temporal code 
and the spectral basis. The proposed iterative estimation algorithm (alpha-

divergence algorithm) is initialized with random values, and it updated using 

multiplicative update rules until the values converge. Simulation 

experiments were carried out by comparing the original and estimated signal 
in term of signal-to-distortion ratio (SDR). The performances have been 

evaluated by including and excluding the sparseness constraint which 

sparseness is favored by penalizing nonzero gains. As a result, the proposed 

algorithm improved the iteration speed and sparseness constraints produce 
slight improvement of SDR. 

Keywords: 

Alpha-divergence  

Multiplicative update 

Nonnegative matrix factorization 

Sparseness constraints 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Abd Majid Darsono 

Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM) 

Hang Tuah Jaya, Durian Tunggal 76100 Melaka, Malaysia 

Email: abdmajid@utem.edu.my 

 

 

1. INTRODUCTION  

In recent years, nonnegative matrix factorization (NMF) [1], [2] plays an important role in various 

fields. The objective of NMF is to locate an estimated factorization for a nonnegative matrix V into two 

nonnegative networks W and H. The columns of W are called basis functions, while the rows of H represent 

the hidden nonnegative sources that correspond to each basis function. In comparison, NMF is better than 

other matrix factorization approaches such as principal component analysis (PCA) or independent component 

analysis (ICA) [3] because nonnegativity constraint in NMF produces sparse results which are advantageous 

[4], [5]. NMF claims that it can be easily solved by multiplicative update (MU) rules [6]–[16]. 

A special case that been discussed for years is biomedical signal processing [17]–[19] where there is 

a need in decomposition on heart and lung sound. This is due to clean and plain lung sound leads to 

convenient in the diagnosis of lung condition when interference of heart sound is eliminated via NMF 

approach [20]. In this paper, progression of NMF is stretched out into two-dimensional nonnegative matrix 

factorization (NMF2D) model [21] so as to give division that can catch the temporal dependency of the 

frequency designs inside the source proficiently. The 2D of NMF2D refers to two dimensional which is 

temporal code and spectral basis. The cost function that used to compute the MU rules algorithm is  

α-divergence. The α-divergence general framework is proposed by Cichocki et al. [22] and it will be further 

discussed in the following section. The performance is evaluated through comparing original and estimated 

https://creativecommons.org/licenses/by-sa/4.0/
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signal in term of SDR. SDR [23] is signal-to-distortion ratio which is the ratio that compare original signal to 

estimated signal in dB; it is shown in (1). 

 

𝑆𝐷𝑅 = 10 log10 (
𝑆𝑖𝑔𝑛𝑎𝑙𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝑆𝑖𝑔𝑛𝑎𝑙𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

) (1) 

 

The formula denotes the higher the SDR, the higher the signaloriginal, the lower the signalestimated. In other 

words, higher SDR value represents estimated signal is more incline toward original signal which it 

considered as more satisfied. 

 

 

2. PROPOSED METHOD 

2.1.  General framework of α-divergence 

Nonnegative matrix factorization (NMF) defines finds two non-negative matrices which are  

𝑊 ∈ 𝑅𝑛×𝑟 and 𝐻 ∈ 𝑅𝑟×𝑚, which also can be concluded as 𝑉 ≈ 𝑊𝐻. There is bunch of famous cost function 

has been deployed to auxiliary NMF such as Dual Kullback-Leibler I (DKLI) divergence, Squared Hellinger 

(SH) divergence, Kullback-Leibler I (KLI) divergence and Pearson divergence. The divergences that 

mentioned above are derived from a general framework which is α-divergence [24], [25]. The framework of 

α-divergence is shown as (2), 

 

𝑑𝛼(𝑉|Ʌ) =

{
 
 
 
 
 

 
 
 
 
 

1

𝛼(𝛼 − 1)
[𝑉𝛼(Ʌ)1−𝛼 − 𝛼𝑉 + (𝛼 − 1)(Ʌ)]  𝛼 ∈ ℜ  {0, 2}

Ʌ log (
Ʌ

V
) + 𝑉 − Ʌ                                   𝛼 = 0 

−4 (√𝑉Ʌ −
𝑉 + Ʌ

2
)                                  𝛼 = 0.5

V log(
V

Ʌ
) − 𝑉 + Ʌ                                   𝛼 = 1

1

2
(
𝑉2

Ʌ
+ Ʌ − 2V)                                    𝛼 = 2

 (2) 

 

where 𝑑𝛽(𝑦|𝑥) is scalar cost function and 𝛼 ∈ ℜ  {0, 2}. The DKLI divergence, SH divergence, KLI 

divergence and Pearson divergence represent α= 0, 0.5, 1 and 2 respectively [24]. In NMF presentation, all of 

the divergence will turn into (3) to (6) via substitution of different α value in α-divergence framework. 

 

𝐶DKLI =∑∑Ʌij log(
Ʌij

Vij
) + 𝑉ij − Ʌij

𝑗𝑖

 (3) 

 

𝐶DKLI =∑∑−4(√𝑉ijɅij −
𝑉ij + Ʌij

2
)

𝑗𝑖

 (4) 

 

𝐶DKLI =∑∑Vij log(
Vij

Ʌij
) − 𝑉ij + Ʌij

𝑗𝑖

 (5) 

 

𝐶DKLI =∑∑
1

2
(
𝑉ij
2

Ʌij
+ Ʌij − 2Vij)

𝑗𝑖

 (6) 

 

The BSS in this paper is classified into single channel source separation (SCSS). In time domain, model of 

SCSS is (7). 

 

𝑉(𝑡) =∑Ʌ𝑗(𝑡) + 𝑒(𝑡)

𝐽

𝑗=1

 (7) 

 

It is then change into time-frequency domain via short time Fourier transform (STFT), 
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𝑉(𝑡) =∑Ʌ𝑗.𝑓,𝑛 + 𝑒𝑓,𝑛

𝐽

𝑗=1

 (8) 

 

where 𝑗 = 1,2,3,… , 𝐽 denotes amount of source, e(t) denotes additional interference, 𝑓 = 1,2,3,… , 𝐹 denotes 

frequency bin and 𝑛 = 1,2,3,… , 𝑁 denotes time frame index. 

 

|𝑋𝑗|
2
= ∑ ∑

↓ 𝜙

𝑊𝑗
𝜏

→ 𝜏

𝐻𝑗
𝜙

𝜙𝑚𝑎𝑥

𝜙=0

𝜏𝑚𝑎𝑥

𝜏=0

 (9) 

 

The matrix W shows the 𝜏𝑡ℎ slice spectral basis and H shows the 𝜙𝑡ℎ slice of temporal code for each spectral 

basis element. Arrow of 
↓ 𝜙

𝑊𝑗
𝜏  shows shifting each element by 𝜙 row down and arrow of 

→ 𝜏

𝐻𝑗
𝜙  shows shifting 

each element by 𝜏 column right [21]. 

 

2.2.  Multiplicative update rules without sparseness constraints 

Due to the one disadvantage of the basic NMF formulation is its inconsistency to manipulate the 

amount of dependence among the learned dictionary atoms, MU rules present the convenient method to 

enforce dependence among atoms. In fact, this means that repeated iteration of the update rules is guaranteed 

to converge to a locally optimal matrix factorization [26]. Therefore, in this paper, we deployed MU rules on 

the NMF2D α-divergence by adding multiplicative gradient descent method initially with positive learning 

rate in order to grant the sparse cost function to reach the minimum [27]. Now, we elaborate the α-divergence 

as defined in (2), 

 

𝐷𝛼(|𝑉|
2|Ʌ̃|) =∑[

1

𝛼(𝛼 − 1)
[|𝑉|𝑓,𝑛

2 𝛼
(Ʌ̃𝑓,𝑛)

1−𝛼
− 𝛼|𝑉|𝑓,𝑛

2 + (𝛼 − 1)(Ʌ̃𝑓,𝑛)]]

𝑓,𝑛

 (10) 

 

where �̃� =  ∑
↓ 𝜙

𝑊𝑗
𝜏

→ 𝜏

𝐻𝑗
𝜙𝑗,𝜏,𝜙   with �̃�𝑓,𝑗

𝜏 =
𝑊𝑓,𝑗
𝜏

√∑ (𝑊𝑓,𝑗
𝜏 )

2

𝜏,𝑓

  in 𝑓 = 1,… , 𝐹 , 𝑛 = 1,… , 𝑁 and parameter 𝜆 is the 

sparsity constraint. Then, the derivatives of (10) are given by (11) and (12):  

 

𝛿𝐷𝛼

𝛿𝑊𝑓′,𝑗′
𝜏′

=
𝛿

𝛿𝑊𝑓′,𝑗′
𝜏′

(∑(
1

𝛼(𝛼 − 1)
[|𝑉|𝑓,𝑛

2 𝛼
(Ʌ̃𝑓,𝑛)

1−𝛼
− 𝛼|𝑉|𝑓,𝑛

2 + (𝛼 − 1)(Ʌ̃𝑓,𝑛)])

𝑓,𝑛

) 

 

= ∑ (
(Ʌ̃𝑓,𝑛)

𝛼
−|𝑉|𝑓,𝑛

2 𝛼

𝛼((Ʌ̃𝑓,𝑛)
𝛼
)
)𝜙,𝑛 𝐻

𝑗′,𝑛−𝜏′
𝜙

   

(11) 

 

𝛿𝐷𝛼

𝛿𝐻
𝑗′,𝑛′
𝜙′

=
𝛿

𝛿𝐻
𝑗′,𝑛′
𝜙′

(∑(
1

𝛼(𝛼 − 1)
[|𝑉|𝑓,𝑛

2 𝛼
(Ʌ̃𝑓,𝑛)

1−𝛼
− 𝛼|𝑉|𝑓,𝑛

2 + (𝛼 − 1)(Ʌ̃𝑓,𝑛)])

𝑓,𝑛

) 

 

=∑�̃�𝑓−𝜙′,𝑗′
𝜏 (

(Ʌ̃𝑓,𝑛)
𝛼
− |𝑉|𝑓,𝑛

2 𝛼

𝛼((Ʌ̃𝑓,𝑛)
𝛼
)

)

𝑓,𝜙

 

(12) 

 

For gradient descent method [19], it was shown as (13). 

 

𝑊𝑓′,𝑗′
𝜏′ ← �̃�𝑓′,𝑗′

𝜏′ − 𝜂𝑊
𝛿𝐷𝛼

𝛿𝑊𝑓′ ,𝑗′
𝜏′

 (13) 

 

𝐻
𝑗′ ,𝑛′
𝜙′

← �̃�
𝑗′,𝑛′
𝜙′

− 𝜂𝐻
𝛿𝐷𝛼

𝛿𝐻
𝑗′ ,𝑛′
𝜙′

 (14) 

 

Therefore, after substituted into (13) and (14), multiplicative rules become (15) and (16). 
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𝑊𝜏 ←𝑊 �̃� ∙

∑ [(
↑ 𝜙

|𝑉|2
)
𝛼

]
→ 𝜏
𝐻𝜙

  𝑇

𝜙

∑ (
↑ 𝜙

Ʌ̃
)
𝛼→ 𝜏
𝐻𝜙

  𝑇

𝜙

 (15) 

 

𝐻𝜙 ← 𝐻�̃� ∙

∑ ↓ 𝜙
𝑊𝜏

  𝑇

[(
↑ 𝜙

|𝑉|2
)
𝛼

]𝜏

∑ ↓ 𝜙
𝑊𝜏

  𝑇

(
↑ 𝜙

Ʌ̃
)
𝛼

𝜏

 (16) 

 

2.3.  Multiplicative update rules with sparseness constraints 

Sparseness constraints [26] were deployed to diminish the ambiguity and provide uniqueness to the 

solution. In addition, in the way of sparseness constraints representation, much of the data of encodes process 

using few ‘active’ components, which grants the encoding easy to interpret. In other words, matrix 

considered dense if most of the elements are nonzero and vice versa [4], [28]. Now, we elaborate the α-

divergence as defined in (1) by addition of sparseness constraints in order to diminish the cost function as (17), 
 

𝛿𝐷𝛼

𝛿𝑊𝑓′,𝑗′
𝜏′

=
𝛿

𝛿𝑊𝑓′,𝑗′
𝜏′

(∑(
1

𝛼(𝛼 − 1)
[|𝑉|𝑓,𝑛

2 𝛼
(Ʌ̃𝑓,𝑛)

1−𝛼
− 𝛼|𝑉|𝑓,𝑛

2 + (𝛼 − 1)(Ʌ̃𝑓,𝑛)]) + 𝜆𝑓(𝐻)

𝑓,𝑛

) (17) 

 

where �̃� =  ∑
↓ 𝜙

𝑊𝑗
𝜏

→ 𝜏

𝐻𝑗
𝜙𝑗,𝜏,𝜙   with �̃�𝑓,𝑗

𝜏 =
𝑊𝑓,𝑗
𝜏

√∑ (𝑊𝑓,𝑗
𝜏 )

2

𝜏,𝑓

  in 𝑓 = 1,… , 𝐹, 𝑛 = 1,… ,𝑁 and parameter 𝜆 is the 

sparsity constraint. Then, the derivatives of (9) are given by (18) and (19). 
 

𝛿𝐷𝛼

𝛿𝑊𝑓′,𝑗′
𝜏′

=
𝛿

𝛿𝑊𝑓′,𝑗′
𝜏′

(∑(
1

𝛼(𝛼 − 1)
[|𝑉|𝑓,𝑛

2 𝛼
(Ʌ̃𝑓,𝑛)

1−𝛼
− 𝛼|𝑉|𝑓,𝑛

2 + (𝛼 − 1)(Ʌ̃𝑓,𝑛)]) + 𝜆𝑓(𝐻)

𝑓,𝑛

) 

=∑(
(Ʌ̃𝑓,𝑛)

𝛼
− |𝑉|𝑓,𝑛

2 𝛼

𝛼((Ʌ̃𝑓,𝑛)
𝛼
)

)

𝜙,𝑛

𝐻
𝑗′,𝑛−𝜏′
𝜙

 

(18) 

 

𝛿𝐷𝛼

𝛿𝑊𝑓′,𝑗′
𝜏′

=
𝛿

𝛿𝑊𝑓′,𝑗′
𝜏′

(∑(
1

𝛼(𝛼 − 1)
[|𝑉|𝑓,𝑛

2 𝛼
(Ʌ̃𝑓,𝑛)

1−𝛼
− 𝛼|𝑉|𝑓,𝑛

2 + (𝛼 − 1)(Ʌ̃𝑓,𝑛)]) + 𝜆𝑓(𝐻)

𝑓,𝑛

) 

=∑�̃�𝑓−𝜙′,𝑗′
𝜏 (

(Ʌ̃𝑓,𝑛)
𝛼
− |𝑉|𝑓,𝑛

2 𝛼

𝛼((Ʌ̃𝑓,𝑛)
𝛼
)

) + 𝜆
𝛿𝑓(𝐻)

𝛿𝐻
𝑗′,𝑛′
𝜙′

𝑓,𝜙

 

(19) 

 

For gradient descent method [19], it was shown as (21). 
 

𝑊𝑓′,𝑗′
𝜏′ ← �̃�𝑓′,𝑗′

𝜏′ − 𝜂𝑊
𝛿𝐷𝛼

𝛿𝑊𝑓′ ,𝑗′
𝜏′

 (20) 

 

𝐻
𝑗′ ,𝑛′
𝜙′

← �̃�
𝑗′,𝑛′
𝜙′

− 𝜂𝐻
𝛿𝐷𝛼

𝛿𝐻
𝑗′ ,𝑛′
𝜙′

 (21) 

 

Therefore, after substituted into (20) and (21), multiplicative rules become (22) and (23). 
 

𝑊𝜏 ← 𝑊 �̃� ∙

∑ [(
↑ 𝜙

|𝑉|2
)
𝛼

]
→ 𝜏
𝐻𝜙

  𝑇

𝜙

∑ (
↑ 𝜙

Ʌ̃
)
𝛼
→ 𝜏
𝐻𝜙

  𝑇

𝜙

 (22) 

 

𝐻𝜙 ← 𝐻�̃� ∙

∑
↓ 𝜙
𝑊𝜏

  𝑇

[(
↑ 𝜙

|𝑉|2
)
𝛼

]𝜏

∑ ↓ 𝜙
𝑊𝜏

  𝑇

[(
↑ 𝜙

Ʌ̃
)
𝛼

(1 + (𝜆
𝛿𝑓(𝐻)

𝛿𝐻𝜙
) (𝛼))]𝜏

 (23) 
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3. RESULTS AND DISCUSSION 

All simulations and analyses are run using MATLAB platform. Mixture of heart and lung sound 

signal are sampled at 44.1 kHz. The convolutive components in time and frequency are selected to be 

τ_max=3 and ϕ_max=31 for every case and the performance of results will be processed through comparison 

of estimated to original audio signal in term of signal-to-distortion ratio (SDR). 

 

3.1.  Condition without sparseness constraints 

We implemented α with the step size of 0.1 which is starting from 0 until 2. It ought to consist of 

general framework of α divergence family which is DKLI divergence, SH divergence, KLI divergence and 

Pearson divergence. According to Table 1, the peak point is at α=1.5 which contains SDR=17.8396 dB. From 

Figure 1, it reveals the SDR increased dramatically at α=0.1, it next fluctuated within range of SDR=17 to 

SDR=18 after α=0.9. 

 

 

Table 1. The influences of the 𝛼 with step size of 0.1 to SDR’s average 
Separated estimated 

sound 

α 

SDR’s average (dB) 

0 1.9341 

0.1 13.9447 

0.2 15.3062 

0.3 15.9714 

0.4 16.8237 

0.5 16.1725 

0.6 15.5676 

0.7 15.5739 

0.8 15.4812 

0.9 17.5545 

1.0 17.7698 

1.1 17.7158 

1.2 17.6698 

1.3 17.6936 

1.4 17.7668 

1.5 17.8396 

1.6 17.6989 

1.7 17.7861 

1.8 17.8270 

1.9 17.8147 

2.0 17.1793 

 

 

 
 

Figure 1. SDR (dB) against α 

 

 

3.2.  Condition with sparseness constraints 

Figure 2 reveals mixture of heart and lung sound after decomposition with and without sparseness 

constraints in term of matrix W (spectral basis) and matrix H (temporal basis). Combination of matrix W and 

matrix H will be constructed into V. Matrix W and H is produced under NMF2D which been discussed 

previously. Figures 2(a) and 2(b) show the huge portion of light gray color (marked as red boxes) compared 

to Figures 2(c) and 2(d) (marked as blue boxes). This is due to the ambiguity of signal is truncated when the 

auxiliary constraints are added. Thus, this remarks that when sparseness constraints are added, the estimated 

signal is more incline to the original signal which cost function is reduced almost to zero, or in other words, 

the difference between estimated and original signal been minimize. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 2. The estimated W and H of heart sound without sparseness constraints for (a) heart sound and (b) 

lung sound, and with sparseness constraints for (c) heart sound and (d) lung sound 
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4. CONCLUSION  

In conclusion, we verify that α=1.5 as the optimal value in family of α-divergence in term of SDR. 

At the meanwhile, we deploy sparseness constraints in NMF2D algorithm and found that SDR value even 

higher than NMF2D without sparseness constraint which is at λ=4.5. Thus, λ=4.5 is considered as best value 

to eliminate the ambiguity and grant estimated signal almost near to original signal among the other λ value. 

Hence, its performance such as SDR, speed of decomposition iteration as well as weight of matrix has been 

improved. In the future, we believe that these constraints will become helpful in various application 

addressed by NMF2D beyond audio source separation. 
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