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 Given the influence of several factors, including weather, soils, land 

management, genotypes, and the severity of pests and diseases, prescribing 

adequate nutrient levels is difficult. A potato’s performance can be predicted 

using machine learning techniques in cases when there is enough data. This 

study aimed to develop a highly precise model for determining the optimal 

levels of nitrogen, phosphorus, and potassium required to achieve both  

high-quality and high-yield potato crops, taking into account the impact of 

various environmental factors such as weather, soil type, and land 

management practices. We used 900 field experiments from Kaggle as part 

of a data set. We developed, evaluated, and compared prediction models of 

k-nearest neighbor (KNN), linear support vector machine (SVM), naive 

Bayes (NB) classifier, decision tree (DT) regressor, random forest (RF) 

regressor, and eXtreme gradient boosting (XGBoost). We used measures 

such as mean average error (MAE), mean squared error (MSE), R-Squared 

(RS), and R2Root mean squared error (RMSE) to describe the model’s 

mistakes and prediction capacity. It turned out that the XGBoost model has 

the greatest R2, MSE and MAE values. Overall, the XGBoost model 

outperforms the other machine learning models. In the end, we suggested a 

hardware implementation to help farmers in the field. 
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1. INTRODUCTION 

The two most important and fundamental resources for life on earth are soil and water. Morocco’s 

soils and rivers are becoming more and more deteriorated, and this deterioration is accelerating. Due to its 

rich soils and easy access to water, The Gharb (Morocco) is widely renowned for its intense agriculture. 

However, after extensive use of these resources, the quality of these soils and rivers should be evaluated. The 

Atlantic Ocean has a significant impact on the Gharb’s climate, which is characterized by a sub-humid 

bioclimatic zone with high air humidity in the winter and high temperatures in the summer. 

Various factors can affect fertilization for optimal tuber yield, including the type and quality of the 

soil [1], [2], organic fertilizers [3], [4], previous crops [5]–[9], weather [10], irrigation [11], timing and 

location of the applied fertilizer [12], pests and diseases [13], and genetic factors. For instance, soil with high 

organic matter content tends to retain nutrients better and provide a more suitable environment for microbial 

activity, which aids in nutrient availability. The use of organic fertilizers also enhances soil quality, improves 

plant nutrient uptake, and reduces environmental impacts compared to synthetic fertilizers. Furthermore, 

previous crops, weather patterns, and irrigation practices influence the nutrient cycling and availability in the 

soil, ultimately impacting crop growth and development. 

https://creativecommons.org/licenses/by-sa/4.0/
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In addition to these factors, various other factors can influence the growth and development of 

crops, including day length, photoperiod, water availability, intercepted radiation, air temperature, 

precipitation, root development, and crop management. These factors interact in complex ways, making it 

challenging to optimize crop growth [14], [15], and development for optimal yield. However, understanding 

the various factors that influence crop growth and development is critical for designing effective fertilization 

and crop management strategies [1], [2], [16]–[19]. 

Growers frequently over-fertilize due to the potential financial loss from under-fertilizing [20]. 

While nitrogen (N) and phosphorus (P) can both contribute to surface water eutrophication [21] and nitrate 

pollution [22], respectively, K has no documented negative effects on freshwater or drinking water quality. 

There have been attempts to combine fertilizer trial findings using multilevel modeling that incorporates soil, 

climatic indices, and management factors [23] or meta-analysis for determining the optimal nitrogen (N) for 

specific soil texture and pH groups [24]. Meta-analysis is a statistical technique that involves pooling data 

from multiple studies to draw conclusions about a specific research question. Even in cases when field trials 

were able to locate nutritional maxima, these maxima cannot be extrapolated to settings other than those of 

the specific studies [25]. 

Fertilizers are the primary means of plant development, according to El-Aziz et al. [26] and 

Cao et al. [27], and they are given to the soil to enhance natural growth. Each of the three components that 

make up NPK-nitrogen, phosphorus, and potassium-is crucial for the growth of plants. Applications for smart 

agriculture can employ the assessment of ground cover proportion to treat crops in an efficient manner [26], 

[27]. Table 1 lists the three major macronutrients and their roles, which are thought to be crucial for plant 

survival and development. 

 

 

Table 1. The macronutrients for crops 
Macronutrients Function 

Nitrogen (N) Necessary for leaf growth 
Phosphorus (P) Growth of roots, flowers, seeds and fruit 

Potassium (K) Strong stem development, water transportation within plants, stimulation of flowering and fruiting 

 

 

Even if the quantity and quality of experimental data are continually increasing, researchers are still 

unable to integrate, evaluate, and make the most educated conclusions from it. A newer technique called 

machine learning can help in finding patterns and rules in massive amounts of data. Bypassing intermediary 

processes that a mechanistic modeling system would otherwise clearly describe; the technology produces 

predictions based only on input data [28]. 

In this study, we have proposed that the primary factors influencing fertilizer requirements for 

potatoes are genetics, environment, and local land management practices. To predict the economic and 

agronomic optimal doses of fertilizers, we utilized various machine learning algorithms including k-nearest 

neighbor (KNN), linear support vector machine (SVM), naive Bayes (NB) classifier, decision tree (DT) 

regressor, random forest (RF) regressor, and eXtreme gradient boosting (XGBoost). The aim was to 

determine which model is the most effective in predicting the N, P, and K requirements for potatoes. To 

achieve this objective, we developed several machine learning models and evaluated their performance. The 

main focus of this study was to forecast the N, P, and K requirements for potatoes using machine learning 

algorithms. 

 

 

2. METHOD  

2.1.  Data set 

The process of data collection is crucial as it serves as a foundation for progress. In order to gather 

data, one must determine the appropriate source, which could include existing files or the internet, where a 

web scraping tool can effectively extract large amounts of data. For our research paper, we will be obtaining 

data from both the web and the original database owner, Kaggle-a division of Google LLC. Regardless of the 

topic, data collection is typically the primary and most important stage. Table 2 displays the databases we 

gathered for our research. 

 

2.2.  Summarizing data 

A correlation matrix is a table that shows the correlation coefficients between different variables. 

The relationship between two variables is represented by each cell in the table. A correlation matrix can be 

used as a diagnostic for further research, as an input for a more complex analysis, or to summarize data. 

Figure 1 displays the correlation coefficient for six features. Google Colab was used for our research. Colab 
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is a completely cloud-based Jupyter notebook environment that is free to use. Many well-known machine 

learning libraries are supported by Colab. 

 

 

Table 2. Attributes description 
Name Unit of measure Description 

CropType  Fixed numerical values 

Soil Type  Types of Soils 
SoilMoisture % Soil moisture, read by the soil moisture sensor 

Temperature °C Read by the temperature sensor 

Humidity % Read by the humidity sensor 
Nitrogen % Amount (%) of Nitrogen in Soil 

Potassium % Amount (%) of Potassium in Soil 

Phosphorous % Amount (%) of Phosphorous in Soil 
Fertilization  Various types of Fertilizers used for different types of Soils and Crops 

Fertilizer quantity  The amount of fertilizer used for different types of Soils and Crops 

 

 

 
 

Figure 1. Coefficient of correlation of 6 features 

 

 

2.3.  Training models 

We do a correlation study between variables prior to developing the model. The coefficient of 

correlation, shown in Figure 1, is an examination of the connection between independent variables  

(6 features). Some characteristics have a high association with others, which may be noticed intuitively. 

However, this is merely a linear connection analysis, which may not explain how characteristics interact. As 

a result, more complicated prediction models are needed, and many different machine learning models are 

covered in the sections that follow. Six machine-learning models were trained to derive an optimal model: 

KNN, linear SVM, NB classifier, DT regressor, RF regressor and XGBoost. 

 

2.3.1. XGBOOST algorithm 

XGBoost, a scalable tree boosting method that has been extensively used in Kaggle’s Higgs  

sub-signal identification challenge, was introduced by Chen and Guestrin [29]. It has recently drawn a lot of 

attention due to its exceptional effectiveness and excellent forecast accuracy. In actuality, XGBoost is an 

improved version of gradient-boosted decision tree (GBDT) [30], a classification and regression algorithm 

that consists of multiple decision trees. But XGBoost differs from GBDT in a few ways. First, whereas 

XGBoost adds a second-order Taylor expansion to the loss function, the GBDT method utilizes the first-

order Taylor expansion and applies normalization [31] in the objective function to minimize model 

complexity and prevent overfitting. Unlike gradient boosting, which operates through gradient descent in 

function space, the GBDT approach has these distinct characteristics, XGBoost establishes the link to the 
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Newton Raphson method using a second order Taylor approximation in the loss function. An illustration of a 

general unregularized XGBoost algorithm is the following: 

Assume a dataset is D={(xi, yi)} (i=1, 2) and a model with k trees is trained or learnt. The model 

produced the following result (�̂�i): 

 

𝑦�̂� = ∅(𝑥𝑖) = ∑ 𝑓𝑘
𝑘
𝑘=1  (𝑥𝑖), 𝑓𝑘 ∈ F (1) 

 

where 𝑓(𝑥) is a regression tree and F is the hypothesis space: 

 

𝐹 = {𝑓(𝑥) = 𝜔𝑞(𝑥)} (2) 

 

𝑞(𝑥) is the leaf node of the x-th sample in (2) and is the leaf score. The anticipated outcome of the t-th iteration 

is: 

 

𝑦𝑖
�̂� = �̂�𝑖

𝑡−1 + 𝑓𝑡(𝑥𝑖) (3) 

 

Therefore, the objective function is 

 

J(𝑓𝑡) = ∑ Ln
i=1 (𝑦𝑖 , ŷ𝑖

𝑡−1 + 𝑓𝑡(𝑥𝑖) + Ω(𝑓𝑡) (4) 

 

The complexity of the model is represented by Ω(ft), and L is the loss function. The letter 𝑇 stands for the 

score and for the number of leaf nodes. 

 

Ω(ft)=𝛾Tt+𝜆
1

2
∑ 𝜔𝑇

𝑗=1 j2 (5) 

 

The second-order Taylor expansion simplifies (5): 

 

J(ft)=∑ Ln
i=1 [yi, ŷit-1+gift(xi)+

1

2
 hift2(xi)] + Ω(ft) (6) 

 

𝑔𝑖 =
𝜕𝐿(𝑦𝑖, �̂�𝑖

𝑡−1)

𝜕 �̂�𝑖
𝑡−1  (7) 

 

ℎ𝑖 =
𝜕2𝐿(𝑦𝑖, �̂�𝑖

𝑡−1)

𝜕 �̂�𝑖
𝑡−1  (8) 

 

The above analysis indicates that the following describes the final objective function: 

 

J(ft)=∑ [𝑛
𝑖=1 gi 𝜔q(xi)+

1

2
hi 𝜔q(xi)2]+ 𝛾T+ 𝜆

1

2
∑ 𝜔𝑇

𝑗=1 j2 (9) 

 

After optimizing the objective function, the best result is:  
 

𝜔𝑗 ∗= −
∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖+λ𝑖∈𝐼𝑗
 (10) 

 

J(ft)=−
1

2
∑

(∑ 𝑔𝑖𝜖Ij i)2

∑ ℎ𝑖𝜖Ij i + λ 

𝑇
𝑗=1  +𝛾.T (11) 

 

2.3.2. Evaluation of model performance  

The coefficient of determination (R2), mean absolute error (MAE), and root-mean-square error were 

always used to evaluate the models’ ability to predict outcomes (RMSE). In Table 3, the models are 

succinctly described. Several accuracy measures in machine learning and statistics may be used to evaluate 

the prediction model’s error rate. Comparing the actual target with the projected one and describing the 

model’s errors and capacity for prediction using metrics like MAE, MSE, RMSE, and R-Squared are the 

main concepts behind accuracy evaluation in regression analysis. 

Regression analysis frequently evaluates model performance and prediction error rates using the 

MSE, MAE, RMSE, and R-Squared metrics. MAE, which is calculated by averaging the absolute difference 

over the data set, represents the variation between the original and projected values. When the average 

difference across the data set is squared, the mean calculating error (MSE) is the difference between the 
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original and forecasted values. The square root of the MSE is multiplied by the error rate to produce the root 

mean squared error (RMSE). We ended with the coefficient R-squared (coefficient of determination) 

measures how closely the values match those of the starting points. Values between 0 and 1 are given 

percentages. The model is better when the value is higher. These formulas can be used to calculate the 

measurements listed above: 

 

MAE =
∑ |𝑦𝑖−�̂�|𝑛

𝑖=0

𝑛
 (12) 

 

MSE =
∑ (𝑛

𝑖=0 𝑦𝑖−�̂�)2

𝑛
 (13) 

 

RMSE = √𝑀𝑆𝐸 (14) 

 

𝑅2 = 1 −
∑ (𝑛

𝑖=0 𝑦𝑖−�̂�)2

∑ (yi−�̅�) 2𝑛
𝑖=1

 (15) 

 

 

Table 3. Models description 
Models Description 
KNN A model of k-nearest neighbor 
SVM Linear support vector machine 
NBC Naive Bayes classifier 
DT Decision tree regressor 
RF Random forest regressor 

XGBoost eXtreme gradient boosting 

 

 

Table 4 displays our findings for the six machine learning algorithms, including MSE, R2, MAE, 

and RMSE (KNN, SVM, NBC, DT, RF, and XGBoost). In order to make the best choice, we compare and 

discuss the outcomes of these machine learning algorithms in this section. Then, with the aid of internet of 

things (IoT), we put our experiment to the test in the field. The effectiveness of a predictive model is tested or 

evaluated using a set of unobserved data. The term “goodness of fit” describes how closely the model’s 

predicted values match the actual or observed values. Overfit models are those that perform well during 

training but poorly during testing, whereas underfit models perform poorly during both training and testing. 

 

 

Table 4. Comparison of different algorithms 
Algorithms MAE MSE RMSE R2 

KNN 0.63 0.70 0.83 0.83 

SVM 0.58 0.45 0.67 0.68 

NBC 0.50 0.62 0.78 0.79 
DT 0.70 0.75 0.86 0.91 

RF 0.80 0.88 0.93 0.93 
XGBoost 0.90 0.93 0.96 0.97 

 

 

Table 4 shows the results about MAE, MSE, RMSE and R2. It is obvious that the three of the 

models (DT, RF, and XGBoost) outperform the others, with MAE, MSE, RMSE and R2, particularly 

XGBoost (MAE=0.90, MSE=0.93, RMSE=0.96 and R2=0.97). The accuracy of the three linear models 

(KNN, SVM, and NBC) is, however, weak, with all values. This is also consistent with the project’s current 

condition. 

According to the aforementioned research, the XGBoost model has the greatest R2 value, as well as 

MSE, MAE, and RMSE values. Overall, the XGBoost model outperforms the other machine learning 

models. As a result, it is chosen as our algorithm machine learning to be hold in raspberry pi3. Machine 

learning models may replace statistical models in the context of precision agriculture as enormous amounts 

of data are compiled into observational data sets and recommendations for fertilizer are made. Since reliable 

future weather data for the growth season are not accessible, combining previous weather data was a 

successful technique to evaluate model performance under real-world conditions. Additionally, we 

concentrated on using readily accessible data obtained from regular investigations as predictors rather than 

models of fundamental processes. Our model might be used to maximize any biotic component other than 

fertilizer, such as planting density or growing season length. 
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2.3.3. Hardware implementation  

Due to the limitations of the conventional approach, which involves testing the soil in a lab and then 

informing farmers to start fertilizing the field. This study suggests an IoT system that notifies the farmer after 

monitoring the nutrients present. Figure 2 depicts the automatic fertilization process used by our system. It 

may be challenging to manage the fertilization program at extremely low anticipated N, P, or K doses 

because farmers frequently believe that the cost of over-fertilization is negligible in comparison to the cost of 

under-fertilization. 

 

 

 
 

Figure 2. Schema of IoT implantation 

 

 

After taking measurements of temperature, humidity, soil moisture, nitrogen, phosphorus, and 

potassium from the sensors. The data will be sent to raspberry pi3 to be analyzed with our algorithm 

XGBoost to take decision of the name and the exact quantity of fertilizers. Then a notification will be sent to 

the farmer. It required a lot of new technology to integrate this application with an internet connection, such 

as sensors and Arduino, such views, on the one hand, it would be extremely crucial to create an application 

that allows this item to be operated remotely. We aim to improve our results by utilizing a combination of 

methods, including genetic algorithms [32]–[34]. The versatility of drones makes them a valuable tool for 

agricultural purposes, particularly in areas where infection risks are high, as they allow for efficient and safe 

remote interventions [35]. 

In the future, we may be able to generate new concepts for expanding our work, such as a smart 

urban agricultural service concept based on an open IoT platform [36], [37]. Using an open-source IoT 

platform (NodeMcu, Node-Red, and message queue telemetry transmission) [38]. As an automated 

instrument for monitoring water availability that can assist the farmer in monitoring the farm [39]. There’s 

also a low-cost wireless sensor network (WSN) technology for detecting soil, environmental, and crop 

characteristics that, when properly analyzed, can be used in conjunction with weather forecasts to determine 

future agricultural operations based on agronomic models built into the software platform [40]. We may also 

use the waterfall model technique to create an application for automatic schedule-based irrigation distribution 

and monitoring to reduce water loss [41]. IoT combined with a fiber capillary irrigation system that 

calculates climatic need depending on weather conditions may also provide precise irrigation [42]. Using IoT 

and machine learning in irrigation is very important to minimize water loss [43]. 

 

 

3. CONCLUSION  

The assessment of soil nutrients on a regular basis in the agricultural field is challenging owing to 

manual testing in laboratories. It causes farmers to be careless with the nutrient levels in their soil and to use 

fertilizer at the wrong time and with the wrong quantity. The suggested system informs farmers of the 

insufficiency of important soil nutrients, such as nitrogen, phosphorous, and potassium, through SMS, 

utilizing the devised NPK sensor and machine learning. Experimentation is carried out in order to 
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comprehend the functionality and inform the intended purpose of the developed IoT system. Based on the 

results of the experiment, it is obvious that the suggested system is a low-cost, accurate, and intelligent IoT 

system that automatically informs the farmer about the fertilizer and the quantity to be applied at the 

appropriate time through messages. 

Many food producers are trying to manage agricultural hazards such as disease and pests, which are 

exacerbated by climate change, monocropping, and increased pesticide usage. It is critical to detect problems 

as soon as possible. With the help of artificial intelligence (AI), we can detect diseases and pests before they 

are detectable by visual inspection and that helps with the increase of production. This study evaluated 

machine learning approaches as an alternative to the statistical models or meta-analyses that are often used at 

the regional level to make recommendations for potato fertilizer at the local level. To customize machine 

learning models with particular cultivar traits, soil properties, weather indicators, and the amount of nitrogen, 

phosphorus, and potassium fertilizers applied as predictive variables, an extensive dataset of field trials was 

utilized. 
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