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 Code analysis has discovered that memory leaks are common in the C 

programming language. In the literature, there exist various approaches for 

statically analyzing and detecting memory leaks. The complexity and 

diversity of memory leaks make it difficult to find an approach that is both 

effective and simple. In embedded systems, costly resources like memory 

become limited as the system’s size diminishes. As a result, memory must be 

handled effectively and efficiently too. To obtain precise analysis, we 

propose a novel approach that works in a phase-wise manner. Instead of 

examining all possible paths for finding memory leaks, we use a program 

slicing to check for a potential memory leak. We introduce a source-sink 

flow graph (SSFG) based on source-sink properties of memory allocation-

deallocation within the C code. To achieve simplicity in analysis, we also 

reduce the complexity of analysis in linear time. In addition, we utilize a 

constraint solver to improve the effectiveness of our approach. To evaluate 

the approach, we perform manual scanning on various test cases: link list 

applications, Juliet test cases, and common vulnerabilities and exposures 

found in 2021. The results show the efficiency of the proposed approach by 

preparing the SSFG with linear complexity. 
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1. INTRODUCTION 

Long-running embedded systems are susceptible to memory leaks. However, if the attacker can 

deliberately cause a memory leak, they may be able to carry out a denial-of-service attack (by crashing the 

application) or exploit other unusual program behavior brought on by insufficient memory. Generic software 

reliability issues are generally brought forward by memory leaks [1], [2]. When software acquires a block of 

memory but does not release it after its last usage, it is called a memory leak. If one or more accessible 

pointers still refer to such a block after the execution, repairing the leak is usually straightforward as long as 

the location of the block is known [3], [4]. Nevertheless, if all references to the block are changed or removed 

while the program is running, knowing the allocation site is often insufficient. In any event, a memory leak 

occurs when a developer forgets to remove a memory allocation when it is no longer needed, resulting in 

accidental memory consumption [5], [6]. Finding memory leaks properly and with less complexity is still a 

difficult task, despite the considerable research improvements made recently. To date [7], 1,219 records for 

memory leaks in common vulnerabilities and exposures (CVE) have been found. The efficiency and 
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complexity criteria of analyzing code to detect memory leaks must be addressed as the complexity of the 

code increases [8]–[10].  

In recent years, various approaches such as taint analysis (e.g., leak point [11]), sparse value flow 

analysis (e.g., fast check [12]), data flow analysis (e.g. contradiction [13], PCA [14]), Boolean satisfiability 

(e.g. Saturn [15]), abstract interpretation (e.g. sparrow [16]), path-insensitive flow analysis (e.g. saber [5]), 

type-specific (e.g. leak fix [7]), value flow graph (e.g. smoke [17]), ownership reasoning (e.g. k-meld [18]) 

are proposed for static analysis methods as detecting memory leak, whereas dynamic analysis is performed 

when code is in execution. Saha et al. [19] have created a prototype Hector based on the resource-release 

concept that is designed for the system software’s error handling module. They have employed specification 

mining, but only for intra-procedure. Even Machiry et al. [20] developed Dr. Checker that worked on static 

analysis specifically for kernel driver programs. They have considered point-to-analysis and taint analysis. 

Although both their work and our work are closely related, we also choose our own representation of the 

program code to interpretation for the program’s complexity. This makes our strategy simple and efficient. 

We observed that the complex approach lost its precision whereas the precise approach limits complexity. 

Hence, our focus is on program representations. Table 1 shows the various tools along with attributes like 

complexity (C), their internal program representations, and precision (P).   

 

 

Table 1. Comparison of various memory leak detectors 
Sr. No. Tool Program Representations Platform P C Remarks Citation 

1. Fastcheck Guarded value flow analysis Crystal N N Partial sparse value flow (SVF), heavy weighted [12] 

2. Leak point Control flow graph LLVM N Y Perform taint analysis for allocation [11] 

3. Saber Full sparse value flow graph Open64 Y Y Full representation of code as SVF [5] 
4. Leak fix Control flow graph LLVM N Y Finding leak and insert multiple fixes too [3] 

5. Smoke User data flow LLVM N Y Heavy weight [17] 

 

 

From Table 1, we also observed that the control flow graph (CFG) and SVF were two variants as 

program representations. We took into account both program representations. We discovered that a control 

flow graph is widely used in literature to demonstrate a program’s control and that the SVF is also 

appropriate for pointer analysis. In such a situation, we combine the applicability of both representations to 

increase the effectiveness and precision of our approach. The source-sink property [5] is largely used to 

address the memory leak problem, which is also characterized as a finite state machine problem [21]. The 

SVF, which was created to improve code analysis, does not fit well with the characteristics of randomly 

generated finite state machines. We reconstruct the SVF to have a source-sink flow graph (SSFG) based on 

the source-sink properties in the context of this approach. The main objective of our approach is to follow the 

allocation pointer throughout the control path from source to sink. Its underlying SSFG analysis must be 

efficient and effective.  

In this paper, we focus on important challenges including memory leaks for embedded systems’ 

memory usage [22]. The software suffers because of it. Memory leaks typically occur when a developer 

forgets to release memory before terminating an application. If memory leaks happen repeatedly, memory 

loss will eventually develop and affect the system’s overall reliability and performance [3]. According to the 

points below, the memory leak is significant in a variety of ways. 

− Developing system software and embedded device software is best done in a language like C. In contrast 

to managed programming languages such as Java, C requires external memory management to keep track 

of the memory leaks. 

− It supports future programs in addition to the one that is now in service. All programs executing on the 

system are impacted by a program that leaks memory in terms of efficiency and durability. 

− Before the system has worn down, it is quite difficult to notice. 

− Generic bug-fixing approaches, such as asserting statements like "no leak," are ineffective. 

− Additionally, it predominates in more sophisticated applications. 

The objective of this paper is to present a simple method for C source code that effectively and with 

linear complexity discovers memory leaks. Figure 1 illustrates the efficiency of our approach and provide an 

effective analysis of the source code. Precision and effectiveness are key concepts in our consideration of 

complexity reduction to find memory leaks. 

Traditional sparse value flow analysis (SVFA) methods employ partial or fully sparse value flows. 

[2]–[4]. Figure 1(b) displays the SVF graph representation for a constraint condition to find the leak for a 

program part Figure 1(a). Our notation denotes the memory pointer p at statement st, as illustrated in node. 

The data dependency relationship between the statements is indicated by the data value flow on the graph 

edges. The constraint solver is employed to address the particular condition and determine if memory is 
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released correctly or not. If the function F(no leak)=c1 V (! c1 c2) meets the requirements, there is a path 

from the allocation site to the free site in the segment, proving that the susceptibility to memory leaks does 

not exist. With k≥3 and exponential time complexity, K-SAT is currently the constraint solver that is 

employed in the literature. In our approach, we built a novel way of sparse program representation called the 

Source-Sink Flow Graph (SSFG). In SSFG, the data value flow that is present in SVFA is still around. 

Additionally, the allocation of objects from the allocation site to the free sites is tracked using CFG. In our 

SSFG, we impartial include the statements needed for control tracing and remove the portions that are 

irrelevant. The SSFG form for the same code segment is presented in Figure 1(c). When the program 

terminates, a simple path traverse in SSFG reveals that the pointer p is never released, while the same path in 

SVF cannot be found. In that sense, the complexity of our representation will be linear as compared to 

exponential. Also, for a variety of reasons, traditional approaches also integrate annotation (i.e., µ) and value 

flow path. It raises the codebase overhead of a large application. In contrast, we took into account path 

slicing in our approach to increase precision while decreasing the total time and space costs for path 

validation [23]. 

Based on source-sink characteristics of memory utilization, we develop a modified source-sink flow 

graph (SSFG) of program representation. We propose a comprehensive static method that is effective and 

simple for identifying memory leaks. We examine the effectiveness of our novel approach using a variety of 

case study applications, test suits, and authentic CVE.  

 

 

 
(a) 

 

 
 

(b) (c) 

 

Figure 1. Memory leak program in C (a) source code in C program, (b) value flow graph, and  

(c) source-sink flow graph 

 

 

2. PROPOSED APPROACH 

Our approach consists of a four-phase examination of the code. The phase-wise flow of our 

proposed approach is shown in Figure 2. We have taken into consideration CFG and point-to-analysis data in 

the first phase. Using CFG, we get information on the control flow of the static execution of particular input. 

Additionally, the point-to-analysis method enables flow-insensitive analysis. We have used Anderson’s point 

[24] to analyze to prepare the set of relevant points needed for our purpose. It is an alias analysis that is flow-

insensitive, context-insensitive, and field-insensitive. That is used for inter-procedure interaction. It gathers 

the point to set for all pointer variables on user inputs. As a consequence, it offers a high level of precision, 

which is commonly used in modern compilers and business scenarios. In order to build the call graph and 

control flow graph in the second phase, we use the implicit or explicit callee and caller information from 

point-to-sets gained in the first phase. This particular result is obtained for inter-procedure analysis 
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utilizing the gold plug (i.e. tool used for cross compilation) and low level virtual machine (LLVM) [25] call 

graph. Furthermore, we also obtain the pointer variable’s precise calculation for memory allocation. 

 

 

 
 

Figure 2. Proposed approach  

 

 

In the next phase, we illustrate a source-sink flow graph (SSFG) that uses the data acquired in the 

preceding phase to track the allocation and free sites of particular variables. We use reconstructed lightweight 

state machine characteristics for SSFG. By using this, we can identify memory leaks more efficiently and 

execute our code at a faster rate. Generation of SSFG is the core part of our approach, which we go through 

in further detail later on. In the subsequent phase, Path Slicing is used to extract unnecessary statements from 

the code while keeping its objective. Backtracking across the graph from nodes that meet the slicing 

conditions will provide the collection of instructions that compose a slice. We take into account both static 

slicing, which runs on all potential input, and backward slicing, which locates the problematic part of the 

program. We employ context-sensitive, lightweight symbolic program slicing (SymPas) [26] that takes into 

consideration both slicing methods. Along with path slicing, we also add procedure summaries for specific 

modules to be more detailed and context-sensitive [16] information. In the last phase, we applied path slicing 

and a constraint solver to enhance the precision of our approach [27]. Algorithm 1 presents the phase-wise 

steps of the proposed approach. 

 

Algorithm 1. Algorithm to locate memory leak 
Input: Source code written in C 

Output: Warning of memory leak that contains location and variable name 

ASSUMPTION: Program is in Static Single Assignment (SSA) Form  

1. Build CFG and Perform Point-to Analysis 

2. Build Source-Sink Flow Graph 

3. Perform Path Slicing using Function Summary Information 

4. Apply Constraint Solver on Slice path 

5. Generate Report 

 

Since every object is created at the allocation site (source) and deallocated site (sink). Allocation-

deallocation is mapped as a source-sink (SS) property for discovering memory leaks in C programs. We 

define a source-sink flow graph (SSFG) to make use of this property and the state transition graph (finite 

automata) characteristics. In terms of state transition characteristics, the SSFG offers benefits such as i) it 

keeps track of a control flow graph that depicts the whole life cycle of the variables and is represented as a 

machine transition flow, ii) regarding program size, it creates transition flow in a linear amount of time, and 

iii) it verifies the state machine flow and performs the required steps in the correct sequence. 

According to Definition 1 in the literature, memory instructions (allocate and free) in source  

code are used to define state transitions [28]. The transition diagram is formally represented in Definition 1. 

Definition 1: A finite automation is a 5-tuple (Q, Σ, δ, q0, F) where Q is a set of memory program statements 

(st) (i.e., allocate, deallocate), Σ is a set of variables in memory statements, δ: Q×Σ → Q is the transition 

function, that is δ (m1, st1) → st2, q0 ∈ Q is the start (or initial) state, and F ⊆ Q is the set of accepted (or 

final) states. 
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Given a transition diagram in Figure 3 and Definition 1, construct SSFG as follows for the variable 

life cycle. We use this Definition 1 to generate the specification for our SSFG presentation in Definition 2. 

Definition 2: Given a program source-sink flow graph (SSFG) is a directed graph G=(V, E) where  

V={set of statements: ALLOCATE, DEALLOCATE, INVALID, END} and E={set of directions: FREE, 

NO_SCOPE, MALLOC}. 

 

 

 
 

Figure 3. Transition diagram 

 

 

Consider A vertex (Mp, St) ∈ V in which the memory variable Mp at one memory program 

statement St and is any of the following: i) St ∈ Σ, means st is a program statement in that it takes to 

transition from one state to another; ii) St is either the actual parameter Mp at caller or formal parameter at 

callee Mp; and iii) lastly, for every (M, St’) is dominance frontier of St. For Edge, ((Mp, St), (Mp, St’)) if and 

only if there is a control path from St to St’. 

For every section of program code, as described in Definition 2, we developed SSFG. Our main 

impartial is to examine the CFG for each function and eliminate any blocks of instructions that are obviously 

unnecessary. As a result, we construct a transition table to analyze variables affected by memory statements 

to check if a memory leak exists. We take into account the two distinct analyses presented below to depict the 

construction of SSFG and find memory leaks in them. 

 

2.1. Code 1: intra procedure analysis 

Figure 4(a) illustrates the working steps of our program’s analysis. First, as illustrated in  

Figure 4(b), we construct the CFG. Each node of CFG contains the fundamental building blocks of the LLVM 

intermediate representation (IR) form for each function. We simplified this representation as shown in Figure 4(c) 

using our Definition 2 notations. For each memory variable contained in the specified source code  

Figure 4(a), a transition table was built by taking into account Figures 3 and 4(c). Figure 4 (d) shows each 

entry in the state table that follows the control path for a specific variable. Variable p has allocated memory 

at line 3 in our sample program. The dominance frontier (DF), a node where various pathways from the same 

variables are merged, has also been taken into consideration. The DF is traversed by each variable. Therefore, 

the CFG gives us the relevant DF node for the analysis. In our scenario, step 4 of the state table is the 

dominating frontier because it merges two distinct variable states. In step 4, we see that the states of variable 

p transit from allocate (A) to invalid (I), signifying an error, and variable q transit from deallocate (DA) to 

end (E), signifying the definitive result of the sequence. Our finite automata predicts that a portion of code 

suffers a memory leak whenever a state transits from A to I without a scope. The path slicing and constraint 

solver of the approach will now verify this path. 

 

2.2. Code 2: inter procedure analysis 

Examine the inter-program in Figure 5(a) in detail for program representations. A specific CFG and 

call graph for the program as produced in the approach’s first phase are also shown in Figures 5(b) to 5(d). 

We presented the SSFG and state table for the program in Figure 5(a) to illustrate how we would proceed in 

the next phases.  

In next phase, we perform program representation in our notations of SSFG form. Here, Figures 6(a) 

and 6(b) shows both components of our approach for building the SSFG. Additionally, in step 7 of the state 

table, two paths are merged. Line 8 of the program in this example represents the DF. In this instance, a no-

scope operation is used to acquire deallocate (DA) to end (E), which is seen as a memory leak. Path slicing 

again supported SSFG’s claim of a memory leak in this instance. 

Additionally, we found that studies consider the CFG or SVF when analyzing whether or not the 

program has memory leaks. However, in our scenario, we took into account both the methods and the DF 

condition node to determine if the current path leads to a memory leak or not. We developed the approach for 

that using both inter- and intra-procedural scenarios. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 4. Intra procedure analysis; (a) program with memory leak, (b) CFG in LLVM IR form, (c) SSFG, and 

(d) state table 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 5. Inter procedure source code with CFG and call graph; (a) inter procedure program,  

(b) CFG for ‘ml1’, (c) CFG for ‘ml’, and (d) call graph 
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(a) (b) 

 

Figure 6. Inter procedure SSFG: (a) CFG in synthesized form and (b) state table 

 

 

3. RESULTS AND DISCUSSION 

In that instance, we assume that the source code is in the static single assignment (SSA) format. It is 

an intermediate representation (IR) that analysis can quickly handle. Each source program that is intended for 

the given application is given an IR form by the LLVM gold plugin. Additionally, a developer can analyze a 

specific function or fragment of code to raise the effectiveness of the approach. In a variety of scenarios, we 

evaluated the effectiveness of functional representations and their application to the analysis of memory leaks 

over time. In this case, we considered various scenarios developed for the verification of approaches. We 

tested our proposed approach using various linked list (LL) applications and a legitimate memory leak 

identified by CVE. We also took into account the Juliet Test suit V3.0 CWE401 [29] test scenarios. It has a 

number of instances of memory leaks. 

We manually validated a number of test scenarios, which might increase the likelihood of false 

positives. We cannot support dynamically loaded files, not even for source code, due to our constraints. We 

first examine the effectiveness of our approach for detecting memory leaks using LL test applications. We 

manually created memory leaks in the LL applications for that. Secondly, Privoxy’s handling errors module 

was found to have a memory leak flaw (CVE-2021-44542). We developed CFG and contrasted it with CFG 

produced by LLVM. We thoroughly retraced the program and created SSFG in accordance with Definition 2. 

Our pre-scan of the SSFG path for specific CVEs revealed that our approach is successful at locating the 

memory leak in Privoxy’s out-of-date code. To make sure that our approach is efficient and linear as well, we 

extensively validated them using the contexts of our respective SSFG and constraint solvers. Figure 7 depicts 

the real breach that is found in CVE Privoxy. In the program, to_send was initially constructed by the 

developer at line number 2187 in the earlier code, but it was never released. The memory leak is fixed by 

inserting the deallocation statement at line number 2209. By carefully tracing the whole older source code, 

we were able to confirm that the memory leak was the same. 

 

 

 
 

Figure 7. Memory leak in Privoxy 
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Third, we have considered the memory leak contain in Juliet test Suits. Figure 8 shows a sample test 

case from Juliet CWE401 specifically for a memory leak. By constructing phases of our approach and 

manually tracing programs, we validate these test cases as well. In all these cases, we have not considered the 

API and global variables available for the whole code base. 

 

 

 
 

Figure 8. CWE401 sample program 

 

 

We analyzed all three test scenarios manually and looked at the following research questions to 

measure the effectiveness and efficiency of our approach. 

RQ1: How effective is our proposed approach in finding memory leaks? 

RQ2: How can memory leaks be located as precisely and with less complexity as possible? 

 

3.1.  Effectiveness and efficiency 

To gather the information required to study RQ1, we utilized the four separate programs. In our 

approach, each phase was developed as a separate module that was performed and independently tested for 

input and output. For efficiency, we focused on the following standalone programs, test suitcases, and 

verified CVE memory leaks. Table 2 shows the findings of our investigation as well as the number of leaks 

that were found. We observed that high proportion of precision for basic programs like LL, but at the same 

time precision ratio drops when we investigate large-scale programs for verification. Due to the program’s 

usage of dynamic files, which we did not take into account while evaluating it, the effectiveness percentage 

reduces. As a result, even though further study is required, we believe our findings to be positive. 

 

 

Table 2. Analysis of memory leak 
Application Size of Code (KLOC) # Functions / Test Cases Our Approach Precision % 

Present Found 

Program 1 150 6 3 3 100 % 

Program 2 250 10 6 5 83.34% 

Juliet Test Suit V3.0 - 2826 531 389 73.26% 
CVE-2021-44542 6K 255 2 1 50% 

 

 

3.2.  Precision and complexity 

We phased our approach to doing thorough research for RQ2. In our opinion, the two phases cross-

verify the same path when our new notation of SSFG identifies a memory leak along it, increasing the 

approach’s precision. Because we carried out each phase independently on each module, we could have lost 

some path verification and program correctness. We lost some program memory since we utilized point-to as 

a baseline, which was not constructed for alias values. We take finite automata with an O(n) level of 

complexity, where n is the number of inputs that reduce the complexity of the approach. The approach has 

linear complexity as a result. Precision is provided via path matching with inputs. It claims that finding a 

memory leak in programs is made simple and efficient using the approach we proposed. 
 

 

4. CONCLUSION  

We developed a novel memory leak detection approach to program representations in this paper. It 

locates leaks across an execution in addition to detecting them. The path to take a particular variable from 

source to sink is determined by the SSFG phase. We propose a phase-wise approach where we first identify a 
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memory leak in a software application and then verify it using the next two phases. The validity of our 

suggested approach is probably being challenged by the existing constrained analysis of it based on a small 

number of applications. In order to provide a reference set of practical applications to evaluate memory leak 

detection algorithms, we look at open-source applications that have already encountered memory leaks. Our 

approach has linear complexity, we also reduced its precision for the tested application of our result. In the 

future, we want to undertake our research using this group of applications, as well as brand-new ones with 

seeded memory flaws, alongside our industrial partner and college students. 
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