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 Due to the instantaneous variation in wind speed, it is necessary to identify 

the optimal rotational speed that ensures maximum energy efficiency and 

system stability. We proposed a controller based on the Lyapunov theorem 

to extract the maximum power from wind speed and to ensure the overall 

stability of the controlled system under random operating conditions 

imposed by wind speed and parameter variations. The control of the Tip 

speed ratio is based on the Lyapunov theorem (TSR_LT), which is a 

controller based on Lyapunov's theory and the definition of a positive, 

energetic function, to ensure the stability of the system being controlled, the 

dynamics of this function must be negative. The viability of this work is 

demonstrated by MATLAB-based mathematical and simulation models and 

a comparison with the results obtained using proportional integral (PI) 

controller-based tip speed ratio control (TSR_PI controller). The simulation 

results demonstrate the controller's effectiveness. 
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1. INTRODUCTION 

Renewable energy has become one of the most promising energy sources as a result of the 

advancements made in semiconductor technology and modern control techniques over the past few decades. 

Wind energy is one of the best renewable energy sources. As renewable energy becomes more prevalent, 

there is a growing interest in intelligently controlling wind turbines or wind plants to reduce the cost of wind 

energy. This can be accomplished by positioning the wind turbines to extract more wind energy, which is the 

focus of ongoing research. 

In order to maintain the optimal blade tip speed ratio in order to achieve the maximum wind energy 

under both low and high wind speeds, a number of control strategies have been proposed over the past 

decade, the wind turbine Zhang et al. [1] proposed the fuzzy logic controller to control the wind wheel's 

rotation moment and the generator's reverse moment, Zhang et al. [2] Utilized the fuzzy logic controller to 

control the individual pitch angle of the turbine in order to guarantee a higher value for the power coefficient 

Cp, and thus the high aerodynamic torque. A new pitch controller based on the theory of generalized 

predictive control is proposed in Zhang et al. [3] to improve the quality of variable speed constant frequency 

power output in wind turbines. For maximum energy extraction from variable speed wind turbines, Calderaro 
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et al. [4] proposed a data-driven design methodology able to generate a Takagi–Sugeno–Kang (TSK) fuzzy 

model, combined with genetic algorithms (GA) and recursive least-squares (LS) optimization methods for 

model parameter adaptation. Matthew and Saravanakumar [5] proposed a nonlinear controller, namely 

double integral sliding mode controller (DISMC), for the single mass model of a wind turbine at partial load 

region (below rated wind speed) to address the issue of optimal power extraction for variable-speed wind 

energy conversion systems (VSWECS) at partial load. Ullah et al. [6] proposed the linear active disturbance 

rejection control to control the output power and rotor speed of the wind turbine for variable pitch and 

variable speed wind turbine. Arya and Dewan [7] applied the H-infinity controller for speed control of 

variable speed wind turbine to solve the issue of the variation in rotor speed caused by the load charge. To 

achieve precise pitch control, the adaptive backstepping pitch angle control for wind turbines based on a 

servo-valve-controlled hydraulic motor was proposed in Yin et al. [8]. 

The proposed controller that is based on a Lyapunov theorem (the TSR_ LT controller) has as its 

goal the extraction of the maximum amount of power available from the wind. The proposed controller is 

primarily based on the definition of error speed, which is the difference between the optimal speed and the 

generator speed. This is done to ensure that the error will converge toward zero and that the system will be 

stable as a whole. It is essential to make certain that the Lyapunov energy function has a negative value by 

performing an action on the electromagnetic torque, which acts as a substitute for a command virtually. 

The remaining sections are organized as: The modelling of the system is presented in section 2. The 

theory of turbine control and the proposed controller applied to our system were presented in section 3. The 

simulation results obtained and the discussion of these results were presented in section 4, and we concluded 

this work in section 5. 

 

 

2. MODELING OF SYSTEM  

2.1. Mathematical model for wind turbine 

The wind power is converted into aerodynamic power and aerodynamic torque according to the 

Betz's law [9]–[11]. The aerodynamic power is given by (1). 

 

𝑃𝑎𝑒𝑟 =
1

2
𝐶𝑝(𝜆, 𝛽)𝜌𝜋𝑅2𝑉3 (1) 

 

where 𝑉 is the wind speed, 𝜌air density, tip speed ratio area of the turbine blades in m2, wind turbine radius, 

and power coefficient.  

The power coefficient 𝐶𝑝(𝜆, 𝛽)
 
can be represented by (2) [12]. 

 

{
𝐶𝑝(𝜆, 𝛽) = 𝑐1 (

𝑐2

𝜆𝑖
− 𝑐3𝛽 − 𝑐4) 𝑒

𝑐5
𝜆𝑖 + 𝑐6𝜆

1

𝜆𝑖
=

1

𝜆+0.08𝛽
−

0.035

𝛽3+1

 (2) 

 

The tip speed ratio 𝜆. It is given by (3) [13], [14].  

 

 𝜆 =
𝑅Ω𝑡

𝑉
 (3) 

 

where Ω𝑡  is the turbine shaft speed. 

The turbine torque is the ratio of the aerodynamic power to the turbine shaft speed: 

 

𝑇𝑒𝑎𝑟 =
𝑃𝑎𝑒𝑟

Ω𝑡
=

1

2𝜆
𝐶𝑝(𝜆, 𝛽)𝜌𝜋𝑅3𝑉2 (4) 

 

The mechanical equation of the generator is given as (5) [15]: 

 

𝑗
𝑑Ω𝑔

𝑑𝑡
= 𝑇𝑔 − 𝑇𝑒𝑚 − 𝑓𝑐Ω𝑔 (5) 

 

where 𝑇𝑒𝑚 is the electromagnetic torque, 𝑗
 
is the total moment of inertia and 𝑓𝑐 is the coefficient of viscous 

friction, Ω𝑔
 
is the generator shaft speed, and 𝑇𝑔 is the generator torque. Where the shaft speed and torque of 

the generator are given by (6). 
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𝑇𝑔 =
𝑇𝑎𝑒𝑟

𝐺
  

Ω𝑔 = 𝐺Ω𝑡
  

(6) 

 

From (4), it is observed that the aerodynamic torque mainly depends on the value of the power 

coefficient 𝐶𝑃 and the wind speed 𝑉 So for each wind speed there is only one maximum torque and 

consequently only one maximum power point this point is configured by the 𝐶𝑃
𝑚𝑎𝑥 and optimal 𝜆𝑜𝑝𝑡; this can 

be seen in the nonlinear torque-speed characteristic curve of a turbine shown in Figures 1 and 2. From  

Figure 1, we can see that for each wind speed, there is a maximum point. Two quantities define this ultimate 

point C_P^max and λ_opt, this can be seen that in the Figure 2, the objective of the control to reach these 

points is to extract the total amount of power available from the wind. 

 

 

 
 

Figure 1. Torque-speed characteristic for different wind speeds 

 

 

 
 

Figure 2. Power coefficient versus tip speed ratio 

 

 

3. TURBINE CONTROL 

There are numerous control techniques utilized to reach the maximum power point (MPPT). These 

control techniques include: tip speed ratio and optimal torque control. In this field, there are several literature 

searches done [10], [16]–[18].  

 

3.1. Tip speed ratio control 

The tip speed ratio (TSR) control method requires maintaining the TSR at an optimal value, to 

extract the maximum power in the wind speed [15], [19]–[21]. This method relies on the knowledge of wind 

speed and turbine is required, in order to keep the turbine operating in the maximum power point, Figure 3 

represent the Tip speed ratio control method. 

 

 

 
 

Figure 3. Tip speed ratio control [22] 
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3.2. Optimal torque control 

This control is based on the calculation of an optimal reference torque 𝑇𝑜𝑝𝑡. According to the 

optimal 𝜆𝑜𝑝𝑡 and the 𝐶𝑃
𝑚𝑎𝑥, the only variable in the reference torque is the wind speed. The error between this 

torque 𝑇𝑜𝑝𝑡  and the generator torque 𝑇𝑔 is regulated via a regulator Figure 4. Several regulators are used in 

the literature [19], [22]–[26]. 

 

 

 
 

Figure 4. Optimal torque control [22] 

 

 

3.3. Proposed controller design 

The speed error can be defined as (7): 

 

𝑒 = Ω𝑔𝑟𝑒𝑓 − Ω𝑔 (7) 

 

where the reference speed is given by (8): 

 

Ω𝑔𝑟𝑒𝑓 =
𝜆𝑜𝑝𝑡𝑉

𝑅
 (8) 

 

From (5) and (8), the dynamic speed error is defined as (9). 

 

𝑒 =
𝜆𝑜𝑝𝑡𝑉

𝑅
−

1

𝑗
(𝑇𝑔 − 𝑇𝑒𝑚 − 𝑓𝑐Ω) (9) 

 

The proposed Lyapunov function is defined as (10). 

 

𝑉 =
1

2
𝑒2 (10) 

 

The Lyapunov function's derivative can be calculated using (9): 

 

𝑉 = 𝑒 [
𝜆𝑜𝑝𝑡𝑉

𝑅
−

1

𝑗
(𝑇𝑔 − 𝑇𝑒𝑚 − 𝑓𝑐Ω)] (11) 

 

To ensure the system's stability, the proposed Lyapunov function is defined as positive; it is 

necessary to ensure the function's negativity by selecting the optimal virtual control [27]. 

In this case, the virtual control is electromagnetic torque: 

 

𝑇𝑒𝑚 =
−𝑗𝜆𝑜𝑝𝑡𝑉

𝑅
+ 𝑇𝑔 − 𝑓𝑐Ω − 𝑗𝑘𝑒 (12) 

 

where is the constant positive gain. To justify the system's stability according to the Lyapunov theorem, 

the dynamic of the Lyapunov function must be negative. 

If we replaced the (12) into (11), we have:  

 

𝑉 = −𝑘𝑒2 ≤ 0 (13) 

 

From (13), we can say that the system is stable. Figure 5 represents the proposed controller. 

k
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Figure 5. WFSG model and control structure with select mode 

 

 

4. SIMULATION RESULTS 

The proposed controller's simulation was carried out in the MATLAB Simulink environment. The 

proposed TSR LT controller's speed regulation performance will be compared to the TSR PI controller in this 

section. The goal of this regulation is to extract as much wind energy as possible in order to generate as much 

electricity as possible. In this regard, the wind turbine speed must be continuously adjusted in response to 

wind speed variations. The wind speed profile is represented in Figure 6 with 14% and 16% density. Table 1 

lists the wind energy conversion systems (WECS's) parameters. 

 

 

Table 1. Parameters of turbine and permanent magnet synchronous generator (PMSG) 
Turbine PMSG 

𝜌 = 1.22𝐾𝑔/𝑚3 𝑃𝑠𝑛 = 1.5 𝑀𝑊 

𝑅 = 35.35𝑚 2𝑃 = 80 

𝛽 = 0° 𝑅𝑠 = 3.17𝑚Ω 

𝐺 = 70 𝐿𝑠 = 3.7𝑚𝐻 

 𝜙𝑓 = 7.0172𝑊𝑏 

 

 

 
 

Figure 6. windspeed profile with the 14% and 16% turbulence intensity 
 

 

4.1.  Test I 

Figures 7(a), 7(b) and 8(a), 8(b) show the simulation results for the TSR PI and TSR LT controllers 

for the 14 percent density wind speed profile, and Figures 9(a), 9(b) and 10(a), 10(b) show the simulation 

results for the 16 percent density wind speed profile. Figures 7(a), 8(a), 9(a), 10(a), 7(b), 8(b), 9(b), and 10(b) 

represent the power coefficient and tip speed ratio, respectively. We can see from these figures that the 
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commands TSR PI and TSR LT keep the system running at maximum power with different time responses 

between the controls. 

The generator speed is shown in Figures 7(c), 8(c), 9(c), and 10(c). In the two proposed controllers, 

TSR PI and TSR LT, the generator speed takes the same form as the optimum speed, with excellent tracking 

of optimum speed in the TSR LT controller. Figures 7(d), 8(d), 9(d), and 10(d) depict generator torque and 

aerodynamic torque for wind speeds of 14 percent density, 16 percent density, and 18 percent density, 

respectively. The generator torque and aerodynamic torque are shown in Figures 7(e), 8(e), 9(e), and 10(e). 

The generator torque is adapted to the aerodynamic torque variation, as shown in the figures. Figures 7(f), 

8(f), 9(f), and 10(f) show how the generator torque is proportional to the aerodynamic power, which converts 

to an aerodynamic torque Figure 10(f). 

 
 

  
(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

 

Figure 7. Wind turbine generator system (WTGS) performance based on 14% turbulence intensity wind 

speed in TSR_LT controller; (a) power coefficient, (b) tip speed ratio, (c) generator speed, (d) generator 

torque, (e) aerodynamic torque, and (f) aerodynamic power  

 

 

  
(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

 

Figure 8. WTGS performance based on 14% turbulence intensity wind speed in TSR_PI controller; (a) power 

coefficient, (b) tip speed ratio, (c) generator speed, (d) generator torque, (e) aerodynamic torque, and  

(f) aerodynamic power  
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(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

 

Figure 9. WTGS performance based on 16% turbulence intensity wind speed in TSR_LT controller;  

(a) power coefficient, (b) tip speed ratio, (c) generator speed, (d) generator torque, (e) aerodynamic torque, 

and (f) aerodynamic power  

 

 

  
(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

 

Figure 10. WTGS performance based on 16% turbulence intensity wind speed in TSR_PI controller;  

(a) power coefficient, (b) tip speed ratio, (c) generator speed, (d) generator torque, (e) aerodynamic torque, 

and (f) aerodynamic power  

 

 

From Figures 11 and 12, we compare the critical point 𝐶𝑃
𝑚𝑎𝑥 and 𝜆 for the two winds speed profiles, 

16% and 14%, in the two controllers, tip speed ratio-proportional integral (TSR_PI) and tip speed  

ratio-Lyapunov theorem (TSR_LT). From the results obtained, we notice that the TSR_LT controller gives 

good performance in maximum power point tracking, which justifies good maintenance and stability of 𝐶𝑃 its 

value of 𝐶𝑃
𝑚𝑎𝑥 = 0.48 and 𝜆 = 8.1 for any wind speed. 
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Figure 11. WTGS performance based on 14% turbulence intensity wind speed 

 

 

  
 

Figure 12. WTGS performance based on 16% turbulence intensity wind speed 

 

 

5. CONCLUSION  

To operate the wind energy conversion system based on the Lyapunov theorem, we proposed a tip 

speed ratio control based on a permanent synchronous generator at the maximum power point and ensure the 

system's overall stability under all operating conditions. In comparison to a traditional PI controller, the TSR 

LT controller reached the maximum power point quickly and has good stability for a wide range of wind 

speed densities. Based on the simulation results and a comparison with the PI controller-based tip speed ratio 

control, we concluded that the Lyapunov theorem-based tip speed ratio control is very efficient, and we 

recommend using artificial intelligence in future work. 
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