
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 13, No. 2, April 2023, pp. 1773~1781

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i2.pp1773-1781  1773

Journal homepage: http://ijece.iaescore.com

Software aging prediction – a new approach

Shruthi Parashivamurthy1, Nagaraj Girish Cholli2
1Department of Computer Science and Engineering, Global Academy of Technology, Bengaluru, India

2Department of Information Science and Engineering, RV College of Engineering, Bengaluru, India

Article Info ABSTRACT

Article history:

Received Feb 16, 2022

Revised Sep 16, 2022

Accepted Oct 13, 2022

 To meet the users’ requirements which are very diverse in recent days,

computing infrastructure has become complex. An example of one such

infrastructure is a cloud-based system. These systems suffer from resource

exhaustion in the long run which leads to performance degradation. This
phenomenon is called software aging. There is a need to predict software

aging to carry out pre-emptive rejuvenation that enhances service

availability. Software rejuvenation is the technique that refreshes the system

and brings it back to a healthy state. Hence, software aging should be
predicted in advance to trigger the rejuvenation process to improve service

availability. In this work, the k-nearest neighbor (k-NN) algorithm-based

new approach has been used to identify the virtual machine's status, and a

prediction of resource exhaustion time has been made. The proposed
prediction model uses static thresholding and adaptive thresholding methods.

The performance of the algorithms is compared, and it is found that for

classification, the k-NN performs comparatively better, i.e., k-NN showed an

accuracy of 97.6. In contrast, its counterparts performed with an accuracy of

96.0 (naïve Bayes) and 92.8 (decision tree). The comparison of the proposed

work with previous similar works has also been discussed.

Keywords:

Algorithm

Machine learning

Prediction

Rejuvenation

Software aging

This is an open access article under the CC BY-SA license.

Corresponding Author:

Shruthi Parashivamurthy

Department of Computer Science and Engineering, Global Academy of Technology

Bengaluru, India

Email: shrutip@gat.ac.in

1. INTRODUCTION

The performance degradation caused by software aging has hit various types of computing systems

including virtualized cloud systems [1], web servers [2], [3], clusters [4] and online transaction processing

systems [5]. The software aging concept has also impacted spacecraft systems [6] and military systems [7].

The impact may be loss of life in critical applications. Software aging happens because of unreleased file

handles, data corruption, memory fragmentation, memory leaks, storage space fragmentation and round-off

error accumulation. Software aging reduces the performance of cloud-based systems because of the

complexity with which they are built. The system consists of servicing components and an execution

environment. The system’s boundary separates it from its environment, but its services are towards the

surrounding environment [8]. In complex systems like the cloud, various levels like application level or

operating system are prone to software aging [9]. Operating system-level effects are non-released memory,

file handles, and sockets. Application-level effects include non-terminated threads, round-off errors, or data

file corruption. It is very important to estimate the optimal time to trigger the rejuvenation to mitigate the

software aging effects in cloud systems. Researchers have attempted to predict the time of software aging

which can be seen in the previous works. Researchers have used threshold-based, statistics-based and

machine learning approaches to estimate the software aging time. It is possible to predict the failure time of

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 1773-1781

1774

the system using machine learning algorithms. The various aging indicators used to estimate resource

exhaustion include memory and central processing unit (CPU) usage [10].

In this work, software aging prediction has been made using a new approach wherein virtual

machine’s current resource utilization status is fed to a machine learning model that classifies the virtual

machines as healthy, aging-prone and aged using the k-nearest neighbor (k-NN) algorithm based new

method. Static thresholding and adaptive thresholding methods have been used for aging prediction. Once the

virtual machines are classified, rejuvenation is to be initiated for aging-prone and aged virtual machines. The

rejuvenation process cleans up the system’s internal state and brings the system back to its original state by

removing the accumulated errors. The time when the rejuvenation is initiated is called rejuvenation trigger

time. The time to trigger the rejuvenation has been forecasted using the new method in this work.

2. RELATED WORK

Based on the type of algorithm used, machine learning approaches are categorized into two types:

classification approaches and regression approaches. In the classification method, the system status is

classified as either stable or unstable. Forecasting of system failure can be done using a regression method.

The procedure has been explained in [10]. Yan and Guo [11] developed a mechanism that forecasts software

aging using a machine learning algorithm. Data was collected from a live commercial web server and the

collected data was pre-processed. To identify a subset of the model parameters set, a feature selection

algorithm was applied. A time series model was used for the prediction of selected parameters. To predict

software aging, the model was built using machine learning algorithms. Sensitivity analysis was done to

analyze how heavily outcomes depend on input variables. IIS webserver was used to apply the method.

Experiment results were analyzed and found that the proposed method predicts software aging in the early

phase of the system development life cycle.

Alonso et al. [12] performed a comparison of various regression algorithm families like linear

regression, regression trees and hybrids. The researchers compared these algorithms in various scenarios and

various aging concepts involved. The outcome of the experimentation indicated that phenomena performed

better in the hybrid version i.e., MP5 between linear regression and decision tree. Due to the bugs in the

software like unreleased threads or memory leaks, resource exhaustion was caused leading to aging

phenomena. The model included linear piecewise models (i.e., a reasonable number of linear patches)

capturing various aging slopes and speeds. In one of the previous works, three machine learning algorithms

were used along with time series models for the prediction of software aging in web applications [13]. The

three machine learning algorithms used are decision trees, naïve Bayes classifier and neural network model.

The researchers built the models relating several system variables to aging trends like throughput and number

of connections. This was based on the observation that aging phenomena can be approximated by making use

of the piecewise linear model. The models in this work were trained using samples of data that were collected

in preliminary experiments. The model built was able to predict the time-to-exhaustion (TTE) of system

resources under different conditions.

Alonso et al. [14] had compared the large set of families like decision tree, linear discriminant

analysis/quadratic discriminant analysis (LDA/QDA), random forest, support vector machines, naïve Bayes

and k-NN for prediction of state in the context of a three-tier J2EE system. Andrzejak and Silva [15]

compared four classification methods: ZeroR, decision tree, naïve Bayes, and support vector machines. These

algorithms are compared under constant software aging injection rate by considering one aging indicator

metric i.e., memory consumption. The results indicated that all classification methods performed similarly.

Jia et al. [16] used multiple linear regression algorithms to do a detailed analysis to predict web

server parameters. In the first step, the system was pressurized using a pressure testing tool and collected data

was pre-processed. The resource consumption trend was generated using the time series model in the second

step. In the third step, the feature selection algorithm was used to select the best subset to be used as input

parameters of the algorithm. In the fourth step, analysis was done using multiple linear regression and the

aging process prediction. In the final stage, the algorithm feasibility is evaluated using evaluation metrics.

The results indicated that this algorithm could predict the aging process in the allowable error range.

Liu and Meng [17] designed a method for predicting software aging which used an artificial bee

colony algorithm. This achieves better prediction accuracy as the back propagation neural network

optimization is achieved. The experiment results showed that the software aging prediction trend is more

accurate than the traditional BP neural network. The proposed method also has a faster convergence speed

and more prediction results which are more stable.

From the previous works, it can be observed that the concept of software aging is gaining

importance. Researchers are trying to predict the software aging time to trigger the rejuvenation to avoid its

impact. Similar works related to software aging prediction have been mentioned in the literature. There is a

Int J Elec & Comp Eng ISSN: 2088-8708 

 Software aging prediction – a new approach (Shruthi Parashivamurthy)

1775

scope for improvement or alternative methods to predict software aging. Considering these points, an attempt

has been made to find a new approach to predict software aging in the proposed work. The proposed k-NN

based method performs better compared to similar previous works.

3. MOTIVATION

The motivation to conduct this research originated since software aging is an emerging research area

and machine learning is an emerging technology trend. Contributing to the area of software aging and

research is satisfying work as this area is gaining momentum in recent years. The power of machine learning

algorithms can be applied to achieve the objective. As the usage of cloud-based applications is increasing, it

is the responsibility of the service provider to provide uninterrupted services to satisfy users. The inclusion of

a module that avoids the impacts of software aging on a platform on which the application is hosted will make

the service provider trustworthy. In this regard, the intended research helps cloud service providers also.

4. THE PROPOSED MODEL

Most of the services hosted on the cloud run in a virtualized environment. Virtualized environment

includes various layers such as physical hardware, virtual machine, virtual machine monitor and applications

running on a virtual machine. Figure 1 shows the typical cloud platform.

Figure 1. Typical cloud platform

The long-running applications on virtual machines suffer from software aging and hence there are

chances of affecting service availability. The resource consumption metrics are collected from various layers

of the virtualized environments on which cloud services are hosted to predict software aging. The metrics

chosen to collect are aging indicator metrics. Figure 2 provides information regarding aging indicators. The

metrics and justification for selecting these metrics are given.

Figure 2. Aging indicator metrics

As the response time of any application indicates the performance of the system, application

response time is one of the aging indicators usually considered in studies related to software aging. The most

important operating system resources are CPU and memory. The metrics indicating the usage percentage of

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 1773-1781

1776

these resources can also be considered as aging indicators. In this work, CPU consumption and memory

consumption metrics are used to build the prediction model. The prediction model has been built using the

following strategy. In this work, for the prototype, metrics collected from a virtual machine (VM) are used

and the same technique can also be applied to a virtual machine monitor.

a. The status of VM identification using the three methods

 Static threshold: In the live environment, previous data related to resource usage was captured to know

when the system was affected by software aging. CPU and memory usage metrics when the system failed

were considered as static threshold values. At a certain point in time, various VMs status and resource

utilization are captured to build the data set. The scatter graph is plotted using these values. The status of

VM is identified by finding the nearest neighbors.

 Adaptive threshold of CPU usage: The CPU usage history of k-NN is captured. Inter quartile range (IQR)

statistical method is applied to find the adaptive threshold. The labeling of nearest neighbors is done

based on the adaptive threshold value. The statuses are healthy, aging-prone, and aged.

 Adaptive threshold of memory usage: The memory usage history of k-NN is captured and IQR is applied

to find an adaptive threshold.

b. Prediction of software aging

 Once the aging-prone VMs are identified, the nearest aged neighbors are to be found.

 Resource utilization trend of aged VMs is found and based on this, prediction of time required for aging-

prone VMs to reach aged state is made.

Table 1 shows the steps followed for software aging prediction using k-NN based software aging prediction.

Table 1. Steps for software aging prediction using k-NN based method
No Step

1 Load the dataset which consists of CPU usage and Memory usage percentage.

2 Determine the value of K, which indicates chosen number of neighbors.

3 Calculate the Euclidian distance between the query example and the current point for each point in the dataset. Add this attribute

to the dataset.

4 Sort the dataset in ascending order of Euclidian distance (smallest to largest).

5 Pick the k number of rows from the sorted dataset.

6 Get the labels from selected k entries.

7 Return the mode of k labels.

8 Sort the CPU and memory utilization history of k points in the ascending order

9 Find the Median for CPU entries.

10 Identify Quartiles.

Before median it is Q1 and after median it is Q3.

11 Find Q1 and Q3

12 Subtract Q1 from Q3 to obtain the Interquartile range

IQR = Q3-Q1

13 Calculate MaxCPUThreshold = IQR3+s.IQR (s=1.5)

14 Calculate

CPU Utilization >=MaxCPUThreshold (status is aged)

CPU Utilization <=maxCPUThreshold and >=maxCPUThrshold - 10% (status is aging-prone)

CPU Utilization <=MaxCPUThreshold -10% (status is healthy)

15 Classify VMs as per status calculated in step 14 comparing with current CPU utilization

16 Calculate MaxMemThreshold = IQR3+s.IQR (s=1.5)

17 Classify VMs as per status calculated in step 14 comparing with current Memory utilization

18 For VMs with status = Aging-prone

 Find nearest k ‘aged’ VMs

End for

19 For each aged VM

 Identify the resource utilization trend.

 Find out the time taken for aged VM to reach the current status from aging-prone status.

End for

20 Find out the average time taken by k aged VMs to reach aged status from aging-prone status.

21 On the basis of obtained average time taken, forecast the status of aging-prone

In step 13, the value of s is taken as 1.5 for the following reason. When John Tukey was inventing

the box-and-whisker plot in 1977 to display the values, he picked 1.5×IQR as the demarcation line for

outliers [18]. This has worked well, so researchers have continued using that value ever since.

The concept has been implemented using Python scripting language. Python is being used by

researchers nowadays because of the various libraries it has that can support any type of research. Python

includes libraries and frameworks related to machine learning. It is platform-independent and has a wide user

community which makes it the first choice of research.

http://en.wikipedia.org/wiki/Box_plot

Int J Elec & Comp Eng ISSN: 2088-8708 

 Software aging prediction – a new approach (Shruthi Parashivamurthy)

1777

4.1. k-nearest neighbor algorithm

The k-NN algorithm is a supervised machine learning algorithm. It is applied to solve classification

problems. The usefulness of the k-NN algorithm has been proved by the number of applications built based

on this machine learning algorithm. In this research work, the k-NN algorithm has been used to classify the

entity of virtualized environment as aged, aging-prone, or healthy.

4.2. Cluster creation

Figure 3 shows the sample dataset used for plotting the scatter graph. The scatter graph is plotted

using the dataset to form the cluster. The rows used also included outliers. Outliers, in this work, are the

aging indicator metrics that are usually not in the range of other points. It happens because of an unexpected

spike in resource usage which is actually not a result of software aging. Outliers have been handled. Missing

values are filled with suitable values. Clusters are formed based on the x and y values, in this case, CPU and

memory consumption status. If the resource consumption reaches 80%, it is considered aged because service

delivery will be hit. If one of the CPU or memory values reaches 70%, it is considered aging prone. The

static threshold defined is based on our observation. This is also found in previous works [19].

The scatter graph has been plotted to visualize the clustered formed. Each of the clusters indicates a

group of VMs with similar status. Figure 4 shows the scatter graph. The scatter graph has been plotted to

visualize the clustered formed. Each of the clusters indicates a group of VMs with similar status. The status

can be healthy, aging-prone, or aged. The different clusters in the scatter graph shown here indicate groups of

entities belonging to various statuses: aged, aging-prone, and healthy.

Figure 3. Sample dataset 1 Figure 4. Scatter graph-clusters

4.3. Query point

Once the model is built, the status of any VM can be obtained by providing CPU and memory

utilization percentages. This input is called query point. The nearest neighbors are found by calculating

Euclidian distance. The formula for calculating the Euclidian distance is given in (1):

d(p, q) = √(q1 – p1)
2

+ (q2 – p2)
2
 (1)

where p1 and p2 are cartesian coordinates of the point p and q1 and q2 are the Cartesian coordinates of the

point q, d is the distance between p and q. (p and q are points for which the Euclidian distance is calculated).

After calculating the Euclidian distance, the nearest neighbors are found. The status of the majority of the

neighbors indicates the status of the requested VM. The model which is built based on the k-NN algorithm

returns the status as one of the three options: healthy, aging-prone, or aged. The value of k is to be provided

which means the number of neighbors to be considered.

4.4. Adaptive threshold method

In this method, the resource usage history of k-nearest neighbors is captured. An IQR statistical

method is applied to find the adaptive threshold. The labeling of nearest neighbors is done based on the

adaptive threshold value. The statuses are healthy, aging-prone, and aged. Figure 5 shows the sample dataset.

For example, there are seven data points. These points are the resource consumption percentages of previous

days of a virtual machine (represented as T1 to T7 in the program). Table 2 shows the values.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 1773-1781

1778

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 = 6.8 – 6.0 = 0.8 (2)

𝑈𝑝𝑝𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑄3 + 𝑠. 𝐼𝑄𝑅 (3)

𝑈𝑝𝑝𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 6.8 + (1.5 𝑋 0.8) (4)

𝑈𝑝𝑝𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 6.8 + 1.2 = 8` (5)

The obtained status is tabulated, and the query point is labeled accordingly as shown in Table 3. The status of

VM is calculated using three methods: static threshold, adaptive threshold using CPU metric, and adaptive

threshold using memory usage metric.

Depending on the mode of k points in three evaluations, query point label is done. If three statuses

are different, then static threshold status is considered. The screenshot of the program execution has been

given in Figure 6.

Figure 5. Sample dataset 2

Table 2. Resource consumption values
Data Points 5.2, 6.0, 6.2, 6.4, 6.7, 6.8, 7

Q2 6.4

Q1 6.0

Q3 6.8

Range: 0 (min)-10(max) indicate percentage of consumption

Table 3. Status of query point from three methods
Nearest

neighbors

Status as per static

threshold

Status as per current CPU utilization

(adaptive threshold)

Status as per current memory utilization

(adaptive threshold)

K1 Aged Aged Aged

K2 Aging prone Healthy Aging prone

K3 Aged Aging prone Aged

K4 Aging prone Aged Aging prone

K5 Aging prone Aged Aging prone

Figure 6. Output indicating the status

4.5. Prediction of software aging

As mentioned in the algorithm, the nearest k-aged VMs are identified. Here the procedure for one

aged VM is given. Resource usage of aged VM is found which is previous days’ data before it gets aged.

Resource usage data is tabulated in Table 4.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Software aging prediction – a new approach (Shruthi Parashivamurthy)

1779

Table 4. Resource usage of one virtual machine
Time CPU Usage Average Status

Day 1 6.2 5.7 Healthy

Day 3 5.2

Day 5 6.0 6.35 Healthy

Day 7 6.7

Day 9 7 6.9 Healthy

Day 11 6.8

Day 13 6.4 6.5 Healthy

Day 15 6.6

Day 17 7.0 7.1 Aging-prone

Day 19 7.2

Day 21 7.6 7.8 Aging-prone

Day 23 8

Day 25 7.4 7.65 Aging-prone

Day 27 7.9

Day 29 8.0 8.15 Aged

Day 31 8.3

Range: 0 (min)-10(max) indicate percentage of consumption

Hence, current aging-prone VMs take 6 days to become aged VM. Figure 7 shows the screenshot of

the program execution. As per the trend observed in the nearest 3 aged VMs, identify the time required for

aged VM to become aged from aging-prone. Table 5 shows the resource usage of 3 virtual machines.

Figure 7. Prediction part of random execution

Table 5. Resource usage of 3 virtual machines
Aged VM No of days taken Average days

VM-1 5

6 VM-2 7

VM-3 6

4.6. Rejuvenation

Software rejuvenation is the technique that refreshes the system and brings it back to a healthy state.

The rejuvenation process is triggered for aging-prone VMs to improve service availability. Actions are

triggered based on classification as depicted in Table 6.

Table 6. Aging status and actions
VM Status Action taken Remarks

Healthy Rejuvenation not required Observation continues.

Aging-prone Forecasting is done to identify resource exhaustion time. Rejuvenation is triggered before resource exhaustion

happens.

Aged Rejuvenation is triggered immediately. The system returns to a healthy state after rejuvenation.

4.7. Evaluation of the proposed method

As the work is k-NN based new approach, the performance of the k-NN classifier has been

compared with similar classifiers decision tree and naïve Bayes for the same data set. The result indicates that

the k-NN algorithm performs better than the decision tree. The execution result is tabulated in Table 7. Details

of previous research works for software aging prediction have been tabulated in Table 8. It can be observed that the

proposed model of software aging prediction addresses the drawbacks in the previous works.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 1773-1781

1780

Table 7. Performance comparison
Algorithm Data set size Accuracy

k-nearest neighbor 115 97.6

Naïve Bayes 115 96.0

Decision tree 115 92.8

Table 8. Comparison of similar research works
Researchers The highlight of the work The proposed model

Fang et al.

[20]

Instead of fixed thresholds, the method used in this work

regularly regulates the thresholds by taking feedback

information in the running process into account.

Recommended adaptive threshold for aging detection

Adaptive thresholding is a part of the overall software

aging prediction strategy in this research work.

Ahamad [21] Found reasons for aging, effects of software aging.

Concluded that it is impossible to stop software aging,

but it is possible to reduce its speed and progress.

The software aging prediction method employed in this

work enables rejuvenation to reduce the speed and

progress of aging accumulation.

Liu et al.

[22]

A monitoring agent in every VM collects metrics; CPU

usage and free memory available to detect the aging

severity.

It is an intrusive method.

The tool used for collecting the metrics related to software

aging is non-intrusive in this work. NMS tool captures

metrics without adding overhead.

Yan [23] Operating system parameters and database parameters in

the running phase are collected using a built-in windows

counter without disturbing the running system.

Used IIS Webserver which is platform specific.

The model used in this work can be deployed on any

platform like Windows or Linux. It is not platform-

specific.

Cui et al.

[24]

The rate of aging is more in virtual machines. The proposed model is built for a cloud platform which is

a virtualized environment. It justifies the chosen platform.

Umesh et al.

[25]

Software aging forecasting using time series model.

Not recommended method if there is a spike in resource

usage.

The proposed model uses static and adaptive techniques

which eliminates this concern.

Umesh and

Seinivasan

[26]

Used different methods for forecasting.

Weightage given to different techniques is not acceptable

in all scenarios.

The model proposed in this work improves the prediction

accuracy.

5. CONCLUSION

In this work, an attempt has been made to forecast software aging. During the testing phase of

software development, the application can be tested for all types of probable issues, but a problem like

software aging must be dealt with during runtime only. It cannot be avoided; it can only be managed. As the

accumulation of errors, lock contention, and data corruption, lead to this problem, the impact can be seen as

the owner’s loss as the service provider will lose the customers. Also, reduced performance and decreased

reliability are other negative impacts of software aging. Even if all proactive measures are taken, the problem of

software aging cannot be prevented, but it can only be managed. The only available solution is to predict the future

status and pre-emptively rejuvenate the system. The aging forecasting is done using the new method. This

research work can be one of the considerable contributions to the area of software aging and rejuvenation

REFERENCES
[1] D. J. Dean, H. Nguyen, and X. Gu, “UBL: unsupervised behavior learning for predicting performance anomalies in virtualized

cloud systems,” in Proceedings of the 9th international conference on Autonomic computing - ICAC ’12, 2012, Art. no. 191. doi:

10.1145/2371536.2371572.

[2] J. Zhao, K. S. Trivedi, M. Grottke, J. Alonso, and Y. Wang, “Ensuring the performance of Apache HTTP server affected by

aging,” IEEE Transactions on Dependable and Secure Computing, vol. 11, no. 2, pp. 130–141, Mar. 2014, doi:

10.1109/TDSC.2013.38.

[3] H. Meng, X. Hei, J. Zhang, J. Liu, and L. Sui, “Software aging and rejuvenation in a J2EE application server,” Quality and

Reliability Engineering International, vol. 32, no. 1, pp. 89–97, Feb. 2016, doi: 10.1002/qre.1729.

[4] V. Castelli et al., “Proactive management of software aging,” IBM Journal of Research and Development, vol. 45, no. 2,

pp. 311–332, Mar. 2001, doi: 10.1147/rd.452.0311.

[5] K. J. Cassidy, K. C. Gross, and A. Malekpour, “Advanced pattern recognition for detection of complex software aging

phenomena in online transaction processing servers,” in Proceedings International Conference on Dependable Systems and

Networks, 2002, pp. 478–482. doi: 10.1109/DSN.2002.1028933.

[6] E. Marshall, “Fatal error: How patriot overlooked a scud,” Science, vol. 255, no. 5050, Art. no. 1347, Mar. 1992, doi:

10.1126/science.255.5050.1347.

[7] A. Avritzer, R. G. Cole, and E. J. Weyuker, “Methods and opportunities for rejuvenation in aging distributed software systems,”

in 2008 IEEE International Conference on Software Reliability Engineering Workshops (ISSRE Wksp), Nov. 2008, pp. 1–6, doi:

10.1109/ISSREW.2008.5355518.

[8] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software aging,” in 2008 IEEE International Conference on

Software Reliability Engineering Workshops (ISSRE Wksp), Nov. 2008, pp. 1–6. doi: 10.1109/ISSREW.2008.5355512.

[9] A. Gupta, B. R. Mohan, S. Sharma, R. Agarwal, and K. K., “Prediction of software anomalies using time series analysis – a recent

study,” International Journal on Advanced Computer Theory and Engineering, vol. 2, no. 3, pp. 101–108, 2013.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Software aging prediction – a new approach (Shruthi Parashivamurthy)

1781

[10] R. Pietrantuono, J. Alonso, and K. Vaidyanathan, “Measurements for software aging,” Handbook of Software Aging and

Rejuvenation, pp. 73–90, 2020.

[11] Y. Yan and P. Guo, “A practice guide of software aging prediction in a web server based on machine learning,” China

Communications, vol. 13, no. 6, pp. 225–235, Jun. 2016, doi: 10.1109/CC.2016.7513217.

[12] J. Alonso, J. Torres, J. L. Berral, and R. Gavalda, “Adaptive on-line software aging prediction based on machine learning,” in

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN), Jun. 2010, pp. 507–516, doi:

10.1109/DSN.2010.5544275.

[13] J. P. Magalhaes and L. M. Silva, “Prediction of performance anomalies in web-applications based-on software aging scenarios,”

in 2010 IEEE Second International Workshop on Software Aging and Rejuvenation, Nov. 2010, pp. 1–7, doi:

10.1109/WOSAR.2010.5722095.

[14] J. Alonso, L. Belanche, and D. R. Avresky, “Predicting software anomalies using machine learning techniques,” in 2011 IEEE

10th International Symposium on Network Computing and Applications, Aug. 2011, pp. 163–170, doi: 10.1109/NCA.2011.29.

[15] A. Andrzejak and L. Silva, “Using machine learning for non-intrusive modeling and prediction of software aging,” in NOMS 2008

- 2008 IEEE Network Operations and Management Symposium, 2008, pp. 25–32. doi: 10.1109/NOMS.2008.4575113.

[16] S. Jia, C. Hou, and J. Wang, “Software aging analysis and prediction in a web server based on multiple linear regression

algorithm,” in 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), May 2017,

pp. 1452–1456. doi: 10.1109/ICCSN.2017.8230349.

[17] J. Liu and L. Meng, “Integrating artificial bee colony algorithm and BP neural network for software aging prediction in IoT

environment,” IEEE Access, vol. 7, pp. 32941–32948, 2019, doi: 10.1109/ACCESS.2019.2903081.

[18] Purplemath, “Interquartile Ranges & Outliers,” Purplemath.com. https://www.purplemath.com/modules/boxwhisk3.htm (accessed

Nov. 08, 2022).

[19] P. Kumar, Forecasting cloud resource utilization using time series methods. Degree Project in Computer Science and

Engineering, Stockholm, Sweden, 2018.

[20] Y. Fang, B.-B. Yin, G. Ning, Z. Zheng, and K.-Y. Cai, “A rejuvenation strategy of two-granularity software based on adaptive

control,” in 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC), Jan. 2017, pp. 104–109.

doi: 10.1109/PRDC.2017.23.

[21] S. Ahamad, “Study of software aging issues and prevention solutions,” International Journal of Computer Science and

Information Security, vol. 14, no. 8, pp. 307–313, 2016.

[22] J. Liu, J. Zhou, and R. Buyya, “Software rejuvenation based fault tolerance scheme for cloud applications,” in 2015 IEEE 8th

International Conference on Cloud Computing, Jun. 2015, pp. 1115–1118. doi: 10.1109/CLOUD.2015.164.

[23] Y. Yan, “A practice guide of predicting resource consumption in a web server,” Review of Computer Engineer Studies, vol. 2, no.

3, pp. 1–8, Sep. 2015, doi: 10.18280/rces.020301.

[24] L. Cui, B. Li, J. Li, J. Hardy, and L. Liu, “Software aging in virtualized environments: Detection and prediction,” in 2012 IEEE

18th International Conference on Parallel and Distributed Systems, Dec. 2012, pp. 718–719. doi: 10.1109/ICPADS.2012.111.

[25] I. M. Umesh, G. N. Srinivasan, and M. Torquato, “Software aging forecasting using time series model,” Indonesian Journal of

Electrical Engineering and Computer Science (IJEECS), vol. 8, no. 3, pp. 589–596, Dec. 2017, doi: 10.11591/ijeecs.v8.i3.pp589-

596.

[26] I. M. Umesh and G. N. Srinivasan, “Optimum software aging prediction and rejuvenation model for virtualized environment,”

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 3, no. 3, pp. 572–578, Sep. 2016, doi:

10.11591/ijeecs.v3.i3.pp572-578.

BIOGRAPHIES OF AUTHORS

Shruthi Parashivamurthy is an Information Science and Engineering graduate.

She also holds the M.Tech. degree in Computer Science and Engineering from VTU. She is
pursuing a Ph.D. under VTU in the area of software aging and rejuvenation. She presently

works as an assistant professor in the Department of Computer Science and Engineering,

Global Academy of Technology, Bengaluru, Karnataka. She has a total of 7 years of

experience in teaching and industry. She has published several papers in international journals.
She is active in research and a life member of the CSI society. She can be contacted at

shrutip@gat.ac.in.

Nagaraj Girish Cholli is a Computer Science and Engineering graduate. He also

holds the M.Tech degree in Computer Science & Engineering from IIT-Roorkee. He obtained

Ph.D. from VTU in the year 2016 in the area of software aging and rejuvenation. He presently

works as associate professor at the Department of Information Science and Engineering, R.V
College of Engineering, Bengaluru, Karnataka, India. He has a total of 14 years of experience

in teaching, research, and industry. He has published several research articles in international

journals and presented papers at conferences. He is active in research, has filed patents and

guiding several Ph.D. scholars. He is also a life member of ISTE and CSI society. He can be
contacted at nagaraj.cholli@rvce.edu.in.

https://orcid.org/0000-0002-2226-5611
https://scholar.google.com/citations?hl=en&user=nLtV_koAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57215743819
https://publons.com/wos-op/researcher/5374318/shruthi-p/
https://orcid.org/0000-0001-7409-8272
https://scholar.google.co.in/citations?user=kfgM8bwAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57202086135
https://publons.com/wos-op/researcher/2196170/nagaraj-g-cholli/

