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 Timber quality control is undoubtedly a very laborious process in the 
secondary wood industry. Manual inspections by operators are prone to 

human error, thereby resulting in poor timber quality inspections and low 

production volumes. The automation of this process using an automated 

vision inspection (AVI) system integrated with artificial intelligence appears 
to be the most plausible approach due to its ease of use and minimal 

operating costs. This paper provides an overview of previous works on the 

automated inspection of timber surface defects as well as various machine 

learning and deep learning approaches that have been implemented for the 
identification of timber defects. Contemporary algorithms and techniques 

used in both machine learning and deep learning are discussed and outlined 

in this review paper. Furthermore, the paper also highlighted the possible 

limitation of employing both approaches in the identification of the timber 
defect along with several future directions that may be further explored. 
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1. INTRODUCTION  

The term ‘timber’ has several connotations and is used synonymously with the term ‘lumber’ in 

many regions of the world. Timber most often refers to diverse species of wood of various sizes and 

categories, which enable it to be used widely as a fuel source, construction material, furniture, timber beams, 

and various other applications. Before the debut of automated vision inspection (AVI) in the wood industry, a 

conventional method involving human operators physically inspecting timber to identify and categorize 

defects was widely used in primary and secondary wood industries. Unlike AVI, manual inspections do not 

require a technical setup and they tend to provide less value for future development due to constant changes 

to standard operating procedures with regard to the discovered defects. However, due to uncontrolled 

deforestation, which has led to a decline in forest resources and a spike in timber costs, the majority of wood 

sector operators have decided to employ AVI to optimize resources and reduce production costs, while 

maintaining product quality. Besides, timber costs account for almost 70% of the overall production cost in 

the secondary wood industry compared to other costs, especially in the production of timber, followed by the 

constant rise in labor costs, which is aggravating the situation [1]. Nevertheless, wood industries need to find 

a solution to enhance timber processing so as to boost the yield of timber while maintaining the quality of 

wood products. Unlike other sectors that employ AVI, wood industries often delegate the task of examining 

timber to human operators, where such manual inspections can lead to human error, depending on the 

experience of the workers, the level of their skills, and their alertness [2]. Three-quarters of the judgement of 

the human operators were inaccurate, resulting in an absolute yield loss of nearly 16.1% from the overall 
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yield [3]. A related study on the ability of furniture rough mill workers to spot wood defects also showed that 

the precision of the human operators was capped at an average of 68%. A high production volume and 

repeated activities over a prolonged period of time will affect human operators, who are likely to become 

exhausted, depressed, and overwhelmed, resulting in low accuracy and poor quality of inspection [4]. In 

addition, one cause of concern is the number of well-trained inspectors in the current market environment, 

which continues to stagnate or decline gradually in contrast to the constant growth of the industry [5].  

The use of AVI is often emphasized to ensure the constant reliability of a product, while resolving 

current challenges that have resulted in yield losses due to inadequate inspections performed by human 

operators. Research found that compared to the traditional method of inspection, the AVI would be able to 

boost the accuracy of detection by 25%, thereby resulting in an increase of 5.3% in yield, which would mean 

cost savings for the average rough mill [6]. Automated timber grading has been proven to be more accurate 

and reliable than the conventional inspection approaches, which are claimed to be ineffective in improving 

timber resources [7]. In general, several studies have shown that AVI is more effective in identifying timber 

defects than human operators and is more reliable in the process of quality control, hence benefitting the 

secondary wood industry by increasing timber yields and production quality [8]. 

 

 

2. METHOD 

The detection and identification of defects are crucial in the manufacturing industry to ensure that a 

manufacturing process is under control and running smoothly [9]. Furthermore, human operators with prior 

experience in the field presently carry out these processes manually, and the implementation of the AVI is able 

to improve the autonomy of the manufacturing operation. Quality control with the assistance of the AVI is 

gaining more traction in the manufacturing industry, particularly in the secondary wood industry, due to its 

ability to improve the inspection process and the rate of production, while lowering labor costs for the 

manufacturer. The AVI is comprised of several segments known as image acquisition, image enhancement, 

segmentation, feature extraction and feature classification [10], while material handling is part of the hardware 

components of AVI that is used for material logistics, where the proper handling of materials is crucial for a 

steady material movement, vibration mitigation, and maintaining the correct speed throughout the acquisition 

of timber images. In addition, several subsystems such as sensors and lightings are involved in the processing, 

digitalization, and storage of image data. In general, the defect detection components are the first aspect of the 

inspection process, which involves determining the location of the timber defect. The discovered defect will 

then be processed by the defect identification components to determine the type of the defect, as well as its 

size and frequency. Furthermore, the defect identification and detection components serve as a guideline for 

the optimized cutting of the timber according to the discovered defect. This data will subsequently be used as 

the input for the timber grading component, which will grade the timber according to the rules defined by the 

production requirements.  

Despite the fact that AVI has been adopted in the wood industry since 1983, there are still ongoing 

research efforts to improve the inspection process in areas such as defect detection and identification, defect 

characterization, wood grading and integration of sensors into hardware components for the purpose of 

optimized cutting. With the arrival of Industry 4.0, there has been an increasing demand among industry 

players, particularly in manufacturing, for the defect identification process to be automated [11]. Hence, 

research into the development of low-cost systems using artificial intelligence and internet of things (IoT) 

technologies is the best approach to accommodate the needs of manufacturers. In the wood industry, any 

abnormality on timber surfaces that may reduce its strength, durability or appearance is considered as a defect. 

‘Natural’ defects occur during the growth of the trees, while ‘mechanical’ defects occur due to poor 

conversion, seasoning or handling during the processing and manufacturing of the timber. Aberrations with 

regard to the texture, color, and shape of the timber are the typical characteristics that are examined during a 

visual surface inspection for the identification of wood defects in the secondary wood industry. Besides, 

additional grading rules are in place to segregate timber into permissible and non-permissible groups based on 

the severity of the defects. Regardless of the timber species, both mechanical and natural defects are likely to 

occur. Although there are different forms of defects in timber, the texture, color, and shape of these defects are 

generally identical across all timber species. The existence of such defects will definitely have an impact on 

the quality and strength of the timber across all species. Hence, it is important for those defects to be detected 

and identified throughout the various stages of timber processing such as grading, cutting, and sorting. Table 1 

lists the various types of defects categorized by previous works into the AVI. It is clear from this table that 

most research worked on knots rather than on other types of defects. This is due to the fact that knots are a 

type of defect that is most frequently found in timber. Knots also affect the structural strength of the timber, 

and hence, the overall quality of the final product. It is notable that most researchers either worked on one type 

of defect or only a few types (less than 5). This indicates that there is a gap between working to generalize and 

characterize all the types of defects that are frequently found. 
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Table 1. Previous AVI works categorized by defect types 
Defect Type Reference 

Knot [5], [12]–[28] 
Crack [14]–[19], [21], [22], [25] 
Hole [13], [14], [19], [20], [23], [24] 

Pocket [5], [13], [17], [29] 
Stain [13], [25], [30] 

Decay / Rot [20], [24] 
Split [5], [13], [20] 
Wane [5], [13], [20] 

 

 

Generally, there are two types of research problems when dealing with AVI in the wood industry, 

namely, defect detection and defect identification. Table 2 lists the previous AVI studies related to the 

detection and identification of timber defects. The difference between these two approaches depends on their 

final output, where the detection approach focuses on the process of locating wood defects based on a 

computer vision technique such as segmentation [31]. In working on the problem of detection, Luo and Sun 

[18] suggested a local binary threshold segmentation algorithm for the detection of wood image defects by 

calculating the threshold based on the mean, standard deviation and extreme value of the window. Their 

research managed to achieve an accuracy of 92.6% for wood defect images with a complex background. In 

addition, Pahlberg [32] conducted to further investigate the use of vibrothermography for the detection of 

cracks in parquet lamellae, where an accuracy of 80% was achieved by capturing the texture image using 

completed local binary pattern histograms and segmenting the cracks with background suppression and 

thresholding. Likewise, the use of the three-dimensional stress wave imaging method for detecting internal 

defects in wood on PT-Kriging (particle swarm optimization (PSO) Top-k Kriging) achieved a relative error 

ranging from 11.57% to 28.74% compared to the use of the TIDW algorithm, which had a relative error (%) 

between 8.69 and 46.28 [33].  

In another work, Hashim et al. [34] achieved an average wood defect detection accuracy of 81% 

across four types of timber species and eight different types of wood defects by using the Mahalanobis one-

class classifier (MC) with a fast minimum covariance determinant estimator (MC-FMCD) in their timber 

defect detection research. On the other hand, wood defect identification emphasizes on classifying wood 

defects using statistical classifier techniques such as machine learning and deep learning [35]. Ding et al. [36] 

proposed an improved solid-state drive (SSD) algorithm, which includes a single-shot multi-box detector 

SSD, a target detection algorithm, and a DenseNet network, for identifying defects in solid wood panels. As a 

result, the accuracy and checking by the algorithm with regard to active knots and dead knots increased to 

96.1% in comparison to the previous version. Alternatively, researchers have developed an identification 

algorithm using local binary pattern (LBP) and a local binary differential excitation pattern on birch veneer 

that incorporates crack and mineral line defects [37]. The research has shown that the proposed algorithm can 

better identify cracks and mineral lines with recall (0.930), precision (0.943), and false negative rates (FNR) 

(0.070). Chang et al. [19] found that the final identification rate of cracks and pinholes can reach 96.3% by 

utilizing the classification and regression tree method (CART). It was emphasized by Sandak et al. [38] that 

both methods of wood defect identification based on the partial least square discriminant analysis (PLS-DA) 

and non-linear support vector machines (SVM) classification are capable of effectively classifying defects 

with an average accuracy of 95%. Guoxiong et al. [39] further claimed that combining a singular spectrum 

analysis for signal filtering with SVM for wood defect identification can achieve an identification rate of 

95% among knot specimens. 

 

 

Table 2. Previous AVI studies on defect detection and identification 
Defect type Reference 

Defect detection [20], [24], [30], [40]–[45] 

Defect identification [8], [13]–[15], [21]–[23], [25]–[27], [29], [37], [39], [46]–[50] 

 

 

3. APPROACHES FOR THE IDENTIFICATION OF TIMBER DEFECTS 

In wood industries, one of the most effective techniques for identifying defects is to process and 

analyze images of wood surfaces with defects. Several studies have been conducted on AVI employing 

traditional image processing, specialized processing techniques as well as artificial intelligent techniques 

[51]. Prior defect identification, traditional image processing techniques such as edge detection and image 

segmentation are often utilized for the detection of defective patterns that are consistent and distinguishable 

from the background [52]–[56]. Furthermore, the adoption of blob detection algorithms for defects on tile 
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surfaces [57] and the feature-based histogram technique for the detection of defects in a textured surface [58] 

are examples of specialized processing techniques for surface defect detection. As there are uncertainties in 

terms of the intensity of the defects in various shapes and sizes of wood, it is crucial to develop learning-

based methods that can adapt to such a wide variation. Due to their robustness with regard to variations in 

wood defects, learning-based approaches using machine learning and deep learning would be a better option 

than pre-programmed feature-identification methods. Besides, the identification of wood defects using 

statistical classifier techniques such as machine learning and deep learning can provide such robustness [35]. 

These machine learning approaches classify wood defects by factoring the statistical variations of the defect 

images to learn about the desired defects with the assistance of several classifiers such as neural networks 

[59], k-nearest neighbors (k-NN), decision trees and SVM [17]. On the contrary, deep learning has been 

shown to be highly effective in a wide range of image-based applications, including object detection and 

identification, facial detection and pattern identification due to their network flexibility in discovering custom 

defects based on the dataset [60]–[64]. Furthermore, feature extraction for deep learning is embedded in the 

learning algorithm, where features are extracted in a fully-automated manner, without requiring any 

intervention from a human expert. The implementation of convolutional neural networks (CNNs) is an 

example of automated feature extraction using deep learning approaches [22]. Regardless of the learning 

model, the goal of utilizing machine learning and deep learning for the identification of wood defects is to 

adapt new data independently, and make decisions and recommendations based on thousands of calculations 

and analyses with a lower factor of human error. 

 

3.1.  Machine learning in the identification of timber defects 

In the identification of timber defects using artificial intelligence, machine learning is tasked with 

developing algorithms that learn from datasets, and improving their accuracy over time without being 

explicitly programmed to do so. As opposed to other algorithms, machine learning is trained to forecast types 

of defects based on the explored dataset by leveraging its capability to recognize patterns and features [65]–

[67]. Besides, the algorithms are capable of evolving over time as more data is processed, resulting in 

improved decision-making and prediction accuracy. The machine learning technique is frequently used for 

identification, estimation, prediction, affinity grouping, clustering, estimation and visualization [68]. Besides, 

the model also comes with methods, theories, and application domains because of its connection to 

mathematical optimization. Additionally, the unsupervised learning paradigm can be implemented in 

machine learning to aid learning and the establishment of baseline behavioral profiles for various entities in 

order to find significant abnormalities [69]. As suggested by Ongsulee [70], machine learning training is 

made up of four categories, which are supervised learning, unsupervised learning, semi-supervised learning 

and reinforcement learning. However, supervised learning and unsupervised learning are the machine 

learning methods that are adopted the most, with supervised learning accounting for 70% of the 

implementations, followed by unsupervised learning close to 20%. Supervised learning occurs when the 

algorithms are taught using labelled data, whereas unsupervised learning occurs when the algorithms are 

trained with an unknown set of classes. The objective of unsupervised learning is to explore the data and find 

some structure within. Semi-supervised learning, on the other hand, utilizes both labelled data and unlabeled 

data during the training. However, this sort of learning approach is beneficial when the cost of labelling is too 

high for a fully-labelled training process. Meanwhile, reinforcement learning requires the algorithm to figure 

out which actions yield the most rewards through trial and error. The goal of reinforcement learning is to 

discover the most effective policy. Along with different types of training algorithms, these algorithms can be 

further separated into two types of classification methods, known as eager learning and lazy learning, based 

on their data abstraction processes [68]. Eager learning approaches generate a general, explicit description of 

the target function based on the available training samples, whereas lazy learning approaches simply store the 

data and wait until an explicit request is made to generalize beyond these samples. 

In the wood industry, machine learning was used to classify knots and fractures in oak, spruce, and 

TMT spruce sawn timber in a study conducted in 2020, where an SVM was able to obtain a defect 

identification accuracy of 75.8%, followed by accuracies of 74.2% and 71.9% obtained by k-NN and decision 

tree, respectively [25]. In addition, Mohan and Venkatachalapathy [71] also conducted an experiment that 

combined bagging with a number of classifiers, including the Naive Bayes, random forest, and k-NN. The 

random forest classifier outperformed all the other classifiers in the experiment, with an accuracy of 81% in 

recognizing wood knots. Next, Hau et al. [72] proposed an evaluation of alternative feature extraction and 

identification of wood defect images by comparing six types of feature extraction approaches with numerous 

machine learning classifiers such as SVM, decision tree, and random forest. The study was able to achieve 

the highest correct identification rate of 82% using the SVM classifier and gray-level co-occurrence matrix 

(GLCM) feature extraction method. Nevertheless, some research that used a particle swarm optimization-

based lazy learning particle classifier yielded promising results [33], [73]. However, exceptions were made 

for two machine learning research that accomplished competitive results by using near-infrared (NIR) 
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sensors instead of ordinary cameras [16], [38]. The research, however, could not be equitably analyzed due to 

the implementation of different technologies.  

Unlike other conventional machine learning classifiers, neural networks have lately piqued the 

interest of researchers due to their potential to achieve greater accuracy than other standard classifiers. Peng 

et al. [44] proposed a simultaneous wood defect and wood species identification strategy based on 3D 

scanning and signal processing for back propagation (BP) network training and identification using the neural 

network toolbox. The findings indicate that their approach can effectively identify defects with a relative 

error of less than 5% and also recognize wood species with an accuracy of 95%. With a defect identification 

performance of 65.4% in [13], artificial neural network (ANN) outperformed other standard classifiers 

including the k-NN and decision tree. By fine-tuning the displacement and quantization parameters of the 

statistical texture of defect images before they are trained using a neural network model, the wood 

identification accuracy could be improved to 94% [2]. Ji et al. [49] proposed a diversified feature extraction 

and defect identification approach that included a Hu invariant moment, wavelet moment, and BP neural 

network, with both feature extraction methods that were paired with the BP neural network achieving an 

average accuracy of 93.67%. Throughout the study by Thilagavathi and Abiram [29], six classes of wood 

defect datasets were used to test various neural network training algorithms, including the Levenberg-

Marquardt algorithm (trainlm), scaled conjugate gradient algorithm (trainscg), gradient descent adaptive 

learning algorithm (traingda), Bayesian regularization (trainbr), and resilient backpropagation (trainrp). The 

Bayesian regularization and backpropagation training methods outperformed the other competitors with an 

accuracy of 98.2%. The above discussion on wood defect identification based on various types of classifiers 

is summarized in Table 3. 

 

 

Table 3. Related works on various machine learning approaches for wood defect identification 
Classification methods Classifier Reference 

Eager learners Decision tree [17], [59], [72] 
Random forest [32], [72], [74] 
Naïve Bayes [59], [71], [75], [76] 

SVM [16], [17], [24], [38], [45], [76]–[78] 
Neural network [8], [14]–[16], [29], [40], [46], [47], [49], [59], [75]–[77], [79]–[83] 

Lazy learner others k-NN [17], [27], [59], [72], [78] 
Particle swarm optimization [17], [27], [59], [72], [78] 

Genetic algorithms [73] 
Bees algorithms [84] 

 

 

3.2.  Deep learning in the identification of timber defects 

Despite the fact that machine learning can accomplish tasks without being explicitly programmed, 

the computer still thinks and acts like a machine, and its ability to perform some complicated tasks falls far 

short of what humans can do. Deep learning, on the other hand, is a subset of machine learning in which the 

establishment of multi-layered neural networks is modelled after the human brain and uses the same 

mechanisms to grasp inputs such as images, sounds, and texts [85]. The algorithms within each layer of the 

deep learning neural network are constantly performing calculations and making predictions in order to 

improve the accuracy over time. deep learning is also an approach based on the characterization of data 

learning, where an observed image can be expressed in a variety of ways, for example, as a vector of each 

pixel density value, or more abstract properties like a series of edges [86]. Ever since the convolutional 

neural network (CNN) won the ImageNet large scale visual challenge (ILSVRC) competition, image analysis 

based on deep learning has been widely adopted by researchers due to its ability to outperform other 

identification methods and obtain high accuracy scores [87]. While the CNN is often employed for image or 

spectrum identification, a few studies have focused on its use for the identification of timber defects. In order 

to detect wood defects, the deep learning identification system is incorporated with the CNN architecture to 

allow the simultaneous learning of both feature extraction and image identification during the training. 

Furthermore, the CNN architecture has the ability to transform images into one-dimensional vectors and 

categorize them using an ANN by utilizing multiple channels for feature extraction [85].  

In an article related to the identification of timber defects, Thomas [83] proved that utilizing a one-

dimensional ANN to identify the grades of broadleaf trees yielded a greater accuracy of 80.2% compared to 

statistical approaches. Zeiler and Fergus [88] found that a two-dimensional CNN could outperform a 

commercial detector based on conventional feature descriptors and kernel SVM by a statistically significant 

margin (𝐹1 = 0.750 ± 0.018). Despite the fact that the CNN requires a large number of annotated datasets to 

attain a good prediction performance, transfer learning is often used to compensate for the data scarcity. 

According to the findings of visualising convolutional networks [89], the limited dataset would be sufficient 
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for the last few layers to learn the features in the respective domains, as the model had obtained essential 

features such as corners in their first few layers. Hence, transfer learning has proven to be a very effective 

approach for the training of neural networks with a limited dataset. Additionally, implementing both transfer 

learning and data augmentation techniques in CNN does appear to be a viable approach in tackling limited 

dataset issues as well as improving CNN classification performance as demonstrated in [90]. A convolutional 

neural network (CNN) architecture is made up of three primary neural layers, namely a convolutional layer, 

pooling (subsampling) layer, and fully-connected layer [91]. With the current success of the implementation 

of the CNN in the computer vision domain, a number of well-known CNN architectures have been developed 

throughout the image processing field, especially with regard to the identification of timber defects as shown 

in Table 4. The AlexNet, VGG, and deep convolutional generative adversarial network (DCGAN) are among 

the architectures used in CNN to improve the accuracy of identification with their own configurations and 

contributions [92]. Urbonas [30] recommended the utilization of a faster region-based convolutional neural 

network to identify wood veneer surface defects, with the greatest average accuracy of 80.6% being achieved 

using a pre-trained ResNet152 neural network model. Nonetheless, a comparison of the CNN model to the 

SIFT+k-NN model [27] demonstrated the superiority of deep learning, with the CNN model achieving an 

accuracy of 88.09% for the identification of knots in contrast to its counterpart. 

 

 

Table 4. Previous studies on wood defect identification using CNN architecture 
Architecture Reference 

MobileNetV2 [42], [90] 
ShuffleNet [42], [90] 

Deep convolutional neural network [21], [88] 
DenseNet [40], [36] 

GoogLeNet [41], [93], [90] 
LeNet [40], [41], [94] 

AlexNet [30], [41], [93], [90] 
VGG (16, 19) [25], [30], [40], [93]  

ResNet (18, 34, 50, 152) [12], [26], [30], [42], [90], [93]  
Other custom classifiers [22]–[25], [27], [28], [95] 

 

 

4. DISCUSSSION 

This paper reviewed previous works on the automated inspection of timber surface defects, 

including various kinds of approaches targeting both the detection and identification of timber defects. While 

some of the approaches demonstrated good performance, most of them were still in the experimental phase. 

The majority of the challenges encountered during the industrial deployment of these approaches in small 

and medium-sized businesses were associated with high investment costs, and the AVI integrated with 

artificial intelligence appeared to be the most plausible approach owing to its ease of use and minimal 

operating costs. Although the capabilities of the AVI were limited to the inspection of surface defects, at the 

very least, they enhanced the inspection process. Nowadays, the trend is moving towards more contemporary 

machine learning/deep learning approaches, particularly in neural network architectures, for their outstanding 

performance. A brief comparison of contemporary algorithms and techniques for either the detection or 

identification of various wood defects was discussed. Machine learning and deep learning are the two types 

of artificial intelligence models used in the identification of timber defects. Although both learning models 

perform well in tasks involving parameter prediction and pattern identification, the chosen models are 

dependent on how data is provided to the system. Machine learning algorithms are designed to learn and 

increase their accuracy by analyzing labelled data, with the objective of producing further outputs with more 

sets of data. While the accuracy of machine learning improves with training, human intervention is required 

when the actual output changes unexpectedly. The deep learning algorithms, however, do not require human 

intervention as the nested layers in the networks put data through hierarchies of different concepts, which 

eventually learn through their own errors. Besides, the convolutional neural network architecture in deep 

learning models has proven its capabilities by producing record-breaking results on highly challenging 

datasets, while leveraging supervised learning [96]. For the identification of wood defects, feature extraction 

plays an important role in machine learning, where the extraction of characteristic quantities has a direct 

impact on the rate of image identification. Besides, a variety of feature extraction methods are available 

under digital image processing such as color, shape, and texture features [50].  

The use of texture feature extraction methods such as the GLCM and LBP appears to be a viable 

option for timber images with rich textural details. Nevertheless, a proper parameter analysis of feature 

extraction techniques is important for ensuring well-characterized timber defect textural properties and high 

identification performance. It is worth mentioning that without effective feature extraction techniques and 

machine learning classifiers such as SVM and naïve Bayes, a high defect identification rate would be 
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impossible. However, one of the major drawbacks of such methods (machine learning) is that precise models 

need to be developed to learn defect patterns, and they may still not be robust enough to respond to variations 

in the texture, lighting, and complexity of the defects. In contrast, the implementation of the CNN 

architecture in deep learning algorithms is one of the approaches for overcoming this disadvantage. While 

there are a number of classifiers that are used in machine learning, CNN architectures such as AlexNet are 

modifications of the ANN that use a unique set of max pooling layers and connected layers to construct the 

classifier. Although deep learning architectures yield the highest results, they are also the most 

computationally expensive compared to machine learning. In addition, CNNs are highly dependent on 

hardware and resources, where high amounts of random-access memory (RAM) and graphics processing unit 

(GPU) are required for extensive training processes. To summarize, striking a balance between a high 

accuracy rate and optimal computational resources in training models for the automated identification of 

wood defects remains an open research topic. 

 

 

5. CONCLUSION 

This review article provides an overview of wood defect identification using both machine learning 

and deep learning approaches. The article highlighted several machine learning studies that show exceptional 

classification performance despite having difficulty in determining the most suitable feature extraction 

method for wood defects. This remains a challenge for those who seek the best classification performance in 

wood defect identification using machine learning. While deep learning approaches have varied classification 

performance, it is worth noting that most of the feature extraction timber defect images are automatically 

deduced and tuned by the CNN architectures instead of the manual extraction and selection process as 

required by machine learning. This article describes the challenges and outlines the current trend in both 

machine learning and deep learning approaches along with several future directions that may be further 

explored in the identification of wood defects. 
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