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 Reversible computing is an emerging technique to achieve ultra-low-power 

circuits. Reversible arithmetic circuits allow for achieving energy-efficient 

high-performance computational systems. Residue number systems (RNS) 

provide parallel and fault-tolerant additions and multiplications without 

carry propagation between residue digits. The parallelism and fault-tolerance 

features of RNS can be leveraged to achieve high-performance reversible 

computing. This paper proposed RNS full reversible circuits, including 

forward converters, modular adders and multipliers, and reverse converters 

used for a class of RNS moduli sets with the composite form {2k, 2p-1}. 

Modulo 2n-1, 2n, and 2n+1 adders and multipliers were designed using 

reversible gates. Besides, reversible forward and reverse converters for the 

3-moduli set {2n-1, 2n+k, 2n+1} have been designed. The proposed RNS-

based reversible computing approach has been applied for consecutive 

multiplications with an improvement of above 15% in quantum cost after the 

twelfth iteration, and above 27% in quantum depth after the ninth iteration. 

The findings show that the use of the proposed RNS-based reversible 

computing in convolution results in a significant improvement in quantum 

depth in comparison to conventional methods based on weighted binary 

adders and multipliers. 
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1. INTRODUCTION  

As the validity of Moore’s law gradually diminishes, the yearly exponential computer performance 

improvement gets slower [1]. Therefore, computer architects increasingly investigate alternative methods at 

different design abstraction levels, including arithmetic circuits. These methods are used to afford  

high-performance computing for emerging applications, embedded deep learning, [2] and the internet of 

things (IoT) [3]. At the arithmetic level, the conventional weighted binary number representation, which is 

based on the primary microprocessor design, is still prevalent. However, alternative number systems such as 

the residue number system (RNS) [4] have attracted attention in recent years. The RNS has been known as  

a powerful tool to break the long carry-propagation chain and parallelize the arithmetic operations. It is 

useful in various applications, including embedded systems and digital signal processing. Besides, redundant 

RNS (RRNS) [5] has been used in many applications, including DNA arithmetic [6], wireless sensor 

networks, and fault-tolerant processor design [7]. RNS is useful in applications in which additions and 

multiplications are dominant [8]. The theoretically minimum possible energy consumption of a logic 

operation at room temperature is about 4.14 zepto-joules, and the conventional complementary metal oxide 

https://creativecommons.org/licenses/by-sa/4.0/
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semiconductor (CMOS) technology cannot reach it because its limit is thousands of times higher [9]. 

Reversible computing makes it possible to reach the least energy dissipation by avoiding information loss, 

resulting in ultra-low challenge is how to design efficient circuits for reversible computing. Researchers have 

discussed the design power circuits [10]. Besides, reversible logic is the basis of quantum computing.  

The most important challenge is how to design efficient circuits for reversible computing. Researchers have 

discussed the design and implementation of reversible logic, including synthesis [11], adders [12], 

multipliers, dividers [13], and realization based on quantum-dot cellular automata (QCA) [14]. This paper 

addresses the parallelism of RNS with the low-power feature of reversible logic. Particularly, for demanding 

calculations on wide operands, the parallelism of RNS can outperform the conventional weighted number 

representation supported by reversible computation circuits with long carry propagation chains. A challenge 

for achieving this is to design and tune the RNS components that can be efficiently implemented with 

reversible logic instead of the traditional CMOS application-specific integrated circuits (ASIC). To this end, 

the first step is to design the reversible-RNS modulo 2n-1 adders [12] as the cornerstone of RNS circuits.  

The main contributions of this paper for the selected wide c-class moduli sets with the composite form  

{2k, 2p-1} [15] are: i) to propose efficient modulo adders and multipliers based on reversible gates (RGs);  

ii) to design reversible forward and reverse converters, which are based on the suggested reversible modular 

adders, for the considered class of moduli sets; and iii) to apply the proposed R-RNS approach, as a case 

study, to consecutive multiplications, and also to evaluate the performance of R-RNS and traditional RNS 

computational structures.  

In this paper, the fundamentals of RNS, the design of RNS circuits for sets of c-class moduli, and 

reversible computing concepts are briefly introduced in section 2. In section 3, reversible modular adders, 

multipliers, and forward and reverse converters are discussed, and the proposed approach based on the 

computation of a sequence of multiplications is evaluated. The last part, section 4, concludes the paper and 

presents the key findings. 

 

 

2. METHOD 

The following section briefly explains the basic concepts of RNS in c-class moduli set, moduli 

adders, modular multipliers, and forward and reverse converters. Also, the key concepts in reversible logic 

including the basic features of reversible circuits were described. Also, the characteristics of the reversible 

gates used in this article were examined. 

 

2.1.  The residue number system  

A residue number system (RNS) [4] is planned and designed based on pairwise relatively prime 

numbers that compose the moduli set of the system {m1, m2, …, mn}. The dynamic range in RNS is defined 

as (0, M) where: 

 

𝑀 = 𝑚1 ×𝑚2 ×. . .× 𝑚𝑛 (1) 

 

After mapping the weighted representation of numbers into equivalent RNS representations, arithmetic 

operations on residues are performed as (2), 

 

𝑋 ⊙ 𝑌
 𝑅𝑁𝑆 
→     (|𝑥1⊙𝑦1|𝑚1 , |𝑥2⊙ 𝑦2|𝑚2 , . . . , |𝑥𝑛⊙𝑦𝑛|𝑚𝑛) (2) 

 

where ⊙∈ {+,−,×} indicates that there is not any carry propagation between residues. Finally, in order to 

convert the result back to the weighted binary system, the Chinese remainder theorem (CRT) or the mixed-

radix conversion (MRC) is applied [4]. The architecture of the RNS-based arithmetic system includes three 

components: i) forward converter, ii) RNS processing units, and iii) reverse converter. 

 

2.2.  RNS design for c-class moduli sets  

The former class of moduli sets is usually known as c-class [16]. These kinds of moduli set share a 

modulo in the form of 2k while the other moduli product presupposes the value 2P-1. This results in a simple 

and efficient reverse converter hardware structure that is based on the new CRT-I [17]. In order to simplify 

the presentation of the circuits, the moduli set {2n-1, 2n+k, 2n+1} [18] is selected for the case study. 

 

2.2.1. Modular adders 

The formulations for the modular addition of x and y of the c-class moduli set {2n-1, 2n+k, 2n+1} are 

presented. For the modulo 2n-1 addition of the residues x and y. 
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|𝑥 + 𝑦|2𝑛−1 = (𝑥 + 𝑥 + 𝑐𝑎𝑟𝑟𝑦)𝑚𝑜𝑑 2
𝑛 (3) 

 

Note that the adder in (3) is based on a ripple-carry adder (RCA) with the end-around carry (EAC), adopting 

a double representation of zero. For removing the double representation of zero, some cascaded AND gates 

can be used to detect all outputs equal to 1 [15]. For the modulo 2n+k addition of the corresponding residues x 

and y: 
 

|𝑥 + 𝑦|2𝑛+𝑘 = |𝑧𝑛+𝑘−12
𝑛+𝑘 + 𝑧𝑛+𝑘−1. . . 𝑧1𝑧0⏟        

𝑛+𝑘𝑏𝑖𝑡𝑠

|

2𝑛+𝑘

= 𝑧𝑛+𝑘−1. . . 𝑧1𝑧0⏟        
𝑛+𝑘𝑏𝑖𝑡𝑠

 (4) 

 

where z is the regular sum of operands x and y. Finally, the modulo 2n+1 addition of residues x and y, 

adopting the diminished-one representation (x´=x-1; y´=y-1), is performed [19]. 

 

|𝑥 ′ + 𝑦′ + 1|
2𝑛+1

= {
𝑥 ′ + 𝑦′𝑖𝑓𝑥 ′ + 𝑦′ ≥ 2𝑛

(𝑥 ′ + 𝑦′ + 1)𝑚𝑜𝑑 2𝑛 𝑖𝑓𝑥 ′ + 𝑦′ < 2𝑛
= (𝑥 ′ + 𝑦′ + 𝑐𝑜𝑢𝑡)𝑚𝑜𝑑 2

𝑛 (5) 

 

2.2.2. Modular multipliers 

The modulo 2n-1 multiplication of residues x and y could be performed as in (6)[20]. 

 

|𝑥 × 𝑦|2𝑛−1 = |∑ 2𝑖𝑥𝑖 × (𝑦𝑛−1. . . 𝑦1𝑦0)
𝑛−1
𝑖=0 |

2𝑛−1
  

= |∑ 𝑥𝑖 × (𝑦𝑛−𝑖−1. . . 𝑦0𝑦𝑛−1. . . 𝑦𝑛−𝑖)
𝑛−1
𝑖=0 |2𝑛−1 = |∑ 𝑃𝑃𝑖

𝑛−1
𝑖=0 |2𝑛−1  (6) 

 

The details of partial products (PPis) summations are presented in [20]. According to (6), the PPis are added 

to achieve the result. This operation relies on a modulo 2n-1 multi-operand adder structure that can be formed 

via some carry-save adders (CSAs) with end-around carry (EAC), with a regular two-operand modulo 2n-1 

adder at the end. Thus, the modulo 2n multiplication of residues x and y could be expressed [17]: 

 

|𝑥 × 𝑦|2𝑛+𝑘 = |(𝑐2(𝑛+𝑘)−1. . . 𝑐𝑛+𝑘)⏟            
𝑛+𝑘𝑏𝑖𝑡𝑠

2𝑛+𝑘 + 𝑐𝑛+𝑘−1⏟  
𝑛+𝑘𝑏𝑖𝑡𝑠

. . . 𝑐0|

2𝑛+𝑘

= 𝑐𝑛+𝑘−1⏟  
𝑛+𝑘𝑏𝑖𝑡𝑠

. . . 𝑐0 (7) 

 

where c is the product of x and y. The modulo 2n+1 multiplication of residues x and y that can be 

implemented with CSAs with complemented end-around carry (CEAC) is followed by a two-operand 

modulo 2n+1 carry-propagate adder (CPA). This can be performed [20]: 

 

|𝑥 × 𝑦|2𝑛+1 = |∑ 2𝑖𝑥𝑖 ×
𝑛
𝑖=0 ∑ 2𝑗𝑦𝑗

𝑛
𝑗=0 |

2𝑛+1
= |∑ (∑ 𝑃𝑃𝑖,𝑗2

𝑖+𝑗𝑛
𝑗=0 )𝑛

𝑖=0 |
2𝑛+1

 (8) 

 

2.2.3. Forward and reverse converter 

The range of c-class moduli sets {2k, 2P-1}, which is dynamic, is k+P bits. The main forward 

conversion for the considered moduli set {2n-1,2n+k,2n+1}, 0≤k≤n is [18]: 
 

𝑥𝑖=|𝑋|𝑚𝑖 = |𝑋𝑘+𝑃−1. . . 𝑋0|𝑚𝑖  (9) 

 

The reverse converter for the c-class (CRT) relies on the following general relation [15]: 

 

𝑋 = 𝑥1 + 2
𝑘|∑ 𝑣𝑖

𝑘
𝑖=1 |

2𝑃−1
 (10) 

 

The full set of equations for reverse conversion of the residues x1, x2, x3 to the equivalent weighted number X 

for the moduli set {2n-1,2n+k,2n+1} are [18]: 

 

𝑋 = 𝑥2 + 2
𝑛+𝑘𝑌 (11) 

 

The hardware realization of Y is the one that requires two 2n-bit CSAs with EACs and a modulo 22n-1 adder. 

Note that since x2 is an n+k-bit number, a concatenation (&) of x2 with Y yields the final weighted number. 

 

2.3.  Reversible logic  

Due to lack of information loss, reversible circuits can lead to ultra-low-power circuits. The number 

of inputs and outputs in these circuits are the same. Feedback is not allowed, and the fan-out is equal to 1 in 
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reversible circuits. The most important reversible gates (RGs) used in this paper were introduced in Figure 1, 

including Feynman [10], Peres [21], HNG [12], Fredkin [22], Toffoli [10], and RAM [13], as shown in 

Figures 1(a) to 1(f). 

The Feynman gate (FG) is known as a controlled-NOT gate. By adjusting inputs, the Peres gate 

(PG) and HNG may be used as a half adder (HA) and full adder (FA), respectively. The Toffoli gate (TG) 

can be used for copying inputs as well as AND-ing them. Fredkin gate (FrG) can perform OR operations. 

Finally, RAM [13] consists of multiple FGs, which can be used for copying a signal. 

 

 

   
(a) (b) (c) 

   

   
(d) (e) (f) 

 

Figure 1. Reversible gates of (a) Feynman, (b) Peres, (c) HNG, (d) Fredkin, (e)Toffoli, and (f) RAM 

 

 

3. RESULTS 

3.1.  The proposed reversible modular adders 

Two main types of adders are required in RNS: i) carry-save based adders, including CSA, CSA 

with EAC, and CSA with CEAC for multi-operand additions, and ii) CPA, which can be obtained using the 

ripple-carry approach, including RCA, RCA with EAC, and RCA with CEAC. This section first proposes 

reversible adders for the c-class moduli set. A new design is then proposed to reduce the number of constant 

inputs in reversible modulo 2n adder. 

 

3.1.1. Reversible adders for moduli set {2n-1, 2n+k, 2n+1} 

HNG [12] RGs are used to implement the FAs required in CSA, as shown in Figure 2(a). The 

quantum cost and depth of CSA and CSA with EAC for n-bit operands are 6n and 5Δ, respectively. Besides, 

the quantum cost and depth of CSA with CEAC are 6n+1 and 6Δ, respectively. The total constant inputs and 

garbage outputs in Figure 2(a) are n and 2n, respectively, and those in Figure 2(b) are n+1 and 2n+1, 

respectively. The proposed reversible modulo 2n adder in Figure 2(c) is based on the HNG-based RCA 

structure. The total quantum cost for the adder in Figure 2(c) is 6n. 

The quantum depth for the first HNG in an RCA is 5Δ. However, according to RcViewer 

simulations [23], connecting other series of (n-1) HNGs in a ripple carry architecture results in increasing the 

quantum depth by 3(n-1)Δ. The total quantum depth for the modulo 2n adder in Figure 2(c) is (5+3(n-1))Δ. 

Moreover, the reversible RCA of Figure 2(c) possesses n and 2n+1 constant inputs and garbage outputs, 

respectively. 

The reversible implementation of modulo 2n-1 with a single representation of zero relies on three 

levels: i) in the first level, there is an n-bit RCA adder that can be realized using reversible HNG gates;  

ii) in the second level, a series of AND gates are used to detect 1s and then ORing the carry out of the RCA, 

which can be realized using Toffoli gates (TG) structured in a tree and then a Fredkin gate (FrG) to perform 

OR with the carry-out; and finally, iii) in the third level, an n-bit ripple connected HAs is provided to apply 

EAC, or one’s detector output, to the RCA result. These HAs can be implemented using Peres gates (PG),  

as shown in Figure 3(a). The quantum cost of the proposed adder in Figure 3(a) is 15n. The quantum depth of 

the proposed modulo 2n-1 adder, which was computed using the RcViewer tool [23], is  

(6𝑛 + (3 × [log2 𝑛]) + 6)∆. The total constant inputs and garbage outputs of the proposed modulo 2n-1 

adder are 3n and (5𝑛 + 1 − 2⌊𝑛 2⁄ ⌋), respectively. Figure 3(b) represents the proposed reversible modulo 

2n+1 adder. The Fredkin and FG gates are used in the middle level to perform the OR and NOT operations. 

The total quantum cost, quantum depth, garbage outputs, and constant inputs of the proposed modulo 2n+1 

adder with a diminished-one number system are 10n+6, (6n+8)Δ, 3n+3, and 2n+2, respectively. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 2. The proposed reversible modular circuits (a) regular CSA and CSA with EAC when the dash-dash 

connection is introduced, (b) CSA with CEAC, and (c) regular RCA (g means garbage output) 

 

 

  
(a) (b) 

 

Figure 3. The proposed reversible modular adders (a) modulo 2n-1 adder with one representation of zero, and 

(b) modulo 2n+1 adder with diminished-one number system 

 

 

3.1.2. The design proposed to reduce the number of constant inputs in reversible modulo 2n adder 

As shown in Figure 2(a), in reversible modulo 2n adder (regular CSA), the number of constant inputs 

is equal to the number of bits. However, the carry output is ignored, and using the new design that is shown 
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in Figure 4, the number of constant inputs can be reduced. However, in the new design, the amount of 

quantum depth will increase slightly. 

 

 

 
 

Figure 4. The proposed reversible CSA modulo 2n for n=2 

 

 

3.2.  The proposed reversible modular multipliers 

The multiplier structure has three main parts: i) generation of the partial products (PPis), using 

bitwise AND/OR gates; ii) Ppis’ summation using CSAs; and iii) a final two-operand CPA. This section first 

proposes reversible multipliers for the moduli 2n-1, 2n, and 2n+1. the basic parameters of the reversible 

circuits are then determined. Also, a method to reduce the delay in reversible modular multipliers is then 

proposed. 

 

3.2.1. Reversible modulo 2n-1 multiplier 

For designing a modulo 2n-1 multiplier (6), the PPis should be separately calculated using AND 

gates. Here, to implement the AND logic operation and the RAM gates for duplicating signals and 

interconnecting gates, the Peres gate is used. For instance, the PPis generation for modulo 24-1 multiplication 

is depicted in Figure 5(a) where the general value n relies on n×n AND operations, which can be realized 

using n×n PG and n RAM gates. 

The modulo 2n-1 multiplier requires an n-input RAM gate, which consists of n-1 FGs, leading to a 

quantum cost of 2(n×(n-1)). Therefore, the total quantum cost required for PPis’ generation is 

4(n×n)+2(n×(n-1)). Each PG and RAM gate has 1 and n-1 constant inputs, respectively. Also, RAM does 

not require garbage output while PG needs two. Therefore, the total number of garbage outputs and constant 

inputs for the PPi generation unit are 2(n×n) and (n×n)+2(n×(n-1)), respectively. The RAM gates in the 

PPis’ unit are operating in parallel, and according to the RcViewer [23] simulation, the total quantum depth 

for the PPis generation unit of modulo 2n-1 multiplier will be (RAMquantum depth+4)Δ. 

PPis are added using CSAs with EAC, followed by a modulo 2n-1 adder with one representation of 

zero, as shown in Figure 5(b) for n=4. The CSA with EAC structure of Figure 2(a) as well as the proposed 

modulo 2n-1 adder in Figure 4 were used to obtain the proposed reversible modulo 2n-1 multiplier in  

Figure 5(b). In general, (n-2)×n HNGs are required for the CSAs of the multiplier. Moreover, (n-1) HNGs, 

(n-1) TGs, one FrG, and (n+1) PGs are required for the RCA with EAC, which is applied to design the 

reversible modulo 2n-1 multiplier. The total quantum cost for the CSA and RCA of the proposed multiplier 

can be calculated as in (12). 

 

𝑄𝐶𝐶𝑆𝐴−𝑅𝐶𝐴 = 6 × [(𝑛 − 2) × 𝑛 + (𝑛 − 1)] + 4 × [(𝑛 + 1)] + 5 × [(𝑛 − 1)] + 5 

   = 3𝑛(2𝑛 + 1) − 2 (12) 

 

For modulo 2n-1 multiplication, (n-2) levels of CSA-EAC are required [20]. The quantum depth for the CSAs 

of the modulo 2n-1 multiplier is (5+[(n-3)×3])Δ. The RCA in the third row consists of a PG plus serially 

connected HNGs, and ⌈log2 𝑛⌉ levels of TGs are required. 

Finally, 1 FrG and n PGs of the multiplier increase the depth by 3Δ and 3nΔ, respectively. 

Consequently, the total quantum depth of the CSA-RCA part of the proposed reversible modulo 2n-1 

multiplier is: 

 

𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑑𝑒𝑝𝑡ℎ𝐶𝑆𝐴−𝑅𝐶𝐴 = (5 + [(𝑛 − 3) × 3] + 4𝑛 + 4 + (3 × (⌈log2 𝑛⌉ − 1)) + 3 + 3𝑛)∆ 

= (10𝑛 + 3 × (⌈log2 𝑛⌉))∆ (13) 
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There are (n-2)×n HNGs in the CSA-EAC part of the modulo 2n-1 multiplier. The RCA-EAC part includes a 

PG with one constant input and one garbage output, (n-1) HNGs, (n-1) TGs, (n-1) constant inputs, and 

2 × (𝑛 − 1 − ⌊
𝑛

2
⌋) garbage outputs. The FrG has one constant input and two garbage outputs. Finally, the last 

level n PGs rely on n constant inputs and n garbage outputs. Therefore, the total constant inputs and garbage 

outputs for the CSA-RCA part of the multiplier are: 

 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛𝑝𝑢𝑡𝐶𝑆𝐴−𝑅𝐶𝐴 = [(𝑛 − 2) × 𝑛] + 1 + (𝑛 − 1) + (𝑛 − 1) + 1 + 𝑛  (14) 

 

𝑔𝑎𝑟𝑏𝑎𝑔𝑒 𝑜𝑢𝑡𝑝𝑢𝑡𝐶𝑆𝐴−𝑅𝐶𝐴 = 2 × [(𝑛 − 2) × 𝑛] + 1 + 2 × (𝑛 − 1) + 2 × (𝑛 − 1 − ⌊
𝑛

2
⌋) 

+2 + 𝑛 + 1 (15) 

 

 

  
(a) (b) 

 

Figure 5. The proposed reversible modulo 2n-1 multiplier for n=4 (a) the partial product generation unit of 

the proposed reversible multiplier and (b) the proposed reversible multiplier 

 

 

3.2.2. Reversible modulo 2n multiplier 

The modulo 2n performs a regular n×n multiplication and only picks up the n LSBs of the result. An 

efficient reversible modulo 2n multiplier is obtained by removing the components of the regular reversible 

n×n binary multiplier. It produces the necessary partial products, resulting in a significant area reduction. 
∑ 𝑖𝑛
𝑖=1  Peres gates and 2(n-1) RAM gates are required to implement PPis’ generation unit of the proposed 

reversible modulo 2n multiplier. However, the quantum cost of RAM gates depends on the number of their 

inputs. Therefore, the total quantum cost of PPi’s generation unit of the proposed modulo 2n multiplier is 

2(∑ 𝑖𝑛−1
𝑖=1 ) + 4(∑ 𝑖𝑛

𝑖=1 ). Besides, its quantum depth estimated by the RcViewer is (quantum depthram+4)Δ. The 

total number of constant inputs and garbage outputs of the PPi’s generation unit of the proposed modulo 2n 

multiplier is 
𝑛(3𝑛−1)

2
 and 2(∑ 𝑖𝑛−1

𝑖=1 ), respectively. The last stages of the hardware architecture of the proposed 

modulo 2n multiplier for n=4 are depicted in Figure 6(a). There are (n-1) PGs and ∑ 𝑖𝑛−2
𝑖=1  HNGs in the CSA 

structure of the proposed modulo 2n multiplier. Therefore, the total quantum cost of this part of the multiplier 

is 3𝑛2 − 5𝑛 + 2. Also, the critical path includes n-2 HNGs followed by a PG, as shown in  

Figure 6(a) for n=4. Therefore, the total quantum depth will be (5+(3×(n-3))+3)Δ. Considering that each PG 

and HNG possesses one constant input, the total number of constant inputs is ∑ 𝑖𝑛−2
𝑖=1 + (𝑛 − 1), and the total 

number of garbage outputs is 2 × (∑ 𝑖𝑛−2
𝑖=1 ) + (𝑛 − 2) + 𝑛. 
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3.2.3. Reversible modulo 2n+1 multiplier 

The modulo 2n+1 multiplication relies on PPi’s generation unit, CSAs with CEAC to compress the 

partial products, and a final modulo 2n+1 adder, as shown in Figure 6(b). The Peres and FGs are applied to 

realize the AND, and NOT logic operations, respectively. The PPis’ generation unit in reversible modulo 

2n+1 multiplier is similar to the PPi’s generation unit in reversible modulo 2n-1 multiplier, except that the 

FGs are applied to realize NOT logic operations. (n×n) Peres gates, 2n RAM gates with n inputs, and ∑ 𝑖𝑛−1
𝑖=1  

FGs are required to obtain the PPi unit of the proposed reversible modulo 2n+1 multiplier. The total quantum 

cost of the PPis’ unit of the modulo 2n+1 multiplier is: 

 

𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑐𝑜𝑠𝑡𝑃𝑃𝑖 = 4 × (𝑛
2 + 2𝑛 + 1) + 1 × (∑ 𝑖𝑛−1

𝑖=1 ) + 2((𝑛 − 1) × 𝑛)  (16) 

 

 

 
(a) 

 

 

(b) 
 

Figure 6. The proposed reversible modular multipliers for n=4 (a) the last stages of the modulo 2n multiplier, 

and (b) the modulo 2n+1 multiplier 

 

 

All the required PGs and FGs in the PPis unit have just one constant input. Each RAM gate has n-1 

constant inputs. So, the total number of constant inputs for the PPi unit is: 
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𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑛𝑝𝑢𝑡𝑠𝑃𝑃𝑖 = (𝑛
2 + 2𝑛 + 1) + (∑ 𝑖𝑛−1

𝑖=1 ) + 2((𝑛 − 1) × 𝑛) (17) 

 

And the total garbage outputs is: 

 

𝑔𝑎𝑟𝑏𝑎𝑔𝑒𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑃𝑃𝑖 = 2𝑛
2 − 2𝑛 + ∑ 𝑖𝑛−1

𝑖=1  (18) 

 

Finally, according to RcViewer simulation, the quantum depth includes 2n RAM gates with 

quantum depthram. It consists of n-1 FGs. The total quantum depth for the PPi’s unit of the proposed 

reversible modulo 2n+1 adder is equal to (quantum depthram+4+1)Δ. Further, according to (8), partial 

products should be added using CSAs with CEAC followed by a modulo 2n+1 adder. The CSA-RCA unit of 

the suggested reversible modulo 2n+1 multiplier (for n=4) is depicted in Figure 6(b). The CSAs of the 

suggested reversible modulo 2n+1 multiplier requires n×n+(n-1) HNGs, (n+1) PGs, and (n+1) FGs to realize 

the FAs, HAs, and NOT gates, respectively. Therefore, regardless of its PPi generation, the total quantum 

cost of the proposed modulo 2n+1 multiplier can be calculated: 

 

𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑐𝑜𝑠𝑡𝐶𝑆𝐴−𝑅𝐶𝐴 = 6 × [𝑛 × 𝑛 + (𝑛 − 1)] + 4 × [(𝑛 + 1)] + (𝑛 + 1) (19) 

 

The PG in the first and last level of the final modulo adder adds 3Δ, and each (n-1) HNG increases 

the depth by 4Δ. Therefore, the total quantum depth of the suggested modulo 2n+1 adder will be (quantum 

depthCSA-RCA+2)Δ. All RGs in the CSA-RCA part of the suggested modulo 2n+1 multiplier have one constant 

input. All FGs and PGs have one garbage output, and each HNG has two garbage outputs. Therefore, the 

total constant inputs and garbage outputs are:  

 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛𝑝𝑢𝑡𝑠𝐶𝑆𝐴−𝑅𝐶𝐴 = ((𝑛 + 1) × 𝑛) + 𝑛 + 𝑛 + 2 (20) 

 

𝑔𝑎𝑟𝑏𝑎𝑔𝑒 𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝐶𝑆𝐴−𝑅𝐶𝐴 = 2 × ((𝑛 × 𝑛) + (𝑛 − 1) × 𝑛 + 𝑛 + 𝑛 + 1 + 1 + 1) (21) 

 

The design proposed to improve the delay in reversible modular multipliers. 

To solve the delay problem in the proposed reversible modular multiplication, a new RAM gate is 

used. The RAM gate is useful for PPis’ generation unit as a copying circuit that consists of several FGs. If 

RAM has N inputs, its depth will be N-1 because the depth of each FG is 1. In Figure 7, using the FG and 

changing the design method, a new design for reversible RAM has been introduced. It is seen that the 

quantum depth value in the proposed design is lesser than that in the existing approaches. A comparison of 

the existing and proposed RAM depth is given in Table 1. 

 

 

 
 

Figure 7. Using a 5-input new RAM gate to achieve 5 copies of X0 

 
 

Table 1. Comparison of the existing and proposed reversible RAM designs 
N. of Input 2 4 7 12 20 33 54 88 143 

Quantum depth (Delay) Ref. [13] 1 3 6 11 19 32 53 87 142 

Proposed 1 2 3 4 5 6 7 8 9 

 

 

3.3.  The proposed reversible forward and reverse converters  

The following section presents the reversible design of the forward and reverse converters for the 

moduli set {2n-1, 2n+k, 2n+1}. They are efficiently designed using the proposed reversible modular adders 

since mainly modular addition is required in the core of the converters. Also, some circuit parameters, 

including the quantum cost, quantum depth, constant input, and garbage output are calculated. 

 

3.3.1. Forward converters 

Figure 8(a) shows the hardware structure of the forward converter for the moduli set {2n-1, 2n+k, 

2n+1} based on (9), consisting of CSAs and a modulo 2n±1 adder The reversible CSAs as shown in  

R
A

M

 X0  

 0  

 0  

 0  

 0  

 X0  

 0  

 0  

 0  

 X0  

 X0  

 X0  

 X0  

 X0  

 X0  

 0  

 0  

 0  

 0  

 X0  

 0  

 0  

 0  

 X0  

 X0  

 X0  

 X0  

 X0  



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 2009-2022 

2018 

Figures 2(a) and 2(b) followed by a reversible modular adder are used to implement (9). A simplified version 

of the suggested reversible modulo 2n+1 adder has been used in Figure 8(a) since based on (9), the operands 

have n bits. To improve performance, the reversible modulo 2n-1 with a double representation of zero [12] 

has been used as shown in Figure 4. The modulo 2n-1 with a double representation of zero does not require a 

series of AND gates for the detection of 1s. However, for the remaining RNS components, the modulo 2n-1 

with a single representation of zero should be used. There are two CSAs with EAC as shown in Figure 2(a) in 

the modulo 2n-1 channel, i.e. x1, of the forward converter as shown in Figure 8(a). Therefore, the total 

quantum cost of the forward converter is equal to 22n-2. Besides, all the required RGs for the x1 computation 

have just one constant input. The modulo adder consists of n+1 PGs and n-1 HNGs. Therefore, 4n and 7n-1 

constant inputs and garbage outputs are applied, respectively. The quantum depth of the 2n-1 channel of the 

forward converter is (7n+9)Δ. Note that the most important path of the forward converter is set by the 

modulo 2n+1 channel. Therefore, the quantum depth of the x3 circuit defines the total quantum depth of the 

forward converter. The modulo 2n+1 channel, i.e. x3, of the forward converter as shown in Figure 8(a), 

consists of three CSAs with CEAC as shown in Figure 2(b) where each CSA is designed with n HNGs and 

one FG. 

Besides, the final modulo adder includes a PG and n-1 HNGs for the first level and an FG with n 

PGs for the second level. Therefore, the total quantum cost for the modulo 2n+1 channel of the forward 

converter is 28n+2. Moreover, 5n+4 constant inputs and 9n+3 garbage outputs are required for the RGs in 

the modulo 2n+1 channel of the forward converter. Finally, the total quantum depth of the modulo 2n+1 

channel for the forward converter, which defines its critical path, is (7n+15)Δ. 

 

3.3.2. Reverse converters 

The proposed reversible reverse converter for the moduli set {2n-1, 2n+k, 2n+1} is shown in  

Figure 8(b). The proposed reversible CSAs with EAC as shown in Figure 2(a) and modulo 2n-1 adder as 

shown in Figure 4 for achieving the reversible reverse converter have been used. Due to the use of 2n-bit 

operands, each CSA requires 2n HNGs. Besides, the modulo adder requires a PG followed by (2n-1) HNGs, 

(2n-1) TGs, a FrG and 2(n) PGs. 

As a result, the total quantum cost of the reverse converter is:  

 

𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑐𝑜𝑠𝑡𝑅𝑒𝑣𝑒𝑟𝑠𝑒 = 6(2𝑛 + 2𝑛) × 6(2𝑛 − 1) + 9 + 4(2𝑛) = 54𝑛 − 2 (22) 

 

All the HNGs in the proposed reversible reverse converter have one constant input and two garbage outputs. 

Besides, all PGs have one constant input and one garbage output, except for the last PG, which has two 

garbage outputs. Also, the TG has one constant input with two garbage outputs, except for the first-level 

TGs, which have no garbage outputs. Therefore, the total constant inputs and garbage outputs of the reverse 

converter are: 

 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛𝑝𝑢𝑡𝑠𝑅𝑒𝑣𝑒𝑟𝑠𝑒 = 4𝑛 + 1 + 2𝑛 − 1 + 2𝑛 − 1 + 1 + 2𝑛 = 10𝑛 (23) 

 

𝑔𝑎𝑟𝑏𝑎𝑔𝑒 𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑅𝑒𝑣𝑒𝑟𝑠𝑒 = 2(4𝑛) + 1 + 2(2𝑛 − 1) + 2(2𝑛 − 1 − 𝑛) + 2 + 2𝑛 + 1 = 16𝑛 (24) 

 

The first and second levels of HNGs in the CSAs add 9Δ to the circuit depth. Besides, the first PG 

and each of the remaining (2n-1) HNGs add 4Δ to the quantum depth of the reverse converter. Moreover, we 

have 𝑙𝑜𝑔2 2𝑛, TG levels, and the first level of the TG, which increases the depth by 4Δ, and the other levels 

of TG increase the depth by 3Δ. Each of the next FrGs and the last level PGs add 3Δ to the depth. As a result, 

the total quantum depth of the reverse converter is (25). 

 

𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑑𝑒𝑝𝑡ℎ𝑅𝑒𝑣𝑒𝑟𝑠𝑒 = (12 + 4 × (2𝑛 − 1) + 4 + 3 × (⌈log2 2𝑛⌉ − 1) + 3 + 3(2𝑛))∆ (25) 

 

In this section, each component of the suggested RNS reversible system has been evaluated in terms of the 

quantum cost, quantum depth, and the number of constant inputs and garbage outputs. 

 

3.4.  Performance evaluation  

This study is the first case study in the literature reporting the implementation of all RNS 

components using reversible circuits. The performance of the proposed modular reversible circuits is 

compared with. the performance of conventional binary reversible circuits. Consecutive multiplications  

are selected due to their importance in several applications. Although consecutive multiplications are 

modular, i.e., the bit width of the successive operands is constant, the worst-case scenario has been 

considered, where the bit width doubles once a multiplication is performed. 4-bit operands have been 
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considered for performing consecutive multiplications in both RNS form and the conventional binary 

representation, as shown in Table 2.  

 

 

 
(a) 

 

 
(b) 

 

Figure 8. The proposed reversible converter for the moduli set {2n-1, 2n+k, 2n+1} (a) forward converter and 

(b) reverse converter 
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Table 2. Reversible implementation of multiple multiplications: regular vs. RNS 
Number of 

Multiplications 

Quantum Cost Quantum Delay Quantum Cost 

Improvement 

Quantum Delay 

Improvement 

Required 

Regular 
Multiplier Size 

(output bits) 

Required RNS 

Dynamic 
Range (bits) 

Regular RNS Regular RNS n Total 

2 140 754 41 142 -81.4% -71.1% 8 3 9 
3 428 1127 106 214 -62% -50.4% 12 4 12 

4 864 2056 195 327 -57.9% -40.3% 16 6 18 

5 1448 2611 308 427 -44.5% -27.8% 20 7 21 
6 2180 3229 445 526 -32.4% -15.3% 24 8 24 

7 3060 4646 606 672 -34.1% -9.8% 28 10 30 

8 4088 5446 791 810 -24.9% -2.3% 32 11 33 
9 5264 6307 1000 930 -16.53% +7% 36 12 36 

10 6588 8212 1233 1125 -19.77% +8.7% 40 14 42 

11 8060 9212 1490 1262 -12.5% +15.3% 44 15 45 
12 9680 8212 1771 1291 +15.1% +27.1% 48 16 48 

 

 

First, the method of [24] has been considered for multiplying 4-bit operands in the conventional 

binary number representation. On the other hand, multiplications in the RNS domain have been done using 

the first translation of 4-bit weighted operands to residue representation by two parallel forward converters. 

Then, modular multiplications were applied using the residues. Note that the forward converter is considered 

only once for calculating the total delay since, after conversion of the first two operands to RNS, the 

remaining numbers’ conversions will be done in parallel by modular multiplication of previous operands. 

Similar to the forward converter, the reverse converter was applied only once at the end to produce the 

weighted representation of the last product. Note that in this case study, the value of k in the moduli set  

{2n-1,2n+k,2n+1} is considered zero, and the value of n is selected in such a way that the dynamic range 3n is 

enough for the required bit width. For two regular weighted operands with p and q-bit size, the multiplication 

result will have p+q bits. Therefore, in consecutive multiplications, the first two 4-bit operands yield 8-bit 

products. Then, another 4-bit operand is multiplied by the previous output result, that is 8 bits, leading to the 

output result with 12 bits, and this process continues. It can be seen from Table 2 that, as expected, for a 

small number of operations, the RNS structure cannot lead to improvement mainly due to the overhead of 

converters. However, by increasing the number of operations, the RNS performs better since the overhead of 

the required converters is not considered while performing internal modular operations. As indicated in  

Table 2, after 9 multiplication operations, RNS results in a 7% reduction of the delay, and this improvement 

continues up to 27% for 12 operations. Also, the performance of the proposed modular reversible circuits in a 

case-study application was compared with that of the conventional binary reversible circuits. The dot-product 

operation is selected due to its importance in the convolution operation in a variety of operations from digital 

signal processing to deep convolutional neural networks. The general dot-product formula of (26) for  

20 operands, i.e., m=10, and for 18 different operands' bit-width is considered. 
 

𝑦(𝑛) = ∑ 𝐴𝑖𝐵𝑖
𝑚
𝑖=1  (26) 

 

3.4.1. Reversible regular dot-product calculation  

To calculate A1B1+A2B2+..., some multiplications and additions are required. The regular reversible 

multiplier of [25] is considered to perform the required multiplications. A carry-save adder is used to perform 

carry-save additions of the multiplication results, and a regular reversible ripple carry adder is used to add the 

redundant summation outputs of the carry-save adder to achieve the result. The circuit’s parameters for 

multiplying two n-bit numbers, according to the method used in [25], are (27) to (30). 
 

𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑐𝑜𝑠𝑡𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 = 3𝑛 + (16 × 𝑛) + 16 + 4(𝑛 − 1) (27) 

 

𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑑𝑒𝑝𝑡ℎ𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 = (3 + (2𝑛 + 2) + (6 × (8 + 3(𝑛 − 4))) + 16)𝛥 (28) 

 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐𝑜𝑠𝑡𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 = 3𝑛 + 4𝑛 + 4 + 8 + 3(𝑛 − 4) (29) 

 

𝑔𝑎𝑟𝑏𝑎𝑔𝑒 𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 = 𝑛 × (𝑛 − 1) + 2𝑛 + 4 + 2(8 + 3(𝑛 − 4)) (30) 

 

3.4.2. Reversible modular dot-product calculation 

Here, the proposed RNS circuits can be used to perform the dot-product operation. First, each 

number should be converted into residues using the forward converter. The forward converter possesses a 

parallel structure for computing the residues of an operand. Modular arithmetic channels then perform 
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modulo multiplication in residues of two corresponding operands. This operation will be repeated two times 

more for other operands. Finally, the results of multiplications should be added. This is possible to be done 

by the use of a modular CSA followed by a modular adder. The result will be converted to its regular binary 

form using the reverse converter. A comparison between the regular binary and RNS implementation of 

reversible dot-product calculation for different operand widths is presented in Table 3. The value of n in the 

moduli set {2n-1, 2n+k, 2n+1} is selected in such a way that the relation 3n+k≥2q+2 holds where 3n+k is the 

dynamic range. Note that for q-bit operands, each multiplication result will have 2q bits. 

Besides, adding three 2k-bit operands yields the (2q+2)-bit final dot products. Thus, the dynamic 

range should be equal to or greater than 2q+2. It can be seen from Table 3 that the proposed RNS circuit 

results in an improvement in N=15, and at this stage, we will have a 10.7% improvement in delay. RNS 

eliminates the need for large multipliers and adders substituting them with small arithmetic circuits working 

in parallel. 

 

 

Table 3. Reversible implementation of N-Bit convolution: regular vs. RNS 

Bits 
Quantum Delay 

Quantum Delay Improvement 
Required Regular Convolution Size 

(output bits) 

Required RNS Dynamic Range (bits) 

Regular RNS N Total 

3 530 1032 -48.6% 11 4 12 

4 736 1267 -41.9% 13 5 15 
5 942 1267 -25.6% 15 5 15 

6 1148 1512 -24% 17 6 18 
7 1354 1748 -22.5% 19 7 21 

8 1560 1748 -10.7% 21 7 21 

9 1766 1952 -9.5% 23 8 24 
10 1972 2172 -9.2% 25 9 27 

11 2178 2172 +0.27% 27 9 27 

12 2384 2326 +2.4% 29 10 30 
13 2590 2504 +3.3% 31 11 33 

14 2796 2504 +10.4% 33 11 33 

15 3002 2678 +10.7% 35 12 36 

 

 

4. CONCLUSION 

In this paper, the reversible design of modular adders and multipliers is presented, which is a vital 

element in computation. As shown, adopting this novel design in reversible modular adders improves the 

number of constant inputs in the existing circuits. Also, using a new ram gate is likely to reduce the delay in 

the production of reversible circuits. Reversible forward and reverse converters for the 3-moduli set {2n-1, 

2n+k, 2n+1} have also been designed. Finally, results showed that the proposed design of modular reversible 

circuits reduced some circuit parameters, including latency and cost. In the future, reversible parallel prefix 

multipliers are suggested to be used to make circuits under optimized conditions in a way to be cost-effective 

in terms of gate cost, delay, garbage, and quantum cost. The parallel prefix multiplier could be used for cases 

where speed is more important than cost. The disadvantage of using such a method, however, will be its high 

cost, and in order to solve this problem, a hybrid circuit may be used. The hybrid parallel prefix circuit will 

be improved further if the parallel prefix Kogge–Stone is implemented because this method has a 

significantly lower depth compared to other prefix methods. The only defect of the parallel prefix  

Kogge–Stone circuit is the high cost of the circuit that can be significantly reduced using this hybrid model. 
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