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 The growth of abnormal cells in the brain’s tissue causes brain tumors. Brain 

tumors are considered one of the most dangerous disorders in children and 

adults. It develops quickly, and the patient’s survival prospects are slim if 

not appropriately treated. Proper treatment planning and precise diagnoses 

are essential to improving a patient’s life expectancy. Brain tumors are 

mainly diagnosed using magnetic resonance imaging (MRI). As part of a 

convolution neural network (CNN)-based illustration, an architecture 

containing five convolution layers, five max-pooling layers, a Flatten layer, 

and two dense layers has been proposed for detecting brain tumors from 

MRI images. The proposed model includes an automatic feature extractor, 

modified hidden layer architecture, and activation function. Several test cases 

were performed, and the proposed model achieved 98.6% accuracy and 

97.8% precision score with a low cross-entropy rate. Compared with other 

approaches such as adjacent feature propagation network (AFPNet), mask 

region-based CNN (mask RCNN), YOLOv5, and Fourier CNN (FCNN), the 

proposed model has performed better in detecting brain tumors. 
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1. INTRODUCTION  

The human body is made of millions of cells, and the brain is an essential part of the human body. A 

brain tumor is caused by abnormal cells in the brain’s tissue. It is considered one of the world’s deadliest 

diseases [1], [2] due to its escalating impact and fatality rate in all age categories. It is India’s second-leading 

cause of cancer [3]. According to the American Cancer Society’s most recent report, around 24,000 people in 

the United States were infected with brain tumors in 2020, with an estimated 19,000 deaths due to the 

increased use of technology such as cell phones and tablets [4], [5]. Approximately 120 varieties of tumors 

have been discovered too far, and they all arise in various shapes and sizes, making diagnosis more 

challenging [6]–[8]. Medical imaging modalities like positron emission tomography (PET), computed 

tomography (CT), magnetic resonance imaging (MRI), and magnetoencephalography (MEG) have been 

utilized to diagnose brain irregularities for a long time [9], [10]. The MRI multimodality imaging technique is 

the most common and efficient technology routinely used to diagnose brain tumors because of its capacity to 

distinguish between structure and tissue based on contrast levels [11], [12]. MRI anomaly detection is now 

https://creativecommons.org/licenses/by-sa/4.0/
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primarily manual, and doctors must spend significant time discovering and segmenting the tumor for therapy 

and surgery [13], [14]. This manual procedure is also prone to errors and can endanger one’s life. 

Researchers have begun to examine various machine learning and deep learning techniques for computer-

based tumor diagnosis and segmentation to address these challenges.  

Deep learning is a machine learning subfield widely used to develop a semi-automatic, automatic, or 

hybrid model to detect and segment tumors in less time [15]. Radiologists can make a more accurate 

prognosis and increase the odds of long-term survival if a brain tumor is discovered early [10]. The tumor’s 

shifting appearance, position, form, and size [16] remains a complex process. There has already been a lot of 

work done to assist doctors, patients, and researchers. Many computers aided diagnostic (CAD) systems have 

been created to detect and classify brain anomalies [17] automatically, but they still perform with poor 

accuracy [18]. Several articles have been published without highlighting the flaws in previous work or 

providing any significant insight into future directions. Interoperability is lacking in most hybrid models, 

while gradient vanishing is a concern in deep learning models. Similarly, there is a lack of uniformity in data 

preprocessing. 

This article aims to process the images from MRI and detect tumors in the brain by solving previous 

issues. Image enhancement, rebuilding, and estimation extraction techniques have been applied to enhance 

image quality while preparing the dataset. The image digitization process and picture upgrade techniques 

handle defective images. A modified CNN has been applied to take an MRI scan image of the brain as input, 

detect the tumor, and give the result as output. The network contains five convolution layers, five  

max-pooling layers, a Flatten layer, multiple hidden layers, and two dense layers. A modified recto-triangular 

architecture has been utilized in the hidden layer that enhances the probability distribution. The model’s 

accuracy has been evaluated and compared with state-of-the-art techniques. The model has performed better 

than other approaches in detecting brain tumors from MRI images.  

 

 

2. RELATED WORKS 

Image detection plays a crucial role in analyzing brain tumors using MRI images. Many methods for 

detecting brain tumors from MRI images have been proposed. In the method presented by Kumar et al. [19], 

brain tumors were predicted using a fully convolutional neural network (FCN) from MRI images.  

Derikvand et al. [20] presented an approach based on neural convolution. The method used glioma 

brain tumor detection networks in MR imaging. The proposed process was a hybrid, multiple CNN 

architectures using local and global brain tissue knowledge to predict each pixel’s label, improving results.  

CNN was used for image segmentation and detection by Hemanth et al. [21]. It explicitly pulled 

features from images with the least amount of preprocessing. LinkNet was employed. The architecture of a 

neural network was designed to conduct semantic segmentation and detection. The LinkNet network blocks 

of encoders and decoders were responsible for breaking and rebuilding the image until it was routed through 

a few final levels of convolution. root mean square error (RMSE), recall, sensitivity, precision, F-score 

specificity, and percentage mean error (PME) evaluated the suggested CNN’s performance. 

Hossain’s methodology [22] began with the input image’s skull striping, which removed the skull 

part from the MRI images. The fuzzy C-means clustering algorithm was used to detect the filtered image. 

Texture-based and statistical-based features were extracted from the images. The extracted features were fed 

into a CNN model. The model’s accuracy for brain tumor prediction was high, but the computational time 

was much longer than other models.  

Minz et al. [23] proposed one method that extracted characteristics using the gray level co-occurrence 

matrix methodology. An image’s texture was defined by calculating specified spatial relationships that 

appeared in an image. Gray level co-occurrence matrix was built, and this matrix extracted statistical 

measurements. The classification was done with the AdaBoost classifier, and the proposed system attained an 

accuracy of 89.90%. 

Gurbin et al. [24] proposed a method using discrete wavelet transform levels (DWT) and continuous 

wavelet transform levels (CWT). Support vector machines (SVM) were utilized to identify benign, 

malignant, or healthy brains. The research suggested that CWT performs better than DWT in computation.  

Chander et al. [25] proposed a strategy to detect afflicted brain tissues using the grade 4 gradient 

boosting machine (GBM). The retrieved properties of Bayesian naive were used to classify them. This 

method yielded an accuracy of 83.33%. The MRI image was initially fed into the algorithm, which filtered it 

to smooth it out and remove noise. The next step was to mask the filtered image to remove brain tissues from 

the skull. Finally, the acquired features were sent into an SVM classifier, which determined whether the 

image was malignant or not.  

After examining many algorithms for detecting brain tumors, we found that most algorithms 

required a long computational time, while cheap computational time methods could not provide greater 
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accuracy. Every classifier requires rectifying the predecessor’s flaws, and boosting is sensitive to outliers. As 

a result, the technique is overly reliant on outliers. Another downside is that scaling up the process is nearly 

impossible because each estimator is based on the accuracy of preceding predictors. As a result, we intended 

to propose an approach that could provide excellent accuracy. 

 

 

3. BRAIN TUMOR DETECTION PROCESS 

3.1.  Data collection 

A dataset containing 30,000 images was collected to train the deep learning model. The dataset 

contained two classes: fresh MRI images of the brain and the images with a brain tumor. The collected data 

contains 15,000 images of healthy brains and 15,000 images of brain tumors. For testing the dataset, related 

images were collected from Google. There are 4,400 brain images that were taken without a tumor, and  

3,200 images were taken with a tumor. A small part of the collected images is shown in Figure 1. For 

comparison purpose, the BRATS datasets [26] (BRATS_2018, BRATS_2019, BRATS_2020) were utilized.  

 

 

 
 

Figure 1. A part of collected images 

 

 

3.2.  Data preprocessing 

The preprocessing step aims to increase picture quality, data cleansing, and contrast-enhancing. The 

median filter filters out the noise and retrieves valuable data. Median filtering is a nonlinear approach used to 

retain sharp features in MRI images. In this work, an MRI image was preprocessed by converting the picture 

to greyscale and using a 33 median filter to eliminate noise, which enhanced image quality using (1). 

 

𝑓(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑠,𝑡)𝑒𝑆𝑥𝑦{𝑔(𝑠, 𝑡)} (1) 

 

A high pass filter was used to locate edges in the acquired MRI image. The edge-identified MRI 

image was combined with the original image to obtain the enhanced image. The dataset was enlarged using 

the data augmentation process to keep a strategic distance from overfitting. The dataset was augmented using 

four distinct tactics: rotate left -90 degrees, rotate left -180 degrees, rotate left -270 degree, and flip every 

image once. 

 

3.3.  CNN model architecture 

CNN was utilized to detect brain cancers using MR images in this study. CNN is an artificial neural 

network (ANN) designed to analyze image pixels and extract meaningful images. CNNs are used in image and 

video recognition [27]–[29], natural language processing, and artificial intelligence. In this study, the proposed 

architecture contains an input layer, five convolutions, five max pooling, one flattens, fully connected, or 

concealed, and two dense layers. The basic architecture of the proposed CNN is depicted in Figure 2. 

The input layer is usually a pixel-filled image, and to construct a convolution layer, a feature map is 

built and slid over these pixels. The pooling stage minimizes the number of features and increases the 

correlation between proximity pixels. The suggested method uses the max-pooling methodology to 

downsample images and extract essential features, such as edges. In this article, a max-pooling approach is 

applied after each convolution layer. In the convolution 2D layer, the input images are scaled to 300*300 

pixels. The rectified linear unit (ReLU) activation function is used in each convolution layer. The first 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 1, February 2023: 1039-1047 

1042 

convolution layer uses sixteen feature maps or filters and a 3×3 feature detector matrix. With the same 3×3 

feature detector matrix size, the number of feature maps or filters in the second convolution layer was 

increased to 32. The max-pooling layer uses a 2×2 feature extraction matrix after the convolution layer. After 

all the convolutions and max pooling, the resultant matrices are broken down into a flatten layer or a single 

column with all the pixel values. This flattening layer is then utilized to input the hidden layer of the 

following artificial neural network. Hidden layers are followed by two dense layers, which process the output 

for the network. This research compares the assessment score of the proposed recto-triangular design for the 

hidden layer to triangular and rectangular architectures shown in Figures 3(a) to (c).  

 

 

 
 

Figure 2. CNN model architecture 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 3. Hidden layer architecture (a) triangular, (b) rectangular, and (c) recto-triangular 
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3.4.  Triangular architecture 

The modified triangular architecture comprises 256 nodes in the first hidden layer, 512 nodes in the 

second hidden layer, and the number of nodes drops to take the shape of a triangle from the third layer to the 

seventh layer. The hidden layers include 256, 512, 256, 128, 64, 32, and 16 nodes. The ReLU activation 

function activates all the seven hidden levels. The output layer employs the SoftMax activation function to 

simplify modeling probability distributions. Figure 3(a) depicts the architecture.  

 

3.5.  Rectangular architecture 

There are six hidden layers in the rectangular architecture. Because of the shape, the design is 

rectangular architecture, which comprises six levels with similar nodes in individual layers. Figure 3(b) 

illustrates the architecture. The number of hidden layers employed in this article for the rectangular design is 

6, with each layer having 256 nodes. Each hidden layer utilizes the ReLU activation function, but only the 

output layer uses the SoftMax activation function. 

 

3.6.  Proposed recto-triangular architecture 

The recto-triangular, a combination of rectangular and triangular architecture, is proposed in this 

article. The architecture is made up of six layers in the hidden layer. Figure 3(c) depicts the proposed  

recto-triangular architecture’s shape and layers. The first, second, third, fourth, fifth, and sixth hidden layers 

contain 512, 256, 128, 128, 256, and 512 nodes. The number of nodes in the prevalent structure of the hidden 

layer drops at first, then rises till it reaches the output layer. ReLU is employed to activate all six hidden 

layers. The output layer uses a SoftMax activation function to represent the probability allocation accurately. 

 

 

4. RESULT AND ANALYSIS 

4.1. Training the model 

For evaluating the performance of the training period, a cross-validation approach was used in 

training. The data was trained using two separate approaches. The first technique separated the data into ten 

equivalent areas to ensure that each part was equally available. Another strategy was employed to divide the 

data into ten equal portions, each containing only data from one participant. As a result, the individual 

package contained data from multiple subjects regardless of the brain tumor class selected by subject-wise 

cross-validation. This method evaluated a network’s ability to generalize medical diagnoses. In clinical 

practice, the capacity for generalization indicates that a diagnosis can be predicted based on information 

acquired from participants with no results during training. The focal loss function (2) was operated to tackle 

class inequality issues.  

 

𝐹𝑜𝑐𝑎𝑙 = −(1 − 𝑃)𝛾 ∑ 𝑙𝑛 ∗ ln(𝑃𝑛) …𝑛
𝑛−1  (2) 

 

The focal loss was expressed as pixel weights, where n is the number of classes, indicating that the 

pixels belong to the kth class, Pn denotes the anticipated probability, and p denotes a high probability that is 

more difficult to identify accurately. The focus loss function value is ten, and weights are assigned to classify 

pixels effectively. 

 

4.2.  Performance metrics 

With the validation findings and four assessment parameters, we created our model. Correct values 

are true negative (TN) and true positive (TP), where TP indicates accurately classified aberrant brain images 

and TN indicates accurately classified standard brain images. False-negative (FN) and false-positive (FP) are 

inaccurate classifications, where FP indicates inaccurate typical brain imaging and FN indicates inaccurate 

pathological brain images. Our suggested model’s accuracy, dice score/F1, recall, and precision is evaluated 

using (3) to (6). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 

 

𝐹1 =
2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (6) 
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4.3. Performance measurement 

The MRI data were separated into validation, testing, and training. During training, the suggested 

framework utilized a minibatch of size 16. An ‘Adam’ optimizer with a learning rate of 0.001 was used, and 

the data was shuffled in each epoch. The performance was assessed using four performance matrices 

(accuracy, precision, dice score, and recall). The suggested model took 31.53 minutes to train, with  

47.82 seconds average training time per epoch.  

Figure 4 shows training and validation loss and accuracy, whereas 4(a) depicts the training and 

validation accuracy with the increasing number of epochs. Figure 4(b) depicts the loss curve. From the 

figure, it is noticeable that the network quickly began learning from MRI images. From a test dataset of  

7,600 images, we calculated precision, recall, and F1-score. Some resulting images of tumor detection by the 

proposed method are shown in Figure 5. 

 

 

 Training and validation accuracy  Training and validation accuracy 

Sc
o

re
 

 

Sc
o

re
 

 
 Number of Epoch  Number of Epoch 
 (a)  (b) 

 

Figure 4. Train vs. validation: (a) accuracy and (b) loss 

 

 

    
 

Figure 5. Tumor detection by the proposed model  

 

 

4.4. Comparison among architectures 

Triangular, rectangular, and recto-triangular architecture are covered in this study. The same dataset 

was used to train and evaluate all three architectures. The rectangular architecture, which has six hidden layers, 

performed a training accuracy of 97.9% and a precision of 91.2%. In contrast, the triangular architecture with 

seven hidden layers performed a training accuracy of 97.5%, which was 0.4% less than the rectangular 

architecture. Still, the triangular architecture’s precision score was 2.6% greater than the rectangular architecture. 

Figure 6 shows the comparison of three different architectures. Figure 6 shows that the proposed  

recto-triangular architecture has achieved a 98.6% training and 97.8% precision score, which is the best 

compared to the other two. From the evaluation, it can be concluded that the proposed architecture provides 

satisfactory results and performs better in detecting brain tumors.  

 

4.5. Comparison among several approaches and datasets 

The suggested model was compared to some existing approaches in terms of performance. As a 

baseline, the suggested technique was compared to FCNN, mask RCNN, YOLOv5, and AFPNet. Based on 

the prepared dataset, Table 1 shows a detailed comparison. The findings show that the proposed architecture 
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performs much better than prior research investigations. The generated model dominates and surpasses the 

current state-of-the-art model. The proposed model’s performance was measured on the existing brain tumor 

dataset BRATS 2018, 2019, and 2020. Table 2 shows the model’s performance on BRATS datasets. 

 

 

 
 

Figure 6. Comparison among architectures 

 

 

Table 1. Performance comparison of several approaches 
Name Accuracy F1 Recall Precision 

AFPNet 98.30 92.67 98.25 87.65 
Mask RCNN 99.16 91.09 99.40 84.24 

YOLOv5 98.12 93.89 97.81 90.01 

FCNN 98.73 95.98 98.50 93.37 

 

 

Table 2. Proposed model’s performance on BRATS dataset 
Name Accuracy F1 Recall Precision 

BRATS_2018 97.25 96.32 96.17 95.40 
BRATS_2019 98.10 97.63 96.30 97.16 

BRATS_2020 98.49 98.21 96.58 97.53 

 

 

5. CONCLUSION  

A modified architecture has been proposed in this article that takes advantage of the processed MRI 

dataset and proposed recto-triangular architecture in the hidden layer for brain tumor detection. The proposed 

CNN model may perform better than human observers by focusing on a portion of the brain image near the 

tumor tissue. The proposed preprocessing techniques remove many irrelevant pixels from the images to 

reduce computing time and capacity. Compared to state-of-the-art alternatives, the proposed model with the 

proposed hidden layer architecture and the processed dataset have performed better. In the future, we plan to 

improve the filters to enhance accuracy. 
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