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 Given the recent events worldwide due to viral diseases that affect human 

health, automatic monitoring systems are one of the strong points of research 

that has gained strength, where the detection of biohazardous waste of a 

sanitary nature is highlighted related to viral diseases stands out. It is 

essential in this field to generate developments aimed at saving lives, where 

robotic systems can operate as assistants in various fields. In this work an 

artificial intelligence algorithm based on two stages is presented, one is the 

recognition of paper debris using a ResNet-50, chosen for its object 

localization capacity, and the other is a fuzzy inference system for the 

generation of alarm states due to biological risk by such debris, where fuzzy 

logic helps to establish a model for a non-predictive system as the one 

exposed. A biohazard detection algorithm for paper waste is described, 

oriented to operate on an assistive robot in a residential environment. The 

training parameters of the network, which achieve 100% accuracy with 

confidence levels between 82% for very small waste and 100% in direct 

view, are presented. Timing cycles are established for validation of the 

exposure time of the waste, where through the fuzzy system, risk alarms are 

generated, which allows establishing a system with an average reliability of 

98%. 
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1. INTRODUCTION 

Technological tools are nowadays a means for the automatic detection of biohazards [1], [2] as well 

as for the analysis of waste such as plastic paper or metal that may involve the same type of risk [3]. 

Identifying, locating, and detecting biohazards is of utmost importance to safeguard human lives [4]. Among 

these identification methods, those based on deep learning stand out, for example, employed in [5] to detect 

plastic waste in rivers and in [6] to develop an intelligent waste management system, both based on deep 

learning through convolutional networks (CNN) [7], which extends to the detection of biological risks [8]. 

Deep learning garbage detection has shown a high level of efficiency for this task as shown in  

[9]–[11]. One of the CNN-based algorithms that stands out for object detection and localization in an image 

are region-based networks [12], which have been widely used in various fields [13]–[17]. Specifically, no 

work was found in the state of the art that employs networks of this type to identify paper residues as 

biological waste, which are common in stages of influenza or influenza virus disease, of very high 

propagation in humans. In this paper we present the training of a region-based network, type faster region-

based CNN (R-CNN), to identify and locate paper waste in residential environments. Similar applications 

https://creativecommons.org/licenses/by-sa/4.0/
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used for wear location and wear mechanism identification through faster R-CNN [18], shows the relevance of 

this network in this type of tasks. 

Fuzzy systems have been used as a decision-making strategy in multiple fields [19]–[22], for 

example, decision-making in cleaning robots regarding the shape, size, and distribution of garbage [23], [24], 

with high effectiveness. Fuzzy controllers are another important application on developments like robotic 

navigation systems [25], or specific task like improve the contact force in systems of pantograph-catenary to 

deliver power to a train [26]. This work used fuzzy logic to design a model for a non-predictive system to 

allow establishes a risk level for accumulation or temporal duration of the paper waste in situ, employing to 

the task of identification and localization convolutional networks based on regions. This allows contributing 

to the state of the art an algorithm to identify biological risks by paper waste focused on a residential 

environment, based on the waste originated by home care diseases such as influenza [27], where the risks 

from this type of biological waste have increased due to the covid pandemic, not being previously treated. 

The article is structured in four sections. The present introduction that refers to the state of the art, 

the second section that exposes the methods and materials in two subsections, the training of the network and 

the fuzzy system. The third section presents the results and their analysis. Finally, the fourth section presents 

the conclusions reached. 

 

 

2. METHOD  

The detection of paper waste implies being able to visually identify and locate them in space and has 

temporal implications, since the longer the time increases the probability of bacterial reproduction. To 

perform the automatic detection of biohazard from paper waste, a deep learning network based on region 

proposal network (RPN) like the faster R-CNN but using a ResNet-50 architecture [28], is trained by transfer 

learning. This allows the identification and localization of paper residues within the scene. The algorithm is 

oriented to work later an assistive robot, which will traverse a residential environment, i.e., areas such as a 

bathroom, living room, bedroom, and kitchen. The application scheme is oriented to develop an algorithm 

based on the flowchart illustrated in Figure 1.  

 

 

 
 

Figure 1. Flowchart algorithm  

 

 

It was determined that the robot will generate inspection tours through the determined areas every 6 

hours, which will be called an inspection cycle, each time it detects the risk of paper waste, the COUNT 

variable will be increased, which corresponds to an array of 4 elements, where each one associates each of 

the inspection areas. To generate the biohazard alarm, a fuzzy inference algorithm is used based on the area 
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where the waste is located employing ResNet-50 and the time spent in this area based on the number of 

cycles in which it was found. In the following, both parts of the algorithm, the training of the network and the 

fuzzy inference system, are presented. 

 

2.1.  Detection of paper waste 

For training, a database of 200 images of paper waste in the four environments (50 for each one) is 

used. Data augmentation process is applied using reflection operations on the vertical axis and translation, 

obtaining 600 images in total. The 80% of augmented database are used for training and the remaining 20% 

for validation. A sample of the initial database used is shown in Figure 2.  

 

 

 
 

Figure 2. Sample of the paper waste database 

 

 

The training of the network was performed at a learning rate of 0001, for 15 30, 30 and 50 epochs 

with 250, 1,140 and 7,210 iterations, respectively. Each training achieves 100% accuracy, with times ranging 

from 50 min to 3 hours on a 2.80 GHz Intel Core i7 computer with NVIDIA Gforce GTX 1050 8GB GPU. 

Figure 3 illustrates the accuracy versus recall plots obtained for each case, where for the 50 epochs (image on 

the right) a better balance between accuracy and recall is evidenced, where an accuracy value of 0.9 is 

preserved up to a recall of 0.45, much better than in the two previous cases.  

 

 

   
 

Figure 3. Result of the network training process 

 

 

Figure 4 shows the result of the learning of the network for the detection of paper debris. Figure 4 

on the left shows a case of paper detection on non-uniform surfaces for a carpet, which does not significantly 

alter the confidence level of the detection, which is 0.9. The central part of Figure 4 shows the recognition in 

an environment with a variety of objects, some even similar to waste, however, the detection is effectively 

given with a high level of confidence. In the case of the detection of multiple debris, as shown in Figure 4 on 

the right, an adequate detection is observed where the level of confidence begins to decrease to low values, in 

this case, the lowest value recorded was 82%. 
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Figure 4. Paper waste detection using faster R-CNN 

 

 

2.2.  Biohazard alarm 

Given the nonlinearity of the system, because it is not possible to predict when a paper will be found 

or in what place, a fuzzy inference model is used for this type of situation, where the mathematical model of 

the system is not viable [29], [30]. Thus, there are two inputs, one associated with the time measured in 

cycles and the other associated with the size of the paper detection area, where the output is determined by 

the level of risk involved in paper waste and the time it is kept in the residential environment. Figure 5 

illustrates the fuzzy scheme implemented. 

 

 

 
 

Figure 5. Fuzzy inference scheme used 

 

 

The membership’s functions were determined iteratively as shown in Figure 6. In general, a gradual 

change was required where both the beginning and the end present, a delay of reaction for the beginning, and 

saturation for the end of the universe of discourse, which limited the actions of alarmed state. For the time 

input, as seen in Figure 6(a), three membership functions are established, each with linguistic labels of low, 

medium and high, to denote the temporal perception of the paper residue at the site. For this case, the 

universe of discourse is established in 10 cycles, where after the 8th cycle (48 hours or 2 days) a high risk 

predominates. This scheme is determined given that at the residential level it is common to perform cleaning 

actions, which involve waste collection, at least once a day. 

The area input, in Figure 6(b), is determined by the bounding box of the paper detection by the 

ResNet, the larger it is, the more paper volume, which is, in turn, proportional to the risk involved. Given that 

the size of the input images to the network is 224×224 pixels, we have that, for the position that the camera 

will have on the robot to recognize the area, two-thirds of the scene without occlusion is required, which 

corresponds to an area of 75 pixels on each side to be gradually occluded by debris. Three membership 

functions are established for this input, each with linguistic labels of small, medium and big, to denote the 

size of the area covered by paper debris. The universe of discourse is set to 80 pixels, since this value is close 

to one-third of the dimensions of the scene, as already mentioned. 

Sometimes more than one paper is found in the scene, as shown in Figure 7. In such cases each of 

the areas is summed up. If the papers are very close together, it is possible that the network will detect them 

as one and in this case the area will automatically involve both of them. 

The output of the fuzzy system corresponds to the associated biological risk and is determined in a 

universe of discourse from 0 to 100%, as shown in Figure 8. Three alarm levels are established with their 

respective membership functions low, medium, and high. Where the trapezoid of the linguistic label of high, 
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allows reaching a defuzzification close to 100%. Although it seems that the medium state predominates, the 

rule base plays a fundamental role in the output by relating it to the inputs.  

 

 

  

(a) (b) 

 

Figure 6. Input membership functions 

 

 

  
  

Figure 7. Multiple areas encountered Figure 8. Output membership functions 

 

 

The rule base is presented in Table 1, which is constructed in a general way when the paper 

biohazard is detected, where symmetry is generated in the system response where the three output states are 

associated proportionally to each input combination. In essence, the system remains below high alarm until  

6 cycles, i.e., one and a half days. As mentioned, referring to the fact that at the residential level there are 

usually daily cleaning days, resulting in the collection of waste in at least four periods a day if a risky 

situation arises, for example, due to illness. 

 

 

Table 1. Base of rules 

 
 Area  

Small Medium Big  

Time Low Low Low Medium 
Medium Low Medium High 

High Medium High High 

 

 

Similarly, Figure 9 shows the graph of the behavior of the fuzzy system, showing the predominance 

of the medium state, since the idea is to prevent the accumulation of paper waste. The system is nonlinear as 

observed, given the behavior established in the input and output membership functions. Where more than  

8 cycles should generate a high alarm state regardless of whether or not there is an accumulation of paper 

waste. 

Figure 10 illustrates the final scheme used in the evaluation of the biological risk model developed. 

The input corresponds to the video capture of the camera associated with the robot. This enters the classifier 

by ResNet, whose output is taken by the fuzzy inference system. According to the defuzzification associated 

with Figure 9, will activate each alarm indication light. It is necessary that in the variable of the bounding 

box the value of the area or sum of areas of each paper recognition is delivered. 

plot point plot point 

plot point 
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Figure 9. Graphical response of the fuzzy system 

 

 

 
 

Figure 10. Simulated system response 

 

 

3. RESULTS AND DISCUSSION  

Through simulations of the algorithm in the environment shown in Figure 10, using videos of the 

different zones at 30 fps, the performance was evaluated, and the results shown in Table 2 were obtained.  

100 wastes paper samples were used in different positions and groupings, which were kept in the same 

positions during the different cycles that the inspection lasts divided in 10, i.e., 24 hours were represented by 

2.4 hours and so on. 

 

 

Table 2. Risk simulation 
Risk TP % 

low 99 

medium 97 
high 98 

average 98 

 

 

To facilitate the evaluation times of the algorithm up to 48 hours, the video was repeated every 

cycle, i.e., every 36 minutes in the simulation. For the “low” alarm case, there were 99 true positives (TP) 

and one false positive that was due to erroneous recognition of paper where it did not exist. For the 

“medium” alarm, there were 97 true positives (TP) and two false positives that were due to erroneous 

recognition of paper where it did not exist. During the medium stay, which lasted 3 cycles, only two of the 

false positives occurred once out of the three times that the algorithm inspected the same area in this alarm 

state, the other two times were not detected. For the third false positive, a reflection of light from a light bulb 

on a laminate floor was mistaken for paper waste, so the error continued. For the “high” alarm case, there 

were 98 true positives (TP) and two false positives that were due to erroneous recognition of paper where it 

did not exist, plus the previous light reflection. 
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It is also relevant to mention that initially triangular membership functions had been established for 

the input 'area', as shown on the left of Figure 11, so that high-risk alarm levels were not achieved, which was 

solved by using the trapezoidal membership functions illustrated on the right. The lower part of each fuzzy 

set shows the activations derived from the rule base and the defuzzification value, where the center of gravity 

varies significantly for the same input values (thick red line in the last box). 

 

 

 
 

Figure 11. Graphical response of the fuzzy system 

 

 

The results of Table 2 were validated through a virtual environment where the robot moves in the 

cycles mentioned by the residential environment. Figure 12 illustrates on the right the simulated environment 

and on the left the camera's view of the robot navigating in the test environment. The effectiveness of the 

proposed method is validated in the correct identification of the paper residue by the network and the 

generation of alerts recorded by the diffuse system used. 

 

 

  
 

Figure 12. Graphical response of the system 

 

 

4. CONCLUSION  

The training of the network was iterative, where the best combination of features of the network was 

exposed, which for detection by regions exhibits a better accuracy versus recall ratio. This allows us to 

conclude that, by obtaining a high accuracy initially, the classification will be very exclusive, which is 
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necessary to avoid false positives, which decreases with the increase of the recall allows finding paper debris 

in different positions and shapes, surely not trained. Given the fast convergence of the fuzzy inference system 

and the low computational cost involved, it was concluded that it is beneficial for paper waste detection to 

use the fuzzy logic algorithm to reduce the decision time, mainly at the time of being embedded for the 

robotic control. The integration of deep learning techniques and fuzzy systems in a paper waste biohazard 

detection application leads to the conclusion that the automation of this type of hazard is feasible without the 

direct intervention of human control and/or supervision. 
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