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 Sudden cardiac death (SCD) is becoming a severe problem despite 

significant advancements in the usage of the information and communication 

technology (ICT) in the health industry. Predicting an unexpected SCD of a 
person is of high importance. It might increase the survival rate. In this 

work, we have developed an automated method for predicting SCD utilizing 

statistical measures. We extracted the intrinsic attributes of the 

electrocardiogram (ECG) signals using Hilbert-Huang and wavelet 
transforms. Then utilizing machine learning (ML) classifier, we are using 

these traits to automatically classify regular and SCD existing risks. Support 

vector machine (SVM), decision tree (DT), naive Bayes (NB), discriminate 

k-nearest neighbors (KNN), analysis (Disc.), as well as an ensemble of 
classifiers also utilized (Ens.). The efficiency and practicality of the 

proposed methods are evaluated using a standard database and measured 

ECG data obtained from 18 ECG records of SCD cases and 18 ECG records 

of normal cases. For the automated scheme, the set of features can predict 
SCD very fast that is, half an hour before the occurrence of SCD with an 

average accuracy of 100.0% (KNN), 99.9% (SVM), 98.5% (NB), 99.4% 

(DT), 99.5% (Disc.), and 100.0% (Ens.) 
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1. INTRODUCTION  

Sudden cardiac death (SCD) arises when a patient’s heart starts to pump in an unstable or abnormal 

rhythm (arrhythmia) and afterwards stops beating altogether. If the person survives, the condition is also 

known as sudden cardiac arrest (SCA) [1]. SCD is induced by cardiovascular disease patients who have or 

have not previously had a cardiac problem. The time and manner of death in such circumstances are 

unanticipated [2], [3]. From the beginning of an unanticipated variations in health condition and 

unconsciousness, up to a minute is typically assumed to be controlled [3]. SCD is generally the result of a 

deadly cardiac activity disorder such ventricular fibrillation (VF) or ventricular tachycardia (VT) [4], or a 

severe bradyarrhythmia [5]. Such arrhythmias typically result in SCA that decreases cardiac function and 

found it challenging for the heart to effectively push blood out [6]. Whenever SCA issue is left neglected for 

an extended period of time, it sends a message to SCD. Cardiomyopathy, coronary heart disease, valve 

illnesses, and hereditary abnormalities are by far the most common causes of malignant ventricular 

arrhythmias. Instantaneous death may occur if not detected accurately and treated quickly [2], [7]. According 

to research findings, the rise in actual targeted treatment involvements such as, implantable cardioverter 
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defibrillators (ICD) lowers SCD death [8], [9]. However, they are still expensive and only a small percent of 

participants continues receiving appropriate ICD shock. The majority of unintentional deaths occur who have 

not had qualified candidates [10]. As a result, the public viewing method via an automatic electrical 

defibrillator (AED) has recently attracted a lot of attention as a technique for preserving patients without an 

ICD against mortality after cardiogenic shock [11]. However, even now in countries when public AEDs are 

commonly accessible and has strengthened recovery methods as well as when the first reaction controls are in 

place, the median rate of survival with SCA continues to decrease [12]. Basic electrophysiological substrate, 

showing dispersion of refractoriness, and sympathetic stimulation activity in the chambers of the heart was 

all demonstrated to be harmful for cardiac arrhythmia SCD [13], [14]. As a result, early diagnosis of an 

unexpected SCD in a patient having aggressive ventricular arrhythmias is critical to enhancing overall 

survival.  

Lately, research has focused on building effective models for calculating the risk of SCD utilizing 

invasive and non-invasive methodologies including such electrophysiological scanning [11], left ventricular 

ejection fraction (LVEF) [15], invasive hemodynamic assessment [16], and non-invasive electrocardiography 

(ECG) [17], [18], among many others. These are still not cost-effective. In comparing to the intrusive or 

imaging techniques mentioned above, ECG is much less expensive and much more generally sold. The 

electrical action of the heartbeat generates an ECG, that is, an electronic signal. An organized meta-analysis 

recently confirmed that certain ECG signal parameters could provide important information on the 

underlying cardiac substrate abnormality that can contribute to ventricular arrhythmias including SCD. Few 

of these metrics are pathophysiological control systems controlled by cardiac autonomic processes. Heart rate 

variability (HRV) or heart rate turbulence (HRT) [19]–[21], echocardiography transfer procedures, and the 

repolarization delay [22] are also significant. Other metrics are QRS (Q, R, and S waves in an 

electrophysiological) time [23], QT (Q and T waves) gap and dispersion [24], and T-wave alternative [25]. 

HRV and HRT is a derivation of an ECG signal which is described as the measurement of the R-R interval’s 

beat-to-beat variation. It has been seriously evaluated for SCD prediction and diagnosis. To reveal the 

intrinsic features of an HRV signals for monitoring and detection of SCD, frequency domain [20], temporal 

domain [26], and nonlinear techniques [27] have been proposed. This is achieved mostly through the use of 

classifications to organize topics and the number of features in various processing domains. HRV or HRT 

first provided impressive outcomes, but instead were eventually discovered to be unpredictive of arrhythmic 

mortality [28], [29]. HRV measurement’s output in the first several days after a myocardial disease has 

already been challenged and, its prognostic value has also been shown to really be low [28]. The efficacy of 

HRV-based SCD risk stratification in cardiovascular events is unknown [30]. It cannot be evaluated in people 

who have atrial fibrillation or to have a lot of arrhythmias [29]. As a consequence, these Electrocardiography 

markers are convincing in identification of patients at higher risk of having malignancy ventricular 

arrhythmia. The majority of the effort has really been centered on clinical studies. Using complex wavelet 

transforms, statistical calculations, and/or electrophysiological indicators, a few research have achieved 

automatic extraction of ECG characteristics immediately from ECG data [31], [32]. While, in some works, an 

SCD index (SCDI) introduced technique of combining some of the features in such a way that they could 

predict the SCD [33]–[35]. 

In this paper, our focus is to predict SCD automatically. Towards this, the contribution in this work 

is at multiple levels: i) an algorithm is developed for constructing a labelled database by segmenting the 

datasets; ii) data cleaning algorithm is developed to deal with missing values and removal of noise [36];  

iii) feature extraction is incorporated using Hilbert-Huang transforms, or empirical mode decomposition 

(EMD)-intrinsic mode functions (IMF1, IMF2, and IMF3) and wavelet transform, or multilevel 1-D wavelet 

decomposition (DWT)-approximation coefficients vectors (cAs) and detail coefficients vector (cDs) [37], 

[38]; iv) method developed for ranking of extracted features and selection using various statistical methods 

such as analysis of variance (ANOVA), correlation analysis (dCor), and ReliefF to find the features with the 

most deviations; and v) finally, we utilized artificial classifier such as k-nearest neighbor (KNN), 

discriminant analysis (Disc), naive bayes (NB), support vector machine (SVM), decision tree (DT), and 

ensembles of classifiers to identify regular and SCD risk areas and use these characteristics (Ens). 

Contents of rest of the paper are: section 2 discusses about the datasets used in the work obtained 

from various databases of both normal and SCD patients. Section 3 describes the schematic diagram of the 

proposed methodology for SCD prediction along with algorithms developed. While section 4 discusses the 

important performance measures, results, and comparison with state of the art. Finally, the conclusion and 

future works are mentioned in section 5. 

 

 

2. INPUT DATASET 

For the SCD prediction process, at first, the ECG data are collected and pre-processed. The 

Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) is the largest publicly available 

https://www.sciencedirect.com/science/article/pii/S1746809419302526#sec0010
https://www.sciencedirect.com/science/article/pii/S1746809419302526#sec0015
https://www.sciencedirect.com/science/article/pii/S1746809419302526#sec0055
https://www.sciencedirect.com/science/article/pii/S1746809419302526#sec0085
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database that provides the ECG signals for this work. Here, the two databases are considered from the  

MIT-BIH namely, sudden cardiac death Holter (SCDH) and normal sinus rhythm (NSR) [39]. For the people 

who are at the SCD risk stage, the SCDH database is examined and for the normal people, the NSR database 

is examined. 18 recordings are involved in the SCD groups which are collected from the SCDH database. 

The collection of onset ventricular fibrillation (VF) is done before 30 mins of the first lead signal of ECG. 

This collection is taken at every recording of ECG. In this work, the VF is absent so that the SCDH having 

the No. 40, 42, and 49 recordings were not used. Because the amplitude R wave is low, the No. 38 and 41 

recordings were not incorporated due to unknown lead. Normal sinus rhythm database (NSRDB) database 

built the recordings with the normal group of 18 half-hour. From Table 1, it is observed that the age of 

61.1±18.7 years belongs to the SCD group as they range from 30-89 years and the age of 34.3±8.4 years 

belongs to the normal group and this group ranges from 20-50 years. There are 9 males and 8 females from 

the SCD group and 5 males and 13 females from the normal group but 1 SCD patient is omitted who is 

considered as an unknown gender. In Table 2, the descriptions are elaborately provided with record number, 

name, arrhythmia, and heart diseases group, and finally before the length of the VF. From the SCD group, it 

is observed that the majority of the patients are affected by malignant ventricular arrhythmias those who are 

undergoing heart disease and the abnormality of the cardiac substrate. The ECG signals with two examples 

are shown in Figure 1. Figure 1(a) belongs to the SCD group that shows around the onset of VF and the 

Figure 1(b) belongs to the normal group and this show around the signal’s middle part.  

 

 

Table 1. The SCD and regular groups’ genders and ages 
Group Total Gender Age 

Male Female Unknown Range Mean±SD 

SCD 18 9 8 1 30-89 61.1±18.7 

Normal 18 5 13 0 20-50 34.3±8.4 

 

 

Table 2. ECG data of SCD patients out from MIT-BIH dataset 
Database Heart diseases No of 

records 

Record name Length before 

VF onset 

Arrhythmia 

categories 

NSRDB Not available (NA) 18 Whole database NA unknown 

Sudden 

Cardiac 

Death  

Holter  

Database 

(SDDB) 

Cardiac surgery 4 32, 35, 36, 50 30 min Ventricular 

tachycardia, 

Ventricular 

fibrillation, 

Ventricular flutter 

Coronary artery 1 43 

Unknown 9 30, 33, 34, 37, 44, 46, 47, 48, 51 

Heart failure 2 31, 52 

Ventricular ectopy 1 45 

Acute myelogenous leukemia 1 39 

 
 

 
(a) 

 

 
(b) 

 

Figure 1. Two examples of ECG signals (a) 10 sec. of record 30 of SCD group around VF onset and  

(b) 10 sec. of record 16265 of normal group around the middle of the signal 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Automated prediction of sudden cardiac death using statistically extracted … (Karna Viswavardhan Reddy) 

4963 

3. ALGORITHM DEVELOPMENT 

We developed an algorithm to predict SCD at early stage. Also, we have developed models using 

ECG signals in which different combinations of the main components of models based on machine learning 

are used. The overall stages of the proposed work are shown in Figure 2. In the following sections we briefly 

describe the aspects of the components of the models. 

 

 

 
 

Figure 2. Proposed methodology for SCD prediction 

 

 

3.1.  Pre-processing of datasets 

We have applied data pre-processing mechanisms mainly for two reasons: i) enable the algorithms 

to work on the datasets and ii) improve the quality of the datasets. Data pre-processing includes data 

cleaning, data reduction, feature selection, and data transformation. Data cleaning on the datasets deals with 

the missing values and/or reduce the noise.  

In order to increase the precision and efficiency of the prediction algorithms, we designed a filter to 

reduce the noise of the ECG signals. For this, a Butterworth filter of order 6 is designed to pass signals with 

frequency higher than 0.5 Hz to remove the baseline wander and consider signals with frequency of higher 

than 30 Hz as noise and filter them out. Normal and SCD are transformed from categories to numerical 

indices. Without this transformation, the algorithms may not be able to work. 

 

3.2.  Construct a labeled database 

The dataset’s (ECG data) records are collected and pre-processed initially. Continuous one-minute 

signals image is segmented on each recording, and 30 one-minute ECG segments are generated, either 

classified as SCD or regular. For SCD group, the 30-minutes data are selected before VF onset and for 

normal group the 30-minutes data are selected from the middle of the records. At the end of this stage, we 

have a labeled database consisted of 30 × (18 + 18) = 1080 one-minute fragments which are saved and 

will be used for further study, i.e., to train and test our automated strategy of SCD prediction. This process is 

illustrated in Figure 3. 

 

3.3.  Feature extraction 

In this study, two types of transforms are used to find the intrinsic attribute curves of the ECG 

signals: i) Hilbert-Huang transforms, or empirical mode decomposition (EMD) to find the intrinsic mode 

functions (IMFs); ii) wavelet transform, or multilevel 1-D wavelet decomposition (DWT) to find the 

approximate and detail coefficients (cAs and cDs). Figures 4 and 5 show some intrinsic curves found by 

aforesaid transforms for a small duration. 

Then four statistical measures (mean, variance, skewness, kurtosis) are applied on the intrinsic 

curves found using Hilbert-Huang and wavelet transforms to specify a numerical value to each of these 

curves, which we use them as features. Since we initially do not know how many of features distinct enough 

are required to cover the whole aspects of ECG signal, we extracted quite a big number of them, 32 features. 

However, it is not needed to use all features. 
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Segmentation of the datasets 

 Input: ECG signals {(𝐭𝑖, 𝐫𝑖 , 𝑙𝑖 , 𝑡𝑖
𝑉𝐹𝑜𝑛𝑠𝑒𝑡}; 𝑖 = 1, … , 𝑁, 𝑙𝑖 ∈ {𝑁𝑜𝑟𝑚𝑎𝑙, 𝑆𝐶𝐷} 

 Output: Segmented database {(𝐬𝑖 , 𝑦𝑖}; 𝑖 = 1, … ,30𝑁, 𝑦𝑖 ∈ {𝑁𝑜𝑟𝑚𝑎𝑙, 𝑆𝐶𝐷} 

 𝑐 ← 0 

 for i=1 to N do 

  if 𝑙𝑖 = 𝑁𝑜𝑟𝑚𝑎𝑙 
   for k=1 to 30 

    𝑐 ← 𝑐 + 1 

    𝑦𝑐 ← 𝑙𝑖 

    𝐣 ← 0.5𝑡𝑖(𝑒𝑛𝑑) + (−15 + 𝑘 − 1) × 60, … , 0.5𝑡𝑖(𝑒𝑛𝑑) + (−15 + 𝑘) × 60 

    𝐬𝑐 ← 𝐫𝑖(𝐣) 

  else 

   for k=1 to 30 

    𝑐 ← 𝑐 + 1 

    𝑦𝑐 ← 𝑙𝑖 
    𝐣 ← 𝑡𝑖

𝑉𝐹𝑜𝑛𝑠𝑒𝑡 + (−30 + 𝑘 − 1) × 60, … , 𝑡𝑖
𝑉𝐹𝑜𝑛𝑠𝑒𝑡 + (−30 + 𝑘) × 60 

    𝐬𝑐 ← 𝐫𝑖(𝐣) 

 

Figure 3. The process of segmentation of ECG signals to prepare the database 

 

 

 
 

Figure 4. Some IMFs of an ECG signal (record 16265 of NSRDB), extracted using EMD 

 

 

 
 

Figure 5. Some cA and cDs of an ECG signal (record 16265 of NSRDB), extracted using DWT 
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3.4.  Feature selection 

After feature extraction, we have applied three methods to rank the features: i) ANOVA (analysis of 

variance) and ii) ReliefF algorithm (rank importance of predictors), and iii) dCor (correlation analysis). The 

ANOVA using F-test technique is used to rank characteristics in terms of how significant they are in the 

categorization [40]. The strengths of predictors are determined using ReliefF. Predictors that offer various 

scores to neighbors in the very same class are penalized, while forecasters that provide different preferences 

to neighbors in separate classes are awarded. To rank the characteristics, dCor utilizes a measurement of 

interaction between matched vectors. Tables 3 and 4 demonstrate several of the features that were used in this 

investigation. 

 

 

Table 3. Sample features extracted using EMD and ranked with correlation analysis 
 Feature, X Label  

Feature No. 2 6 1 4 8 

Feature formula variance(lmf1) variance(lmfz) mean(lmf1) kurtosis(lmf1) kurtosis(lmfz) row of x record name DB 

 0.094411319 0.129388168 0.025532239 6.33964188 6.559645558 Normal 1 16265 NSRDB 

0.181140341 0.14554032 0.089286928 6.347494434 3.986966356 Normal 2 16265 NSRDB 

… … … … … … … … … 

0.01723577 0.017637224 0.000622635 9.354896841 5.765803261 Normal 540 19830 NSRDB 

0.00820838 0.024405427 0.005172282 8.178362444 7.110102235 SCD 541 30 SDDB 

… … … … … … … … … 

0.005173318 0.004320744 0.005415132 13.69867346 11.14347478 SCD 1080 52 SDDB 

 

 

Table 4. Sample features extracted using DWT and ranked with ANOVA 
 Feature, X Label  

Feature No. 2 6 1 4 8 

Feature formula kurtosis(cD7) kurtosis(cD6) kurtosis(cD5) variance(cD1) variance(cA7) row of x record name DB 

 16.43466415 14.68811494 7.884046875 0.345274906 0.345274906 Normal 1 16265 NSRDB 

20.41299529 18.90730632 9.593829463 0.306361446 0.306361446 Normal 2 16265 NSRDB 

… … … … … … … … … 

25.92484865 14.38789522 5.56937062 0.077736297 0.077736297 Normal 540 19830 NSRDB 

31.7408592 15.51188951 5.659636272 0.134887891 0.134887891 SCD 541 30 SDDB 

… … … … … … … … … 

38.5807801 25.3291934 22.97580617 1.289219856 1.289219856 SCD 1080 52 SDDB 

 

 

3.5.  Classification 
To classify ECG data into the regular and SCD groups, we utilized 6 major classifiers. The best 

classification with the maximum accuracy was then chosen. These classifiers are: KNN, SVM, NB, DT, 

Disc., and Ens. One such algorithm that is used in DT is shown in Figure 6.  

 

 
Algorithm AdaBoostM1 

    Input: Dataset 𝑆 = {𝐱𝑖 , 𝑦𝑖}; 𝑖 = 1, … , 𝑁; 𝑦𝑖 ∈ {−1, +1}, 

               T: Number of learners, 

               W: Algorithm of weak learner 

    Output: Boosted classifier 𝑓(𝐱) = ∑ 𝑎𝑡ℎ𝑡(𝐱)𝑇
𝑡=1  

  𝑑𝑖
(1)

←
1

𝑁
; 𝑖 = 1, … , 𝑁 

 for t=1 to T do 

      ℎ𝑡 ← 𝑊(𝑆, 𝑑(𝑡)) 

      𝑘𝑖
(𝑡)

← 0; 𝑖 = 1, … , 𝑁 

   if 𝑦𝑖 ≠ ℎ𝑡(𝐱𝑖); 𝑖 = 1, … , 𝑁 

    𝑘𝑖
(𝑡)

← 1 

     𝑒𝑡 = ∑ 𝑑𝑖
(𝑡)

𝑘𝑖
(𝑡)𝑁

𝑖=1  

   if 𝑒𝑡 > 0.5 then 

    𝑇 ← 𝑡 − 1 

    return 

     𝑎𝑡 ← 0.5ln(𝑒𝑡
−1 − 1) 

     𝑑𝑖
(𝑡+1)

← 𝑑𝑖
(𝑡)

exp(−𝑎𝑡ℎ𝑡(𝐱𝑖)𝑦𝑖) ; 𝑖 = 1, … , 𝑁 

  
   𝑑𝑖

(𝑡+1)
←

𝑑𝑖
(𝑡+1)

∑ 𝑑
𝑖
(𝑡+1)𝑁

𝑖=1

; 𝑖 = 1, … , 𝑁 

   

 

Figure 6. Algorithm of AdaBoostM1 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 5, October 2022: 4960-4969 

4966 

3.6.  5-fold cross-validation 

The data are partitioned for classification. In other words, we have employed 5-fold cross-

validation. It means, we partition the instances to 5 parts and use 4 parts for training and 1 part for testing. 

Therefore, 80% of the instances are used for training and 20% of them are used for testing. This scheme is 

repeated for all parts, i.e., 5 times. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Performance measures  
As mentioned before, we employed 5-fold cross validation method to build and evaluate the 

performance of the classifiers used. After finding the model some metrics are used to evaluate the 

performance of models found using the classifiers. For this purpose, widely used classification performance 

measures, sensitivity (or recall), specificity, accuracy, precision, and F1-score are computed by (1)-(5). They 

are used to evaluate the performance of the proposed methods for prediction of SCD. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (1) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (2) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑃+𝐹𝑁
 (3) 

 

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2.𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (5) 

 

In which the true positive (TP), true negative (TN), false positive (FP), and false negative (FN) are the 

components of the confusion matrix and their meanings are summarized in Table 5. 

 

 

Table 5. Meanings of the components of the confusion matrix 
Term Meaning Meaning in this work 

TP True Positive The number of SCD which are recognized as SCD 

TN True Negative The number of not SCD which are recognized as not SCD 

FP False Positive The number of not SCD which are recognized as SCD 

FN False Negative The number of SCD which are recognized as not SCD 

 

 

All the 1080 one-minute fragments are used to train and test our automated strategy of the SCD 

prediction. These fragments are passed through a Butterworth filter to reduce the noise. Then they are 

supplied to the transforms and found the intrinsic curves. The intrinsic curves are supplied to 4 statistical 

measures and the results are used as extracted features. The extracted features are ranked and selected for 

classification. Then the classifiers are employed to find and test the models. The details of these stages are 

explained in the previous sections. Table 6 summarize the average performances of the various models we 

used by different combinations of the feature extractions, feature selections, and classifiers. As it can be seen, 

the best performance we got is 100% accuracy. 

Detailed statistics of performance measures are presented in Table 6. With DWT as feature 

extraction technique, ANOVA as feature ranking method and KNN classifier shows the best performance 

measures (100%) for 6 features. Whereas, for 5 features-(DWT, dCor, Ens.), (DWT ReliefF, KNN) and 

(DWT, ReliefF, Ens) show best performance measures of almost 100% and at the same time, other classifiers 

were exhibiting poor performance. It is seen that DWT as a feature extraction technique has performed the 

best when compared with EMD. KNN and ensemble of classifiers have shown the best performance among 

other classifiers, where as in feature ranking, all the three have performed well when ranked with a smaller 

number of features i.e., 5 and 6.  

 

4.2.  Comparative study  

Table 7 (in appendix) compares the performance of numerous studies that was using ECG or HRV 

data to identify SCD. We found 7 papers from 2015 to 2019 that can provide specific information on the 

research in three areas: data material, technique, and results. We specified the sorts of signals used the 
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databases from which the data was acquired, and the length of signals (in minutes) used in each study in 

terms of materials. In terms of methodologies, we mention the techniques applied by each work separately, 

and the number of markers and the classification. We offer performance data in terms of accuracy, 

specificity, and sensitivity. 

 

 

Table 6. The statistical measures and the average performance of methods we used 

Method 
Feature 

ranking 

No. of 

features 
TP TN FP FN Sensitivity Specificity Accuracy Precision F1-score 

EMD+KNN ANOVA 10 444 499 41 96 82.2 92.4 87.3 91.5 86.6 

EMD+SVM ANOVA 10 442 471 69 98 81.9 87.2 84.5 86.5 84.1 

EMD+Ensemble ANOVA 10 534 533 7 6 98.9 98.7 98.8 98.7 98.8 

EMD+NB ANOVA 10 447 466 74 93 82.8 86.3 84.5 85.8 84.3 

EMD+DT ANOVA 10 433 490 50 107 80.2 90.7 85.5 89.6 84.7 

EMD+Discrement ANOVA 10 357 496 44 183 66.1 91.9 79.0 89.0 75.9 

DWT+KNN ANOVA 6 540 540 0 0 100.0 100.0 100.0 100.0 100.0 

DWT+SVM ANOVA 6 501 498 42 39 92.8 92.2 92.5 92.3 92.5 

DWT+Ensemble ANOVA 6 534 531 9 6 98.9 98.3 98.6 98.3 98.6 

DWT+NB ANOVA 6 511 524 16 29 94.6 97.0 95.8 97.0 95.8 

DWT+DT ANOVA 6 533 522 18 7 98.7 96.7 97.7 96.7 97.7 

DWT+Discrement ANOVA 6 455 530 10 85 84.3 98.1 91.2 97.8 90.5 

EMD+KNN 

Correlation 

analysis 5 526 518 22 14 97.4 95.9 96.7 96.0 96.7 

EMD+SVM 

Correlation 

analysis 5 496 505 35 44 91.9 93.5 92.7 93.4 92.6 

EMD+Ensemble 

Correlation 

analysis 5 536 538 2 4 99.3 99.6 99.4 99.6 99.4 

EMD+NB 

Correlation 

analysis 5 523 447 93 17 96.9 82.8 89.8 84.9 90.5 

EMD+DT 

Correlation 

analysis 5 510 523 17 30 94.4 96.9 95.6 96.8 95.6 

EMD+Discrement 

Correlation 

analysis 5 511 461 79 29 94.6 85.4 90.0 86.6 90.4 

DWT+KNN 

Correlation 

analysis 5 534 537 3 6 98.9 99.4 99.2 99.4 99.2 

DWT+SVM 

Correlation 

analysis 5 535 537 3 5 99.1 99.4 99.3 99.4 99.3 

DWT+Ensemble 

Correlation 

analysis 5 540 540 0 0 100.0 100.0 100.0 100.0 100.0 

DWT+NB 

Correlation 

analysis 5 522 540 0 18 96.7 100.0 98.3 100.0 98.3 

DWT+DT 

Correlation 

analysis 5 537 536 4 3 99.4 99.3 99.4 99.3 99.4 

DWT+Discrement 

Correlation 

analysis 5 521 536 4 19 96.5 99.3 97.9 99.2 97.8 

EMD+KNN ReliefF 5 510 518 22 30 94.4 95.9 95.2 95.9 95.1 

EMD+SVM ReliefF 5 506 515 25 34 93.7 95.4 94.5 95.3 94.5 

EMD+Ensemble ReliefF 5 519 517 23 21 96.1 95.7 95.9 95.8 95.9 

EMD+NB ReliefF 5 382 524 16 158 70.7 97.0 83.9 96.0 81.4 

EMD+DT ReliefF 5 507 523 17 33 93.9 96.9 95.4 96.8 95.3 

EMD+Discrement ReliefF 5 499 480 60 41 92.4 88.9 90.6 89.3 90.8 

DWT+KNN ReliefF 5 540 540 0 0 100.0 100.0 100.0 100.0 100.0 

DWT+SVM ReliefF 5 539 540 0 1 99.8 100.0 99.9 100.0 99.9 

DWT+Ensemble ReliefF 5 540 540 0 0 100.0 100.0 100.0 100.0 100.0 

DWT+NB ReliefF 5 525 539 1 15 97.2 99.8 98.5 99.8 98.5 

DWT+DT ReliefF 5 533 537 3 7 98.7 99.4 99.1 99.4 99.1 

DWT+Discrement ReliefF 5 537 538 2 3 99.4 99.6 99.5 99.6 99.5 

 

 

5. CONCLUSION AND FUTURE WORK 

We have proposed an automated method for predicting SCD utilizing statistical measures in this 

paper. Different classifiers are used in this work. With an accuracy rate of 100.0% (KNN), 98.5% (NB), 

100.0% (Disc.), 99.9% (SVM), 99.4% (DT), 98.5% (NB), and the system can predict SCD very quickly, that 

is 30 minutes before it occurs (Ens.). From the studies, it is observed that prediction of SCD is always a 

challenging task. The current work is carried based on the ECG databases available publicly, i.e., NSRDB 

and are of relatively small databases. More research is required to acquire a large amount of clinical data to 

educate the suggested classifications and to assess their validity. Additionally, it should be noted that the 

methodology used in this study must be tested in clinical conditions. Furthermore, such projections might be 

more realistic and useful if they have been made in real time on mobile devices in hospitals or at home. 
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Table 7. A comparison of our research with some other previous ECG or HRV signal-based approaches 
Author (year) Material Methodology Best performance 

Data 

type 

Dataset 

used 

Length of 

signal(min) 

Feature extraction 

(No of features) 

Classifier Acc (%) Sen (%) Spe (%) 

Acharya 

(2015) [31] 

ECG SDDB 

NSRDB 

4 minutes 

before SCD 

Nonlinear features (18) and 

SCDI 

DT, SVM 92.11% 92.50% 91.67% 

Fujita 

(2016) [27] 

HRV SDDB 

NSRDB 

4 minutes 

before SCD 

Nonlinear features (4), nonlinear 

heart rate variability analysis 

SVM, KNN 94.70% 95.00% 94.40% 

Sanchez 

(2018) [27] 

ECG SDDB 

NSRDB 

20 minutes 

before SCD 

Nonlinear methods HI, Wave 

packet transform 

EPNN 95.80% unknown unknown 

Khazaei 

(2018) [21] 

HRV SDDB 

NSRDB 

6 minutes 

before SCD 

Wave packet transform RQA 

(13) and increment entropy  

(2 out of 14) Nonlinear method 

DT, KNN, 

SVM, NB 

95.00% 95.00% 95.00% 

Ebrahimzadeh 

(2018) [19] 

HRV SDDB 

NSRDB 

12 minutes 

before SCD 

HRV features (23) Time local 

subset feature selection 

MLP 88.29% unknown unknown 

Ebrahimzadeh 

(2019) [20] 

HRV SDDB 

NSRDB 

13 minutes 

before SCD 

HRV features (23) time local 

subset feature selection 

MLP 90.18% unknown unknown 

Lai (2019) 

[35] 

ECG SDDB 

NSRDB 

AHADB 

30 minutes 

before SCD 

Arrhythmias risk markers (5) 

and SCDI 

DT, KNN, SVM, 

NB, RF 

99.49% 99.75% 99.04% 

Present work ECG SDDB 

NSRDB 

30 minutes 

before SCD 

Nonlinear (5) (EMD and 

DWT) 

KNN, SVM, NB, 

DT, Dis, Ens 

100% 100% 100% 
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