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 Researchers in various related fields research preventing and controlling the 

spread of the coronavirus disease (COVID-19) virus. The spread of the 

COVID-19 is increasing exponentially and infecting humans massively. 

Preliminary detection can be observed by looking at abnormal conditions in 

the airways, thus allowing the entry of the virus into the patient's respiratory 

tract, which can be represented using computer tomography (CT) scan and 

chest X-ray (CXR) imaging. Particular deep learning approaches have been 

developed to classify COVID-19 CT or CXR images such as convolutional 

neural network (CNN), and deep convolutional neural network (DCNN). 

However, COVID-19 CXR dataset was measly opened and accessed. 

Particular deep learning method performance can be improved by 

augmenting the dataset amount. Therefore, the COVID-19 CXR dataset  

was possibly augmented by generating the synthetic image. This study 

discusses a fast and real-like image synthesis approach, namely depthwise 

boundary equilibrium generative adversarial network (DepthwiseBEGAN). 

DepthwiseBEGAN was reduced memory load 70.11% in training processes 

compared to the conventional BEGAN. DepthwiseBEGAN synthetic images 

were inspected by measuring the Fréchet inception distance (FID) score with 

the real-to-real score equal to 4.3866 and real-to-fake score equal to 4.4674. 

Moreover, generated DepthwiseBEGAN synthetic images improve 22.59% 

accuracy of conventional CNN models. 
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1. INTRODUCTION  

SARS-Cov-2 or known as coronavirus disease (COVID-19) was first identified in Wuhan, China [1] 

and designated by World Health Organization (WHO) as a global epidemic [2] because it has infected all 

corners of the world. At the end of February 2021, there were 116,521,281 confirmed cases, with 

116,521,281 active cases and 2,589,548 cases of death. Meanwhile, the spread of COVID-19 in Indonesia 

also continues to increase, with February 2021 confirmed 1,379,662 cases, with 14,518 active cases, and 

37,266 death cases [3]. Therefore, steps are needed to prevent, detect, and control the spread of the COVID-

19 virus. 

Early detection is one way to break the chain of the COVID-19 virus spread. When a patient is 

known to be positive for COVID-19, he will undergo a quarantine period so that the chain of spread can be 

broken by tracking the people who had interacted with the patient. One of the tests that can be done in early 
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detection of COVID-19 virus is by conducting a test called reverse transcription-polymerase chain reaction 

(RT-PCR) to find out whether a patient is indicated as positive or negative from the COVID-19 virus 

infection. As time goes by, the pandemic condition continues even though the data on the spread is still high. 

Unfortunately, RT-PCR testing has less accurate results (40% to 60%) [4], [5] in determining positive or 

negative status of being infected with the COVID-19 virus [6], [7].  

Alternative methods to detect the spread of the COVID-19 virus are through chest screening, 

namely computer tomography (CT) scan and chest X-ray (CXR) [8]. The resulting image of CT or X-ray has 

higher sensitivity than testing using RT-PCR. Thus, many automation systems have been developed in CT 

and X-rays image processing [6]. Displaying images via CT can detect COVID-19 virus infection. However, 

the procedure for testing via CT is costly, as well as age-restricted and forbidden for pregnant women 

because of the radiation. Therefore, studies in [9] use the CXR process that can be used for easy, fast, and 

inexpensive testing. Various deep learning methods are used as an automation system for CXR image 

processing to support the detection process for the COVID-19 virus infection. The convolutional neural 

network (CNN) method obtained accuracy in positive/negative CXR classification of 98.50% [10], while the 

deep neural network (DNN) method received accuracy in the positive/negative CXR classification of 98.08% 

[4]. CXR classification using deep CNN (DCNN) has an accuracy of 87.3% [11], while classification using 

generative adversarial networks (GANs) have an accuracy of 95% [12]. The depthwise separable convolution 

(DSC) network has an accuracy of 99.50% [13], and the COVIDX-Net has an accuracy of 91% [14]. On the 

other hand, public dataset images of CT or X-ray are limited. However, the classification method can be 

tuned by augmenting the dataset. 

The deep learning approach is an interesting topic to develop an automation system to diagnose 

CXR images of the COVID-19 virus. LightCovidNet, which consists of a lightweight CNN (LW-CNN) and 

GANs with a frontal CXR dataset of 446 (resolution 1024X1024 pixels), with network filters to 841.771 

parameters successfully trained the data with an accuracy of 96.97%. The separable convolution technique 

can reduce the memory load when processing training data (training data) 27 times more efficiently than 

conventional CNN, which consists of 23,567,299 parameters [15]. CovidGAN which consists of CNN and 

auxiliary classifier GANs (AC-GANs) methods using 403 CXR datasets (14,000,000 parameters) increases 

the accuracy of conventional GANs data augmentation 85% to 95% [12]. Covid-Net using the DCNN 

method using 13.975 CXR datasets (CovidX dataset of 11,750,000 parameters) yields an accuracy of 93.3% 

[16]. Coro-Net using the DNN method using 125 CXR datasets (33,915,436 parameters) yields an accuracy 

of 95% [17]. RANDGAN (randomized GAN) is ANO-GANs, using 573 CXR datasets resulting in an 

accuracy of 71% [5]. GANs and ResNet18 used the 5863 CXR datasets resulting in an accuracy of 99% [18]. 

To improve the model performance of the classification methods, we proposed a new architecture 

called DepthwiseBEGAN in which combining depthwise separable convolution (DSC) and BEGAN. This 

approach proposes augmented synthetic images of COVID-19 CXR dataset using DCGAN, DeptwiseGAN, 

BEGAN, and DepthwiseBEGAN. To exhibit DepthwiseBEGAN reduces the training load while the synthetic 

images are generated. In this research, we also measured the quality of generated images using Fréchet 

inception distance (FID). Additionally, the improvement of the classification method using generated 

synthetic images as fake CXR datasets is presented in this paper. Several classification models are used, such as: 

ResNet18, ResNet34, ResNet50, and GoogleNet., such as ResNet18, ResNet34, ResNet50, and GoogleNet. 

 

 

2. RESEARCH METHOD 

2.1.  Depthwise separable convolution 

CNN is a subclass of DNNs that can solve vision problems. CNN consists of the primary process, 

namely features extraction and fully connected layer. The convolutional layer is the fundamental layer of 

CNN that determines the characteristics of the image pattern as an input matrix to traverse through filters.  

By assuming ( 𝑥
𝑖𝑙+1
𝑙 ) as an input tensor which consist of triple index such as height (ℎ𝑙), width (𝑤𝑙), and 

depth (𝑑𝑙). Spatial location of (ℎ𝑙 , 𝑤𝑙) utilized from bank filter of 𝑓. 𝑑𝑙  is a receptive field in 𝑥𝑙. Therefore, 

the output of CNN layer can be denoted as [18], [19]: 

 

𝑦𝑤𝑙+1,ℎ𝑙+1,𝑑 = ∑ ∑ ∑ 𝑓𝑤,ℎ,𝑑 × 𝑥
ℎ𝑙+1+ℎ,𝑤𝑙+1+𝑤,𝑑
𝑙𝐷

𝑑=0
𝐻
ℎ=0

𝑊
𝑤=0  (1) 

 

where 𝐷𝑓𝑥𝐷𝑓 is an input matrix per M channels, therefore, total parameters in a kernel formulated as (2). 

 

𝐷𝑘
2 × 𝐷𝑐

2 × 𝑀 × 𝑁 (2) 

 

CNN models with high-resolution images require more memory allocation due to the number of 

convolutional parameters in the kernel that must be calculated as vectors. Therefore, several CNN models 
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can be simplified by reducing convolutional trainable parameters. DSC is a model that effectively reduces the 

number of convolutional parameters and matrix calculations with the limitations of precision. Conventional 

CNN utilized a convolutional kernel with the same input channel so that the matrix calculation is carried out 

by convolution channels per 𝑁 channel, with the total parameters shown in (4) [20]. DSC consists of 2 

convolution processes, namely depthwise convolution and pointwise convolution. Based on (1), DSC to 

distribute feature learning, namely depthwise and pointwise [2], formulated as [18], [19], [21]: 

 

𝑦𝑤𝑙+1,ℎ𝑙+1,𝑑 = ∑ 𝑓𝑑 × ∑ ∑ 𝑓𝑤,ℎ × 𝑥
ℎ𝑙+1+ℎ,𝑤𝑙+1+𝑤
𝑙𝑊

𝑤=0
𝐻
ℎ=0

𝐷
𝑑=0  (3) 

 

where 𝑓𝑑 is a pointwise in which 1 1  convolution layer. Figure 1 represent DSCN parameters utilized for 

computing the parameter load for each training process.  

 

 

 
 

Figure 1. DSCN parameters in CXR of COVID-19 

 

 

The number of parameters in the DSCN per 1 channel is denoted in (4). However, the total 

parameters in the DSCN are the total parameters in the depthwise convolution and pointwise convolution 

calculated as shown in (4). Compare to the (2), a comparison of the number of parameters on the CNN 

standard with the DSCN shown in (5) [22]. For example, if a convolution has 𝑁 = 1024 and 𝐷𝑘 = 3, there 

will be a reduction in the convolution parameters in the training process by 0.112 or 0.888 which mean DSC 

is able to reduce the training load than conventional CNN. 

 

(𝐷𝑐
2 × 𝑀)(𝐷𝑘

2 × 𝑁) (4) 

 
𝑝𝐷𝑆𝐶𝑁

𝑝𝐶𝑁𝑁
=

(𝐷𝑐
2×𝑀)(𝐷𝑘

2×𝑁)

(𝐷𝑘
2×𝐷𝑐

2×𝑀×𝑁)
=

(𝐷𝑘
2×𝑁)

(𝐷𝑘
2×𝑁)

 (5) 

 

2.2.  Deep convolution generative adversarial network 

GANs were introduced in 2014 by Goodfellow which states that GANs consist of two networks 

namely generator network (𝐺) and discriminator network (𝐷). Both models are trained using the mini-max 

concept. Generator model 𝐺(𝑥; 𝜃𝑔), can train noise data label on 𝑃𝑧(𝑧) distribution data against x label or 

real data label. Discriminator model 𝐷(𝑥; 𝜃𝑑), trains the 𝑃𝑔 distribution data be able to estimate the 

distribution data 𝑃𝐷𝑎𝑡𝑎(𝑥) [23]. The data distribution 𝑃𝐷𝑎𝑡𝑎(𝑥) is a positive image of CXR COVID-19 [24]. 

Generator model 𝐺(𝑧; 𝜃𝑔), minimizes the probability data distribution in the fake dataset 𝑧~𝑃𝑧 that 

formulated as (6) [25]: 

 

min
𝐺

V(𝐺) = 𝔼𝑧~𝑃𝑧
[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))] (6) 

 

As shown in (6) shows the generator networks able randomized noise data distribution 𝑃𝑧(𝑧) to fool 

discriminator network which labelled in data distribution of 𝑧~𝑃𝐷𝑎𝑡𝑎(𝑥). Thus, Discriminator model 𝐷(𝑥; 𝜃𝑑) 

maximize the probability data distribution in 𝑃𝐷𝑎𝑡𝑎(𝑥) formulated as (7) [25]. 

 

max
𝐷

V(𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔(𝐷(𝑥))] (7) 
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Therefore, GANs mini-max term based on (6) and (7) can be formulated as (8) [25]: 

 

( )
~ ~

min max ( , ) [log( ( ))] [log(1 ( ( )))]
data x z

adv x P src z P src
G D

V G D D x D G z= = + −L E E  (8) 

 

where 𝔼(. ) denotes as network expectation given by generator network and discriminator network, 𝑉(𝐺, 𝐷) 

is a training criterion of discriminator network given by generator network, where 𝐷: 𝑥 → {𝐷𝑠𝑟𝑐(𝑥), 𝐷𝑐𝑙𝑠(𝑥)} 

denotes discriminator probability distributions over both source and its labels. Both discriminator network 

𝐷(. ) and generator network 𝐺(. ) is able to be optimized using given objective functions formulated as [23]: 

 

ℒ𝑐𝑙𝑠
𝑟 = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)

[−𝑙𝑜𝑔𝐷𝑐𝑙𝑠(𝑥)] (9) 

 

ℒ𝑐𝑙𝑠
𝑓

= 𝔼𝑧~𝑃𝑧
[−𝑙𝑜𝑔𝐷𝑐𝑙𝑠(𝐺(𝑧))] (10) 

 

ℒ𝑟𝑒𝑐 = 𝔼𝑥~𝑃𝑧
[‖𝑥 − 𝐺𝑥(𝐺(𝑧))‖

1
] (11) 

 

where 𝜆𝑐𝑙𝑠denotes as hyperparameters that optimize domain classification loss of discriminator (ℒ𝑐𝑙𝑠
𝑅 ) and 

generator (ℒ𝑐𝑙𝑠
𝑓

). 𝜆𝑟𝑒𝑠 denotes as hyperparameters that optimize reconstruction loss (ℒ𝑟𝑒𝑠) that adopt 𝐿1 

normalization [23]. ℒ𝑟𝑒𝑠 translated 𝐺(𝑧) into 𝑥~𝑃𝑧which mean that the generator 𝐺𝑥(. ) tries to reconstruct 

fake labels into real labels.  

 

2.3.  Depthwise boundary equilibrium GAN 

Figure 2 shows DepthwiseBEGAN architecture given an input image shape (32, 32, 3). DSConv is 

depthwise separable convolution layer which contains depthwise layer and pointwise layer. Down-sample 

size transformed from given input shape 32×32 into 4×4 and 8×8. 

 

 

 
 

Figure 2. Architecture of DepthwiseBEGAN of COVID-19 CXR images 

 

 

The term of equilibrium to balance auto-encode real dataset (𝑥; 𝜃𝑑) and discriminate 𝐺(𝑧; 𝜃𝑔) which 

equalized as (12) [26]: 

 

𝔼[ℒ(𝐺(𝑧))] = 𝛾𝔼(ℒ(𝑥)) (12) 
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where 𝛾 denotes as diversity ratio, which maintains the equilibrium using proportional control theory 

(𝑘𝑡 ∈ [0,1]). Based on (12), boundary equilibrium GAN (BEGAN) represent as an objective function as 

(13)-(15) [27], [28]: 

 

ℒ𝐷 =  ℒ(𝑥) − 𝑘𝑡 . ℒ(𝐺(𝑧𝐷)) (13) 

 

ℒ𝐺 = ℒ(𝐺(𝑧𝐺)) (14) 

 

1
( ( ) ( ( )))

t t k G
k k x G z

+
+ −= L Lg  (15) 

 

where 𝜆𝑘 is a proportional gain for k , ℒ(𝑥) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)
[‖𝐷𝑐𝑙𝑠(𝑥) − 𝑥‖1] denotes as auto-encoder loss 

𝐿1of data distribution 𝑥~𝑃𝐷𝑎𝑡𝑎(𝑥), and ℒ(𝐺(𝑧)) = 𝔼𝑥~𝑃𝑧
[‖𝐷𝑐𝑙𝑠(𝐺(𝑧)) − 𝐺(𝑧)‖

1
] denotes as auto-encoder 

loss 𝐿1of data distribution 𝑧~𝑃𝑧. Essentially, (16) shows a form of closed-loop feedback control, in which 𝑘𝑡 

is adjusted at each step 𝑡 + 1. The equilibrium constraint manages the training process to yielding to ℒ(𝑥) >

ℒ(𝐺(𝑧)). Therefore, convergence global measurement of the equilibrium which denotes as (16) [27], [28]. 

 

ℳ𝑔𝑙𝑜𝑏𝑎𝑙 = ℒ(𝑥) + |𝛾ℒ(𝑥) − ℒ(𝐺(𝑧𝐺)) (16) 

 

2.4.  Fréchet inception distance 

Fréchet inception distance (FID) is utilized as a metric to assess image quality of GANs which 

approximates the distribution of fake generated images 𝐷𝑐𝑙𝑠(𝐺(𝑧𝐺)) with the distribution of real images 

𝐷𝑐𝑙𝑠(𝑥) that were used to train the generator as multivariate Gaussians as (17) [29]: 

 

‖𝜇𝑟 − 𝜇𝑔‖
2

+ 𝑇𝑟(∑𝑟 + ∑𝑔 − 2√∑𝑟∑𝑔) (17) 

 

where 𝑋𝑟~(𝜇𝑟 , ∑𝑟) denotes as mean of 2048-dimensional activation and 𝑋𝑔~(𝜇𝑔, ∑𝑔) denotes the 

covariance of 2048-dimensional activation which extracted from pre-trained Inception-v3 model. Our model 

transforms data distribution of real 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)
 and fake 𝔼𝑥~𝑃𝑧

into 32×32, 64×64, 128×128, and 256×256 

image dimension. 

 

 

3. RESULTS AND DISCUSSION 

The training process was performed using cloud instance Intel(R) Xeon(R) CPU @ 2.30 GHz,  

high-memory VMs, 2xvCPU, 25 GB RAM, and GPU using NVIDIA P100/T4, peripheral component 

interconnect express (PCI Express) 16 GB. The training process consists of three schemas. The first schema 

was trained a conventional DCGAN, BEGAN, and DepthwiseGANs using particular dataset distributions. 

This schema generates real-like fake images or generate synthetic CXR image. The second schema was 

calculated the quality of augmented images divides into several batches of random images. The third schema 

was utilized to test whether the augmented images can be classified using particular classification method 

such as CNN. 

 

3.1.  Data distributions and hyperparameters 

This paper represents three kind of datasets such as MNIST dataset, CelebA dataset, and COVID-19 

CXR dataset. GAN model trained on 60K MNIST images, 24K CelebA images, and 5.4K CXR images to 

generate realistic image synthesis. This proposed approach trained both generator and discriminator network 

using Adam with an initial learning rate 𝛼 = 0.0001, 𝛽1 = 0.5, 𝛽2 = 0.999, proportional gain (𝜆𝑘 = 0.7) 

[30], varied image transformation 32 to 256. The hyperparameters in Table 1 show that DepthwiseGANs can 

propose data augmentation to generate synthetic CXR image using randomized noise inputs. 

Based on Table 1, the hyperparameters engages performances among GAN types, especially in 

image-to-image translation containing DCGAN, DepthwiseGAN, BEGAN, and DepthwiseBEGAN. Figure 1 

shows the generator and discriminator architecture as a convolutional feature extraction which down-sampled 

in 4x4 and 8x8. DCGAN has 7.12 million trainable parameters, DepthwiseDCGAN has 0.76 million trainable 

parameters, BEGAN has 8.44 million trainable parameters, and DepthwiseBEGAN has 2.23 million trainable 

parameters. Additionally, this research compares the hyperparameters combination shown in Table 1 to 

analyze the model performance based on generator loss (ℒ𝐺), discriminator loss (ℒ𝐷), and the execution 

time. 
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3.2.  DepthwiseBEGAN training performance  

Based on (11) until (15), generator loss (ℒ𝐺) and discriminator loss (ℒ𝐷) calculated in epoch=25, 

filters=64, image resolution 32x32, random noise=48, and down-sampled size 4x4. Then, Table 2 represent 

generator loss (ℒ𝐺) and discriminator loss (ℒ𝐷) of DCGAN and DepthwiseGAN, which consists of 

following datasets such as MNIST, CelebA, and CXR dataset. Table 2 represent DCGAN and 

DepthwiseGAN training metrics. 
 

 

Table 1. Hyperparameters 
Description Parameters 

Model DCGAN [30], DepthwiseGAN [23], BEGAN [29], DepthwiseBEGAN 
Dataset MNIST, CelebA [29], CXR 

Down-sampled Size 8x8 [29], 4x4 

Filters/Batch Size 4, 32, 64 
Noises Input 48 

Epoch 25 

Image Resolution 32x32, 64x64, 128x128 [29], 256x256 

 

 

Table 2. Loss of DCGAN and DepthwiseGAN using particular datasets 
Model Dataset ℒ𝐺 ℒ𝐷 Exec. Time (Minutes) 

DCGAN MNIST 5.2513 0.1130 33.1355 

 CelebA 2.3994 0.7012 37.1142 

 CXR 1.7703 0.8355 29.7863 
DepthwiseGAN MNIST 3.7615 0.2940 24.6837 

 CelebA 2.5109 0.6646 21.3387 

 CXR 2.3558 0.6418 17.5 

 

 

Table 2 shows generator loss (ℒ𝐺), discriminator loss (ℒ𝐷), and execution time of both models 

DCGAN and DepthwiseGAN. Generator loss (ℒ𝐺) and discriminator loss (ℒ𝐷) of both models DCGAN and 

DepthwiseGAN closely fit, but the execution time of DepthwiseGAN is lower than DCGAN which follows 

the number reduction of trainable parameters. Table 3 shows generator loss (ℒ𝐺), discriminator loss (ℒ𝐷), 

and execution time of both models DCGAN, DepthwiseGAN, BEGAN, and DepthwiseBEGAN in 

epoch=25, filters=(4 and 32), image resolution=(64x64, 128x128, and 256x256), and random noise=48. 

 

 

Table 3. Loss of DCGAN, DepthwiseGAN, BEGAN, and DepthwiseBEGAN using CXR datasets 
Model Filters Image Resolution ℒ𝐺 ℒ𝐷 Exec. Time (Minutes) 

DCGAN 32 64x64 1.4017 0.6744 49.7863 
DepthwiseGAN 32 64x64 1.5538 0.5188 20.2133 

BEGAN 32 64x64 0.0451 0.0885 76.5556 

DepthwiseBEGAN 32 64x64 0.0465 0.0811 22.8859 
BEGAN 32 128x128 0.0635 0.0789 132.3350 

DepthwiseBEGAN 32 128x128 0.0643 0.0799 48.7891 

BEGAN 4 256x256 0.0797 0.0989 186.4425 
DepthwiseBEGAN 4 256x256 0.0785 0.0965 117.4362 

 

 

Based on Table 3 DepthwiseBEGAN execution time was faster than BEGAN execution time in 

particular filers and image resolution. Meanwhile, generator loss (ℒ𝐺) and discriminator loss (ℒ𝐷) closely fit 

in the training stage. DepthwiseBEGAN is able to augment synthetic images with 256x256 pixels. However, 

the number of filters was reduced because of GPU limitations.  

DepthwiseBEGAN is shown in Figure 3. Generator loss (ℒ𝐺) and discriminator loss (ℒ𝐷) of 

DepthwiseBEGAN shown in Figure 3(a), proportional control (𝑘𝑡+1), and convergence global (ℳ𝑔𝑙𝑜𝑏𝑎𝑙) of 

DepthwiseBEGAN shown in Figure 3(b), and domain classification loss of discriminator (ℒ𝑐𝑙𝑠
𝑟 ), domain 

classification loss of generator (ℒ𝑐𝑙𝑠
𝑓

), and reconstruction loss (ℒ𝑟𝑒𝑠) shown in Figure 3(c). 

 

3.3.  DepthwiseBEGAN performance measurement 

Based on Figure 2 DepthwiseBEGAN performed in filter size=4, image resolution=256x256, 

epoch=25, and random noise=48. Image quality of GANs is able to be assessed by measuring FID, which 

approximates the distribution of real-to-real images (RR), the distribution of fake-to-real (FR) images, and 

the distribution of fake-to-fake (FF) images. Measurement of FID was captured in Table 4 for each 12K 

iteration steps in DepthwiseBEGAN training process. 
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(a) (b) 

 

 
(c) 

 

Figure 3. DepthwiseBEGAN (a) training loss ℒ𝐺  and ℒ𝐷, (b) ℳ𝑔𝑙𝑜𝑏𝑎𝑙  and 𝑘𝑡+1, and  

(c) domain loss ℒ𝑐𝑙𝑠
𝑟 , ℒ𝑐𝑙𝑠

𝑓
, and ℒ𝐷 

 

 

Table 4. FID score of BEGAN and DepthwiseBEGAN 
Model Batch FID RR FID FF FID FR 

BEGAN 1 4.3866 4.6633 4.4098 

DepthwiseBEGAN 4.4674 

BEGAN 5 17.2621 12.9109 20.9808 

DepthwiseBEGAN 25.9938 
BEGAN 20 59.2829 39.3068 69.5281 

DepthwiseBEGAN 77.2037 

BEGAN 50 104.9618 68.2335 146.6602 

DepthwiseBEGAN 157.7203 

 

 

Table 4 measures FID with several batches containing 1, 5, 20, and 50 images. GANs evaluate by 

propagating the distribution of RR or FR or FF using pre-trained Inception-v3. A proportional FID value 

while measuring the same image equal to zero. By calculating random image in batch size is 1, FID value of 

RR equal to 4.3866, FID value of FR equal to 4.4098 and FID value of FF equal to 4.6633. Synthetic images 

augmented by DepthwiseBEGAN is shown in Figure 4. Therefore, Figure 4(a) shows synthetic images of 

CXR with normal label which augmented by DepthwiseBEGAN. Figure 4(b) shows synthetic images of 

CXR with normal bacteria/virus label which augmented by DepthwiseBEGAN. 

Synthetic images of fake generated images 𝐷𝑐𝑙𝑠(𝐺(𝑧)) in CXR dataset has been augmented, which 

distributes normal label of train images equal to 12.49K images, the normal label of validation images equal 

to 3.75K images, the normal label of test images equal to 7.13K images, the virus label of train images equal 

to 12.98K images, the virus label of validation images equal to 3.49K images, the virus label of test images 

equal to 6.49K images, the bacteria label of train images equal to 20.01K images, the bacteria label of 

validation images equal to 4.99K images, and the bacteria label of test images equal to 7.49K images. 

Augmented CXR images trained using several CNN models such as RestNet18 [27] , ResNet-50 

[16], and VGG19 [28]. The real and fake generated data distribution with input resolution 128x128 trained 

using Adam optimizer with an initial learning rate 𝛼 = 0.0001, 𝛽1 = 0.5, 𝛽2 = 0.999 [30] and 50 iterations. 

In order to represent the performance of particular CNN models, this paper assigned the accuracy, specificity, 

sensitivity, positive predictive value (PPV), and negative predictive value (NPV), can be formalized as [27]: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (18) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (𝑇𝑃)/(𝑇𝑃 + 𝐹𝑁) (19) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = (𝑇𝑁)/(𝑇𝑁 + 𝐹𝑃) (20) 

 

𝑃𝑃𝑉 = (𝑇𝑃)/(𝑇𝑃 + 𝐹𝑃) (21) 

 

𝑁𝑃𝑉 = (𝑇𝑁)/(𝑇𝑁 + 𝐹𝑁). (22) 

 

Based on (19) until (22), sensitivity and specificity are defined for a domain of binary classification. 

Sensitivity determines whether the ‘virus’ label meets the condition in TP divided by TP and FN. Specificity 

determines the virus label does not meet condition means FP divided by FP and TN. Positive predictive value 

(PPV) is determines the ‘virus’ label meets condition of positive direction means TP divided by TP and FP. 

Negative predictive value (NPV) is determines the ‘virus’ label meets condition of negative direction means 

TN divided by TN and FN. Figure 5 shows CNN models utilized to classify the CXR images based on the 

following labels, namely normal label, bacteria label, and virus label. Figure 5(a) represents CNN training 

accuracy using real CXR datasets and Figure 5(b) represents CNN training accuracy using generated or fake 

CXR datasets. 

Figure 5 represent the CNN training accuracy using real and fake CXR dataset. Based on (18) until 

(22) the confusion matrix has calculated. The confusion matrix of the following CNN models was calculated 

using 100 images from particular sources which shown in Table 5.  

 

 

  
(a) (b) 

 

Figure 4. Synthetic images augmented by DepthwiseBEGAN (a) normal label and (b) bacteria/virus label 

 

 

  
(a) (b) 

 

Figure 5. CNN training accuracy using (a) real and (b) fake CXR images 
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Table 5. CNN Confusion matrix 
Data Dist. Models Labels Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

Real 

𝐷𝑐𝑙𝑠(𝑥) 

GoogleNet Normal 64.29 75.00 50.00 84.38 
Virus 43.75 64.71 36.84 70.97 

Bacteria 40.00 83.33 64.54 67.57 

Fake Gen. 

𝐷𝑐𝑙𝑠(𝐺(𝑧)) 

GoogleNet Normal 100.00 97.22 93.33 100.00 
Virus 93.75 94.12 88.24 96.97 

Bacteria 90.00 100.00 100.00 93.75 

Real 

𝐷𝑐𝑙𝑠(𝑥) 

ResNet-18 Normal 78.57 88.88 73.33 81.43 
Virus 68.75 76.47 57.89 83.87 

Bacteria 70.00 93.33 87.5 82.35 

Fake Gen. 

𝐷𝑐𝑙𝑠(𝐺(𝑧)) 

ResNet-18 Normal 100.00 97.22 93.33 100.00 
Virus 100.00 97.06 94.12 100.00 

Bacteria 90.00 100.00 100.00 93.75 

Real 

𝐷𝑐𝑙𝑠(𝑥) 

ResNet-34 Normal 80.00 88.57 75.0 91.18 
Virus 72.22 78.13 65.00 83.33 

Bacteria 70.59 93.93 85.72 86.11 

Fake Gen. 

𝐷𝑐𝑙𝑠(𝐺(𝑧)) 

ResNet-34 Normal 100.00 97.22 93.33 100.00 
Virus 100.00 96.97 94.44 100.00 

Bacteria 89.47 100.00 100.00 93.93 

Real 

𝐷𝑐𝑙𝑠(𝑥) 

ResNet-50 Normal 61.54 89.19 66.67 86.84 
Virus 62.50 76.48 55.55 81.25 

Bacteria 76.19 86.21 80.00 83.33 

Fake Gen. 

𝐷𝑐𝑙𝑠(𝐺(𝑧)) 

ResNet-50 Normal 100.00 91.89 81.25 100.00 
Virus 93.75 97.06 93.75 97.06 

Bacteria 85.71 100.00 100.00 90.63 

 

 

4. CONCLUSION  

One of the most common procedures to detect COVID-19 by chest screening using X-ray 

technology, CXR imaging accurately identifies whether a patient is infected with the COVID-19 virus or not. 

A computational approach proposed, such as CNN can classify CXR images within three labels: normal 

label, bacteria label, and COVID-19 label. Covid-Net trained the highest CXR images (14K images) to 

classify CXR images with 93% accuracy. Several methods utilized small CXR images to be trained on less 

than 10K images. Image synthesis method proposed to augment CXR images of COVID-19 within the goals 

to increase classification method accuracy.  

In resolution 64×64, DCGAN trained to augmented CXR image synthesis within generator loss 

equal to 1.4017, discriminator loss equal to 0.6744, and execution time equal to 49.7863 minutes. 

DepthwiseGAN trained to augmented CXR image synthesis within generator loss equal to 1.5538, 

discriminator loss equal to 0.5188, and execution time equal to 20.2133 minutes. DepthwiseGANs have 

shortened execution time for a better-generated image by the discriminator. Quality of DepthwiseGANs 

improved by using the encoder-decoder model of GANs, namely BEGAN. BEGAN trained to augmented 

CXR image synthesis within generator loss equal to 0.0451, discriminator loss equal to 0.0885, and execution 

time equal to 76.5556 minutes. DepthwiseBEGAN trained to augmented CXR image synthesis within generator 

loss equal to 0.0465, discriminator loss equal to 0.0811, and execution time equal to 22.8859 minutes. 

FID of DepthwiseBEGAN measured by comparing the number of image batches and the source of 

the image. Measurement of FID using one random image calculated fake-to-fake (FF) equal to 4.6633,  

real-to-real (RR) equal to 4.3866, and fake-to-real (FR) equal to 4.4674. Furthermore, generated 

DepthwiseBEGAN synthetic images improve 22.59% accuracy of conventional CNN models. 
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