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 In this paper, a new low complexity model is proposed for the joint digital 

pre-distortion of in-phase/quadrature-phase (I/Q) imbalance, local oscillator 

(LO) leakage, and power amplifier nonlinearity in direct-conversion 
transmitters (DCTs). In this structure, we proposed a set of orthogonal basis 

functions based on Chebyshev expansion to attenuate the problem of 

numerical instability created during the conventional model identification 

method. This robust joint digital pre-distortion (DPD) utilized the indirect 
learning architecture and updated the coefficients vector based on the 

recursive least square (RLS) algorithm. To verify the operation and 

efficiency of the proposed model, an extensive simulation in MATLAB was 

carried out. The results showed a significant reduction in the conditional 
number and the coefficient dispersion of the observation matrix. 

Furthermore, the power of the signal in the adjacent channel decreased by 

more than 16 dB for the orthogonal frequency division multiplexing 

(OFDM), 16 QAM input signal. In comparison to the previous digital pre-

distorter models, the proposed DPD builds strong numerical stability with 

the least coefficients. 

Keywords: 

Chebyshev expansion 

Condition number 

Digital pre-distortion 

Power amplifier  

RF impairments  

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Abumoslem Jannesari 

Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, Tarbiat Modares 

University 

P.O. Box: 14115-111, Jalal Ale Ahmad Highway, Tehran, Iran 

Email: jannesari@modares.ac.ir 

 

 

1. INTRODUCTION  

The direct conversion transceiver due to its simplified and low-cost structure is the most popular 

architecture and the appropriate choice often used in wireless communication systems [1]. Despite the 

simplicity and integrability of this structure, there are problems due to its practical implementation of analog 

components especially in the applications of advanced modulation schemes with high peak to average power ratio 

(PAPR). The nonlinear nature of the power amplifier on one hand and the in-phase and quadrature-phase 

asymmetry impairments of the modulator, on the other hand, cause in-band signal distortions and adjacent 

channel interference and dramatically reduce the performance of the transceiver system [2]. Moreover, the 

advanced signal waveforms such as orthogonal frequency division multiplexing (OFDM), with wide bandwidth 

and increased PAPR, cause the negative effects of power amplifier nonlinearity to be worse. Therefore, using 

linearization techniques to improve the efficiency of the transmission signal is necessary [3]–[5]. 

The digital pre-distortion (DPD) technique as one of the most effective methods, is typically used to 

overcome the non-idealities. To utilize this method, it is necessary to model the nonlinear behavior of the 

system with a proper mathematical model such as the memory polynomials [6]–[8], the Wiener Hammerstein 

model [9], Volterra series [10], [11], the optimized structures with modified algorithms [12], [13] and 

https://creativecommons.org/licenses/by-sa/4.0/
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orthogonal polynomial [14], [15], which consider the memory effects along with the static nonlinearity. 

Among the many models that have been proposed in the literature, the memory polynomial model is a true 

parametric model which represents a simplified case of the Volterra model as only diagonal terms are 

considered and the others are zero. To estimate the model coefficients, the least-squares (LS) approximation 

is one of the most widely used approaches. In this method, the inversion of an observation matrix must be 

calculated, which leads to arise an instability problem, dependent on the size of the matrix and the statistics 

of the input signal. To prevent this instability problem, Raich and Zhou proposed a set of orthogonal basis 

functions based on the Laguerre polynomials in [14]. The proposed model worked well only for the signals 

with Rayleigh distribution. But depending on the signal distribution, the conditioning of the observation 

matrix drastically deteriorates and decreases the DPD performance. As nonlinear order and memory depth 

increase, the problem becomes more serious. Aziz et al. in [16] proposed a rational-function–based model to 

jointly attenuate the power amplifier (PA) nonlinearity and in-phase/quadrature-phase (IQ) impairments. The 

proposed model improved the numerical instability problem of DPD by a reduction in the number of 

coefficients and so reduced the dispersion coefficients and condition number. In [17] a distributed model 

using conventional memory polynomials was presented. The proposed model used a two-block structure for 

DPD, the first block was a memory polynomial model to reduce the nonlinear effects of the PA, and the 

second one was a mild nonlinear model with memory to compensate the modulator's impairments. It was 

claimed that by distributing nonlinearity and memory depth, a considerable reduction in matrix conditioning 

and coefficients dispersion was obtained. The obtained numerical stability due to the reduction in the number 

of pre-distortion coefficients in [16], [17], is very fragile and as the nonlinear order of the system intensify, 

the number of pre-distortion coefficients inevitably increase, resulting in the changes in the matrix 

conditioning and numerical instability arise. An orthogonal polynomial model was introduced by Wang et al. 

in [18] by using the combined least-mean-square (LMS) and recursive least square (RLS) algorithm to model 

the nonlinearity of PA with memory effect. Although this method improved the DPD performance, it was 

limited to the input signal values distributed in [0, 1], and the combined LMS and RLS algorithm increased 

the computational complexity. Manai et al. [19] proposed a numerically stable digital pre-distorter based on 

the Gegenbauer polynomials to linearize the radio frequency (RF) power amplifiers without the IQ 

impairments compensation. Although the Gegenbauer polynomials were orthogonal and the pre-distorter 

based on the Gegenbauer basis functions was numerically stable, it worked only on the real-valued variable 

on the input values of the interval [−1, 1] and only considered the PA nonlinearity while all the other 

impairments of the transmitter affected on the DPD performance. 

In this paper, a set of new orthogonal basis functions is introduced based on the Chebyshev 

expansion to joint compensate for the non-linearity and the memory effects of the power amplifier as well as 

frequency-dependent impairments of the direct conversion transmitters. The new DPD structure is intended 

to solve the numerical instability problem that may arise through the conventional polynomial model 

approximation, without any limitation on the input signal statistics. Therefore, by increasing the nonlinear 

order of the system and as a result increasing the number of pre-distortion coefficients, the value of the 

conditional number remains small and numerical stability is guaranteed. We achieved the best numerical 

stability merits with the least numbers of coefficients and computational complexity in comparison to the 

references’ literature.  

This paper is presented in five sections: section 2, describes the mathematical model of PA 

nonlinearity, then proposes the Chebyshev pre-distortion method to alleviate all the transmitter imperfections. 

In section 3, the numerical stability and performance evaluation of this work are analyzed. The simulation 

results demonstrate the operation of this work in section 4 and finally, the conclusions are given in section 5. 

 

 

2. MODEL DESCRIPTION 

In this section, the memory polynomial (MP) model is presented to model the nonlinearity of PA 

with memory effect, then the numerical instability problem of the MP model for DPD is explained. The new 

DPD model based on Chebyshev polynomials is proposed and leads to making the new joint pre-distorter to 

compensate for the PA nonlinearity and IQ impairments. 

 

2.1.  Modeling nonlinearity of power amplifiers regarding the memory effects  

Power amplifier as a main element of the transmitter chain has a nonlinear characteristic and distorts 

the transmission signal which results in spectral regrowth in digitally modulated signals. This phenomenon 

causes signal interference in neighboring channels. To correct the destructive effects of power amplifier 

nonlinearity, the behavior of this component must be mathematically modeled. To have a more complete 

model, the effects of memory must also be considered. For this reason, a memory polynomial model is 

derived by (1): 
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𝑦(𝑛) = ∑ ∑ 𝑐2𝑝+1,𝑞𝑣(𝑛 − 𝑞)𝑄
𝑞=0

𝑃
𝑝=0 |𝑣(𝑛 − 𝑞)|2𝑝  (1) 

 

where v(n) is the complex base-band signal at the input of PA, P and Q represent the polynomial order and 

memory depth of the model respectively, and y(n) is nonlinear PA output. The complex-valued coefficients 

C, are given as follow, which are extracted from an actual Class AB PA [20]. 

 

𝑐10 = 1.0513 + 0.0904𝑗   𝑐11 = −0.0680 − 0.0023𝑗  𝑐12 = 0.0289 − 0.0054𝑗 
𝑐30 = −0.0542 − 0.2900𝑗   𝑐31 = 0.2234 + 0.2317𝑗    𝑐32 = −0.0621 + 0.0932𝑗 
𝑐50 = −0.9657 − 0.7028𝑗   𝑐51 = −0.2451 − 0.3735𝑗  𝑐52 = 0.1229 + 0.1508𝑗 

 

2.2.  Numerical instability problem in the model identification  

The conventional polynomial model of a non-linear system can be expressed as in (2): 

 

𝑦(𝑡) = ∑ 𝑏𝑘|𝑥(𝑡)|𝐾
𝑘=1

𝑘−1
𝑥(𝑡)  (2) 

 

where ( )x t and ( )y t are the baseband input and output of the nonlinear system and kb is the unknown complex 

model coefficient. By replacing 𝜙𝑘(𝑥) = |𝑥|𝑘−1𝑥, the (2) can be rewritten as (3): 

 

𝑦(𝑡) = ∑ 𝑏𝑘𝜙𝑘(𝑥(𝑡))𝐾
𝑘=1   (3) 

 

where 𝜙𝑘(𝑥) is the conventional polynomial basis function. To extract the model coefficients 𝑏 =
[𝑏1, 𝑏2, . . . , 𝑏𝐾]𝑇, N samples of the measured input and output envelopes can be used as N-by-1 input/output 

data vector:𝑥 = [𝑥(𝑡1), . . . , 𝑥(𝑡𝑁)]𝑇 , 𝑌 = [𝑦(𝑡1), . . . , 𝑦(𝑡𝑁)]𝑇 , then define the following vector notation. 

 

𝜙𝑘(𝑥) = [𝜙𝑘(𝑥(𝑡1)), . . . , 𝜙𝑘(𝑥(𝑡𝑁))]𝑇 ,  𝛷 = [𝜙1(𝑥)  𝜙2(𝑥)  ⋯  𝜙𝐾(𝑥)]  (4) 

 

The relation (3) can be written as 𝑌 = Φ𝑏 and the least square estimate of the coefficient vector b is 

 

𝑏𝐿𝑆 = (Φ𝐻Φ )−1Φ𝐻Y (5) 

 

where (Φ𝐻Φ )−1Φ𝐻 is the Moore–Penrose pseudo-inverse of Φ and Φ𝐻 is its Hermitian transpose [14]. The 

inversion of the K-by-K matrix Φ𝐻Φ  can experience a numerical instability problem because the matrix 

Φ𝐻Φ is often ill-conditioned [14]. To overcome this problem, various methods have been proposed to 

convert the conventional polynomials to a set of orthogonal basis functions and thus improve the condition 

number of the observation matrix. But these orthogonal polynomials have some limitations in signal 

statistics. On the other hand, some classic orthogonal polynomials have very useful properties in solving 

mathematical and physical problems but are less commonly used in DPD structures. In the next section, we 

propose a set of orthogonal basis functions based on Chebyshev expansion to attenuate the problem of 

numerical instability arising during the conventional model identification method. 

 

2.3.  Chebyshev polynomials as the pre-distorter model 

Digital pre-distortion based on memory polynomial model is one of the popular and efficient models 

that is used to compensate the PA nonlinearity but can experience the numerical instability problem that 

reduces the performance of the DPD. To overcome this problem, various methods have been proposed to 

convert the conventional polynomials to a set of orthogonal basis functions [14], [16]–[19] and thus improve 

the condition number of the observation matrix. But these orthogonal polynomials have some limitations in 

signal statistics or some of them are complicated in the calculation [14]. The orthogonal polynomials are a 

category of polynomials that satisfy the orthogonality relation (the inner product between two terms of the 

sequence must be zero.) on a specified interval [18]. In this section, an orthogonal polynomial model based 

on Chebyshev expansion is proposed for the digital pre-distorter modeling. The Chebyshev polynomials of 

the first kind are defined as in (6): 

 

𝑇0(𝑥) = 1,  𝑇1(𝑥) = 𝑥, 
𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥)  (6) 

 

where 𝑇𝑛(𝑥),  𝑛 = 0,1,2, …, is the nth-order term of the polynomial. The original first kind Chebyshev 

polynomials formula is given as in (7) [21]: 
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𝑇𝑝(𝑥) = 𝑝 ∑ (−1)𝑚 (𝑝−𝑚−1)!

𝑚!(𝑝−2𝑚)!

⌊𝑝/2⌋
𝑚=0 2𝑝−2𝑚−1𝑥𝑝−2𝑚 ,   𝑝 = 1,2,3, …  (7) 

 

where ⌊𝑝/2⌋ denotes the largest integer number less than or equal to 𝑝 2⁄  and p  is the order of nonlinearity.  

As stated earlier, the Chebyshev basis functions are orthogonal and their orthogonality is limited to 

the real-valued variable in [-1, +1]. Whereas baseband signals used in communication systems are typically 

complex with an interval [a, b] where b > a. So, they cannot be directly used as the basis functions in digital 

pre-distortion structure. Furthermore, the zero-order term in the Chebyshev polynomial model does not 

conform to the baseband model of a nonlinear system [14]. To make the proposed Chebyshev polynomial 

appropriate to any finite range of the communication signals (i.e. a z b  ) and apply this orthogonal 

polynomial to the complex signals as a pre-distorter model, we propose the new variable ẑ by applying the 

linear transformation as �̂� ≜ 2(𝑟 − 𝑎/𝑏 − 𝑎) − 1 with 𝑟 = |𝑧| and 𝑎 = 𝑚𝑖𝑛(𝑟), 𝑏 = 𝑚𝑎𝑥(𝑟), Then replace 

the𝑥𝑝−2𝑚 in (7) by (�̂�)𝑝−2𝑚𝑧, to  define 𝑇𝑝+1
′ (𝑧) as in (8):  

 

𝑇𝑝+1
′ (𝑧) = 𝑝 ∑ (−1)𝑚 (𝑝−𝑚−1)!

𝑚!(𝑝−2𝑚)!

⌊𝑝/2⌋
𝑚=0 2𝑝−2𝑚−1(�̂�)𝑝−2𝑚𝑧,  𝑓𝑜𝑟  𝑝 = 1,2,3,4, …  (8) 

 

where 𝑇1
′(𝑧) = 𝑧; z is a complex variable of the input signal and is defined as z = x + iy; x,y ∈ R. 

Now, equation (8) defines the modified Chebyshev polynomial which can be used as a nonlinear 

model to design a new robust pre-distorter in the next section. The closed-form relation of the modified 

complex Chebyshev polynomial with the memory effects can be written as in (9): 

 

𝑇𝑝+1,𝑞
′ (𝑧(𝜏)) = 𝑝 ∑ ∑𝑄

𝑞=0 (−1)𝑚 (𝑝−𝑚−1)!

𝑚!(𝑝−2𝑚)!

⌊𝑝/2⌋
𝑚=0 )2𝑝−2𝑚−1(�̂�(𝜏 − 𝑞))𝑝−2𝑚𝑧(𝜏 − 𝑞),    

       𝑓𝑜𝑟  𝑝 = 1,2,3, …  

𝑇1,𝑞
′ (𝑧(𝜏)) = ∑ 𝑧(𝜏 − 𝑞)𝑄

𝑞=0   (9) 

 

where Q is the memory depth and p is the highest non-linearity order.  

 

2.4.  Proposed digital pre-distorter model of PA and IQ modulator 

Figure 1 shows the baseband model of a direct conversion transmitter with a joint digital  

pre-distorter. The schematic of the joint pre-distorter is shown with more details in the mathematic relations. 

It is based on the Chebyshev polynomial model which can linearize several different nonlinear models with 

memory. Based on the pre-distorter model in Figure 1, the mismatch compensator block consists of two finite 

impulse response (FIR) filters that compensate for the frequency-dependent IQ impairments of the modulator 

[22]. For the joint pre-distorter, we must combine the PA pre-distorter with the mismatch compensator and 

build a unit structure from both of them. The pre-distorter output is represented as in (10): 

 

𝑢𝑝(𝑛) = ∑ 𝑎𝑞
𝑇𝑄′

𝑞=0 (𝑛). 𝑇𝑞
′ (𝑠(𝑛))  (10) 

 

where 𝑇𝑞
′ (𝑠(𝑛)) = [𝑇1,𝑞

′ (𝑠(𝑛)), 𝑇3,𝑞
′ (𝑠(𝑛)), … , 𝑇2𝑝+1,𝑞

′ (𝑠(𝑛))]
𝑇
, 𝑎𝑞(𝑛) = [𝑎1,𝑞(𝑛), 𝑎3,𝑞(𝑛), … , 𝑎2𝑝+1,𝑞(𝑛)]

𝑇
 

and q indicates the memory size. 

By converting the pre-distorter output in (10) to a vector form, we can show that equation as a 

closed-form in the following: 

 

( ). ( ( ))T
pu n s n= a T  (11) 

 

where 
0 1( ( )) ( ( )), ( ( )), , ( ( )) ,

T
T T T

Qs n s n s n s n
    =
 

T Τ T T  
0 1( ) ( ), ( ), , ( )

T
T T T

Qn n n n
 =
 

a a a a . 

To take into account the modulator mismatches, an obvious form for pre-distorter of the modulator 

can be obtained by the following signal transformation [22]:  

 

𝑥(𝑛) = 𝐺1(𝑛) ⊗ 𝑢𝑝(𝑛) + 𝐺2(𝑛) ⊗ 𝑢𝑝
∗(𝑛) + 𝑑  (12) 

 

By using (11) in (13), x(n) is rewritten as in (13): 
 

𝑥(𝑛) = 𝐺1(𝑢𝑝(𝑛)) + 𝐺2(𝑢𝑝
∗(𝑛)) + 𝑑 

   = 𝐺𝐼
′(𝑢𝑝(𝑛)) + 𝐺𝑄

′ (𝑑𝛼. 𝑢𝑝(𝑛)) + 𝐺𝐼
′(𝑢𝑝

∗ (𝑛)) + 𝐺𝑄
′ (𝑑𝛽. 𝑢𝑝

∗ (𝑛)) + 𝑑  (13) 
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where 𝑑𝛼 and 𝑑𝛽 are constant-coefficient related to the gain and phase mismatch of the modulator. So, after 

simplification we have: 

 

𝑥(𝑛) = 𝐺𝐼
′(𝑢𝑝(𝑛) + 𝑢𝑝

∗ (𝑛)) + 𝐺𝑄
′ (𝑑𝛼. 𝑢𝑝(𝑛) + 𝑑𝛽. 𝑢𝑝

∗ (𝑛)) + 𝑑  (14) 

 

𝐺𝐼
′(𝑛) = ∑ 𝑐𝑘𝑥(𝑛 − 𝑘)𝐾

𝑘=0 ,  𝐺𝑄
′ (𝑛) = ∑ 𝑏𝑙

𝐿
𝑙=0 𝑥(𝑛 − 𝑙).  (15) 

 

Suppose to 𝐿 = 𝐾 then 𝑥(𝑛) can be rewritten as: 

 

0

( ) ( ) ( ) ( ( )) ( ) ( ( ))

K
T H

k

k

x n d n n k s n k n k s n k d

=

  = − − + − − +
  a T a T  (16) 

 

where 𝑑𝑘(𝑛) denotes the FIR filter coefficients vector and its order are equal to the number of FIR filter taps. 

So, the final joint pre-distortion model formulation is written as (17). 

 

𝑥(𝑛) = ∑ 𝑎𝑘𝑞
𝑇𝑄′+𝐾

𝑘𝑞=0 (𝑛). 𝑇𝑘𝑞
′ (𝑠(𝑛)) + ∑ 𝑎𝑘𝑞

𝐻𝑄′+𝐾
𝑘𝑞=0 (𝑛). 𝑇 ′∗

𝑘𝑞(𝑠(𝑛)) + 𝑑  (17) 

 

 

 
 

Figure 1. Baseband equivalent model of direct conversion transmitter employing joint pre-distorter 

 

 

Figure 2 has demonstrated the proposed model. It should be noted that the frequency-dependent I/Q 

impairments are modeled as a linear time-invariant (LTI) system and the memory polynomial PA can be 

displayed as a two-box structure that contains an LTI system followed by a memory less nonlinear system. 

To build a joint model, we unified the LTI system of the I/Q modulator with the LTI portion of the power 

amplifier and obtained one merged LTI system which is connected to a memory less nonlinear system in the 

joint compensator. After this simplification, we have the final coefficients vector in order of 2(𝐾 + 𝑄 +
1)(𝑃 + 1) + 1, For example, if 𝐾 = 1,  𝑄 = 2 and 𝑃 = 3, then the order of joint pre-distorter coefficients 

will be 33. 

 

 

 
 

Figure 2. The final schematic of the simplified joint digital pre-distortion model 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 4, August 2022: 3781-3791 

3786 

Joint DPD model coefficients are adaptively corrected using the indirect learning architecture (ILA) 

[23]. According to the architecture in Figure 1, the coefficients that are estimated for the pre-distorter and 

compensator training blocks in the feedback direction are equal to those of the pre-distorter and mismatch 

compensator blocks in the forward direction, therefore the discrete-time output signal of the training block 

can be written as:  

 

( ) ( ) ( ( ))T
kq kqz n n w n= b T  (18) 

 

where, ( ) [ ( ), ( ), ] , ( ( )) [ ( ( )), ( ( )), ]
T H T T H T

kq kq kq kq kq kq
n n n w n w n w n  = =b b b d T T T 1 .  

By using the least square cost function, the training block output signal 𝑧(𝑛) and joint DPD output signal 

𝑥(𝑛) will be close together to minimize the differential error: 

 
2

2

1 1

( ) ( ) ( ) ( ) ( ) ( ( ))

n n
n l n l T

kq kq

l l

J n x l z l x l n w l − −

= =

= − = −  b T  (19) 

 

where 𝜆 is named the forgetting factor and its value is a real number in the domain 0<𝜆<1 (in our calculations 

𝜆 = 0.988). In the following, an RLS algorithm has been described [23] to minimize 𝐽(𝑛) and estimate the 

optimal �̱�𝑘𝑞(𝑛). After finding the �̱�𝑘𝑞(𝑛) at each iteration, they are replaced by 𝑎𝑘𝑞
𝑇 (𝑛) in (13) as the  

pre-distorter coefficients, and the process will be continued until x(n) be equal to the z(n), see Figure 1. 

 

2.5.  RLS algorithm for parameters estimation  

The RLS algorithm is defined as following steps: 

− Initialization steps: 

 
1

(0) , (0) [1, 0,..., 0]
T

kq


−
= =Q Ι b  

 

Where 𝛿 is a small positive constant for initialization (in our work 𝛿 = 0.008), I denote the identity matrix. 

− Nth iteration: 

 
1

1

( 1) ( ( ))
( )

1 ( ( )) ( 1) ( ( ))

kq

T
kq kq

n w n
n

w n n w n





− 

− 

−
=

 + −

Q T
k

T Q T
 

( ) ( ) ( 1) ( ( ))T
kq kqe n x n n w n= − −b T  

( ) ( 1) ( ) ( )kq kqn n n e n= − +b b k  

1 1( ) ( 1) ( ) ( ( )) ( 1)T
kqn n n w n n − − = − − −Q Q k T Q  

 

 

3. STABILITY ANALYSIS AND MODEL PERFORMANCE 

In this section, at first, the numerical stability and complexity of this method are analyzed. The 

condition number and the dispersion coefficient are two numerical analysis metrics to evaluate the numerical 

stability of the proposed model. Then the performance evaluation of the proposed scheme is demonstrated to 

validate the presented model. 

 

3.1.  Numerical stability and complexity analysis  

As shown in section 2.2, the coefficients vector of the joint DPD model (�̱�𝑘𝑞) can be calculated 

using the Moore-Penrose pseudo-inverse. This pseudo-inverse calculation is significantly influenced by 

changes in matrix conditioning [24]. The definition of the condition number depends on the norm type, since 

we used the RLS algorithm based on the norm-2 error cost function, the norm-2 condition number, 𝜅(𝐴), is 

utilized to measure the numerical stability of the proposed model (A is the matrix to be inverted). Therefore, 

it is defined as the ratio between the highest (𝜎1,𝐴) and the smallest (𝜎2,𝐴) eigenvalues calculated for the 

Vandermonde matrix using single value decomposition [24]: 

 

𝜅(𝐴) = ‖𝐴‖2‖𝐴−1‖2 =
𝜎1,𝐴

𝜎2,𝐴
  (20) 
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In our calculations, 𝑇 ′�̱�𝑞 is the Vandermonde matrix includes the augmented power of the input 

signal. Figure 3 shows the condition number of the observation matrix vs. the polynomial order for the 

proposed Chebyshev DPD model in comparison MP model. As can be seen in the figure, by using the  

pre-distorter model, we have achieved a significant reduction in the matrix conditioning 𝜅(𝐴) for the LTE  

16 QAM signal. 

Another numerical analysis metric is the dispersion coefficient. The dispersion coefficient specifies 

the dispersion of the extracted coefficients vector over the domain. Higher dispersion coefficients represent a 

larger number of bits used to cover the entire range of coefficients in the digital signal processor (DSP) chips 

[24]. Figures 4 and 5 show the coefficient dispersion and the condition number of the observation matrix for 

each sample of the input signal during the ILA iterations. As shown in the plot, for the OFDM 16 QAM 

signal, the condition number has improved more than 80 dB in comparison to the MP model, and the 

dispersion coefficient parameter has a reduction of around 10-20 dB, which causes a considerable reduction 

in complexity. 

 

 

 
 

Figure 3. Condition number of the different polynomials’ observation matrices for the LTE 16 QAM signal 

 

 

 
 

Figure 4. Coefficient dispersion of the different polynomials’ observation matrices for the OFDM 16 QAM 

signal 

 

 

 
 

Figure 5. Condition number of the different polynomials’ observation matrices for the OFDM 16 QAM 

signal 
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The figures of merit for the complexity evaluation of the proposed joint DPD are the number of 

complex-valued parameters and the number of floating-point operations (FLOPs) required to implement the 

model. In this work, a new orthogonal Chebyshev DPD has been defined which its polynomial basis 

functions with odd-order nonlinearity are 𝑇𝑘𝑞
′ (𝑠(𝑛)) = [𝑇1,𝑘𝑞

′ (𝑠(𝑛)), 𝑇3,𝑘𝑞
′ (𝑠(𝑛)), 𝑇5,𝑘𝑞

′ (𝑠(𝑛)), 𝑇7,𝑘𝑞
′ (𝑠(𝑛)), … ]

𝑇
, 

𝑘𝑞 = 0,1,2,3. To calculate the number of required FLOPs, we have driven two relations based on the method 

used in [17, 25] for the Chebyshev DPD (based on the recursive equation in (2)) and the MP DPD (based on 

equation (1)). According to the results shown in Table 1, for a joint DPD with 33 complex-valued 

coefficients (𝐾 = 1,  𝑄 = 2 and 𝑃 = 3), we require 356 FLOPs at every step of the computation to 

implement the model. Although more FLOPs are required for Chebyshev DPD implementation in 

comparison to MP DPD, the proposed DPD builds strong numerical stability with the least coefficients and 

complexity.  

 

3.2.  Model performance metrics 

To evaluate the linearity performance of the system, the normalized mean square error (NMSE) is 

commonly used [25], [26], which is formulated as follows: 

 

 

𝑁𝑀𝑆𝐸(𝑑𝐵) = 10 𝑙𝑜𝑔10 (
∑ |𝑦𝑑𝑒𝑠𝑖𝑟𝑒𝑑(𝑛)−𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑛)|2𝑁

𝑛=1

∑ |𝑦 𝑑𝑒𝑠𝑖𝑟𝑒𝑑(𝑛)|2𝑁
𝑛=1

)  (21) 

 

where the desired signal is denoted the input signal and the measured one is the PA output after the joint 

digital pre-distortion. The results are shown in Table 1, where the NMSE performance of the transmitted 

signal after PA linearization and compensation of IQ impairments for the proposed model has improved more 

than 3 dB in comparison to the MP model.  

A principal criterion to compute the power leakage due to the spectral regrowth into the adjacent 

channel is adjacent channel power ration (ACPR) which is given by [17]. 

 

𝐴𝐶𝑃𝑅(𝑑𝐵) = −10 𝑙𝑜𝑔10 (
∫ 𝑆(𝑓)𝑎𝑑𝑗.𝑐ℎ𝑎𝑛𝑛𝑒𝑙

∫ 𝑆(𝑓)𝑖𝑛𝑏𝑎𝑛𝑑

)  (22) 

 

In the above statement, S(f) defines the power spectral density of signal, adj. channel, and in-band defines the 

adjacent channel and desired channel, respectively [17]. PA nonlinearity disturbance and I/Q impairments 

cause excessive distortion of the transmitter output signal, resulting in poor ACPR. However, by performing 

the proposed pre-distorter, the transmitter impairments are compensated and significant improvement in 

ACPR, about 16 dB, is achieved. For the input symbol 𝑆𝑖𝑛 and the transmitted symbols 𝑆𝑇𝑥, the error vector 

magnitude (EVM) between the two is defined as in (23). 

 

𝐸𝑉𝑀 = √
1

𝑁
∑ |𝑆𝑖𝑛(𝑖)−𝑆𝑇𝑥(𝑖)|2𝑁

𝑖=1
1

𝑁
∑ |𝑆𝑇𝑥(𝑖)|2𝑁

𝑖=1

× 100%  (23) 

 

The results are presented in Table 1 and after using the proposed DPD method for the class-AB PA, great 

improvement for EVM has been obtained. 

 

 

Table 1. Performance evaluation of Chebyshev DPD in comparison to memory polynomial DPD 
DPD 

Model 

No. of 

Coefficients 

No. of Flops ACPR 

(dB) 

EVM% 

(before) 

EVM% 

(after) 

NMSE 

(dB) 

Chebyshev 33 
(𝐾 + 𝑄 + 1)(2𝑃 × 4 + 2 + 8(𝑃 + 1)) + 8(𝐾 + 𝑄

+ 1)(𝑃 + 1) − 4 = 356 
-43.2 45.49 % 0.66 % 

-36.34 

dB 

MP 33 
10(𝐾 + 𝑄 + 1)(𝑃 + 1) + 𝑃(𝐾 + 𝑄 + 1) + 8(𝐾 + 𝑄

+ 1)(𝑃 + 1) − 4 = 296 
-41 45.49 % 1.3 % 

-33.27 

dB 

 

 

4. RESULTS AND DISCUSSION 

To demonstrate the performance of the common digital pre-distorter model, a signal transmission 

system is simulated in MATLAB to model a direct conversion transmitter with impairments. The system is 

excited by an OFDM 16-QAM single carrier modulation signal with about 4 MHz bandwidth and 7.68 MHz 

sampling frequency in the digital front-end. A memory polynomial nonlinear model of PA from [20] is 
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simulated which is related to a real class AB power amplifier. An indirect learning architecture is used to 

model digital pre-distorter structure. The values of the gain and phase imbalance used in the simulations are 

g=1.07 and 𝜑 = 5°, respectively, and a dc offset which is equal to c=0.05+0.01i. The frequency-dependent 

mismatch is modeled by two filters as hi=[0.99 -0.1]T and hq=[0.98 -0.07]T, for I and Q branches, 

respectively. The Chebyshev pre-distorter is employed as three/two order (nonlinear order/memory depth), 

with filter lengths of 2. We used 30,720 samples in the RLS algorithm to estimate the digital pre-distorter 

coefficients. Figure 6(a) shows the power spectral density (PSD) of the output signal after applying the 

proposed pre-distorter. It can be seen that without any pre-distortion, spectral regrowth will occur and causes 

high distortion in co-channel and adjacent-channel which eventuate a poor ACPR. According to the results, it 

is clear that by using the proposed pre-distorter, the ACPR has enhanced greatly, and the PSD of the PA’s 

output fully complies with that one which is from the input signal. These simulations are executed for the 

OFDM 16 QAM input signal and an evaluation of the performance is presented. It can be observed that the 

proposed joint pre-distortion model was able to compensate for the memory effects and nonlinearity of PA as 

well as IQ imbalance of modulator in direct-conversion transmitter (DCT). Based on the results, by applying 

this DPD structure, for high PAPR input signal (about 10.3 dB), in presence of transmitter non-idealities, 

ACPR more than 43 dB can be obtained which is about 3 dB more than the MP DPD model. When IQ 

impairments effects on input signal are considered, the PA output has a more complicated nonlinearity, 

which can be seen as amplitude and phase modulation, known by the amplitude modulation to amplitude 

modulation (AM/AM) and amplitude modulation to phase modulation (AM/PM) parameters, respectively. 

The characteristics of the transmitter are shown in Figure 6(b). After linearization, the desired AM/AM and 

AM/PM characteristics have been obtained with the least model coefficients. In Table 2, we have compared 

the proposed method with the methods presented in the references to show more the superiority and 

efficiency of this method. All the table parameters are obtained from the values reported in their reference.  

 

 

  
(a) (b) 

 

Figure 6. Output  characteristics of the transmitter using 16-QAM OFDM signals (a) PA’s output PSD and  

(b) AM-to-AM and AM-to-PM characteristics for class AB power amplifier with 1.07 dB gain imbalance and 

5º phase imbalance. 

 

 

Table 2. Performance of proposed model in comparison with the other structures in literature.  
Ref [19] [10] [16] [17] [27] [28] This work 

Input Signal LTE OFDM 16 

QAM 

WCDMA WCDMA LTE 16 QAM OFDM 16 

QAM 

PAPR(dB) 11.49 10 - 10.6 9.5 8 10.32 

ACPR 

improvement 

16 dB 21 dB 17 dB 14 dB 10 dB 11 dB 16 dB 

Type of DPD Gegenbauer 

polynomial 

Volterra 

series 

Rational 

Function 

Distributed 

polynomial 

Spectral 

Weighting 

Cascaded 

DPD 

Chebyshev 

polynomial 

Coefficients 42 194 76 34 150 38 33 

FLOPs - - >400 333 - - 356 

Condition 

Number(dB) 

<30 - 117.8 68.5/48.8 - - <20 dB 

Component(s) 

linearization 

Just PA Just PA PA+IQ 

mismatch 

PA+IQ 

mismatch 

Just PA PA+DM 

TX 

PA+IQ 

mismatch 
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5. CONCLUSION  

A low complexity digital pre-distortion model was proposed to estimate and compensate for the 

defects of direct-conversion transmitters. The proposed model has compensated the nonlinearity of PA, local 

oscillator (LO) leakage, and frequency-dependent IQ imbalance of transmitter jointly, with the least number 

of DPD model coefficients and consequently, low complexity and low-cost structure for DSP implementation 

were obtained. The DPD was based on the orthogonal Chebyshev polynomial model which has been 

modified to be orthogonal for all real and complex values of the input signal and make the DPD robust to the 

input signal statistics and numerical instability. The simulation results show the promising performance of 

the proposed structure and approve its numerical stability in a fixed-point calculation environment. We 

improved the ACPR of the transmitted signal by about 16 dB for the OFDM-16 QAM excitation signals. 

Using the new orthogonal polynomial model results the conditional number parameter value reach less than 

40 decibels for the OFDM input signal. Therefore, this model can be implemented on field programmable 

gate array (FPGA) or DSP as a good candidate for the fixed-point calculation environments. 
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