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ABSTRACT

In this paper, a predictive sliding mode control (PSMC) strategy for the quadrotors
tracking trajectory problem is proposed. This strategy aims to combine the advan-
tages of sliding mode control (SMC) and non-linear model predictive control (NMPC)
to improve the tracking control performance for quadrotors in terms of optimality,
inputs/states constraints satisfaction, and strong robustness against disturbances. A
comparative study of three popular controllers: the SMC, NMPC, and the integral
backstepping control (IBC) is performed with different criteria. Accordingly, IBC and
SMC show less computational time and strong robustness, while NMPC has minimum
control effort. The discrete Dryden turbulence model is used as a benchmark model
to represent the wind effect on the trajectory tracking accuracy. The effectiveness of
the proposed method PSMC has been proven and compared with discrete-time sliding
mode control (DSMC) and NMPC in several scenarios. Simulation results show that
under both wind turbulence and time-variant uncertainties, the PSMC outperforms the
other controllers by providing simultaneously disturbance rejection and guarantee that
the control inputs are within bounded constraints.
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1. INTRODUCTION
With the technological advancements in the field of unmanned aerial vehicles (UAVs), the quadrotor

has aroused particular interest in vertical take-off and landing vehicles (VTOL) and has become a popular re-
search platform for testing numerous control techniques. Unlike the conventional helicopters and due to its
small size, payload capability, simple mechanical structure, and smooth maneuverability, the quadrotor is al-
lowed to fly in indoor or outdoor environments, as well as near obstacles. Because of the numerous physicals
phenomena that affect the quadrotor dynamics such as the aerodynamic effect, the gravity center, and the gyro-
scopes effects. Thus, the quadrotor can be considered among the most complex flying systems. Consequently,
the exact modeling of the quadrotor is required in order to design a suitable flight controller. There are various
ways of expressing the motion dynamics, which mainly depend on the rotation parametrization. The most
common attitude parametrizations are: Euler angles, axis-angle, rotation matrix [1], Rodrigues parameters [2] ,
and unit quaternion [3]. Euler angles are widely used to present the quadrotor’s orientation, it is simple, unique,
and can be easily understood. It suffers however from gimbal lock phenomena.

The proportional integral derivative (PID), linear quadratic regulator (LQR), H∞ [4], and gain schedul-
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ing [5] are the common linear controllers used to command the quad-rotors due to their simplicity. However,
they can guarantee the closed-loop stability only around an equilibrium point. Besides, they usually fail to track
aggressive maneuvers. Several non-linear controls have been developed to conquer some of the shortcomings
and limitations of linear control. Among them, fuzzy logic controller [6] , adaptive sliding mode control (SMC)
[7], [8], and neural networks (NN) [9], [10].

The SMC has been significantly used to control the quad-rotor. Because of its attractive finite-time
convergence characteristics and robustness to parametric uncertainties and perturbations. Since the SMC suf-
fers from the chattering phenomena caused by the reaching law and has high control effort, many researchers
have been working on those troubles. One of the proposed solutions is the integral sliding mode control [11].
The integral action added to the sliding manifold has the ability to eliminate the reaching phase and reduce
the chattering on the control inputs. Ahmad et al. [12] applied an improved integral power rate exponential
reaching law (IIPRERL) sliding mode control strategy to deal with the unwanted chattering problem, stability,
and the oscillations in the quadrotor responses in the presence of matched disturbances. The simulation results
of IIPRERL-SMC have shown no chattering on the control inputs compared to SMC. In discrete-time, the
authors in [13] have proposed the discrete-time sliding mode control (DSMC) for quadrotor where the linear
extrapolation method has been employed to obtain the discrete-time model of the quadrotor.

In the realm of optimal control for quadrotor, both of the linear and non-linear model predictive control
(MPC) has been widely used, showing a good tracking ability, handling to input/state constraints [14] and
avoiding obstacles [15]. In [16], a nonlinear and linear MPC have been presented for a quadrotor to track
different references trajectories where the non-linear model predictive control (NMPC) has been made by using
a state-dependent coefficient representation. Moreover, stability analysis of Unconstrained/constrained for both
controllers has been provided. The simulation results in the case of with or without disturbances showed that
the NMPC outperformed the linear MPC. Since the MPC depends explicitly on accurate model-plant as well
as that the quadrotor is a strongly constrained coupled non-linear system which is usually prone to parameters
variation on mass and inertia due to payload. For that, any mismatched parameters or disturbances can decrease
the stability of the system when using the conventional MPC approaches.

Many researchers have been combined the SMC and MPC. In [17], the surface parameters of sliding
mode control have been determined and updated using the non-linear model predictive control. In [18], the
sliding mode predictive control has been used to control the boiler-turbine system deal with uncertainties and
system constraints. The adopted control strategy was based on the dual-mode law that is constructed of two-
part: the discrete sliding mode control law where the sliding surface was in the terminal sliding region, and
the receding horizon optimization law where the sliding surface was out from the terminal sliding region. A
comparative study between DSMC with predictive sliding function (PSF) and predictive sliding mode control is
done in [19]. Those strategies are simulated to the linearised isothermal Van de Vussen systems. The simulation
results have shown that both of the combination controllers have outperformed the NMPC and SMC. As well
as, the DSMC with PSF has more ability to eliminate the chattering compared to the PSMC. While this latter
has strong robustness to disturbances.

Upon to the aforementioned discussion and motivated by those works [18], [20], [21], the main contri-
bution of this paper can be encapsulated in the following: i) a discrete sliding mode control is proposed to con-
trol the quadrotor with the calculation of the desired orientation, ii) design an NMPC with the multiple-shooting
concept in order to accelerate and improve the convergence of the optimization control problem (OCP), and
iii) an insensitivity to external disturbances, a robustness to parametric uncertainties, a state/inputs constraints
satisfaction and optimal control are undertaking and ensuring simultaneously by the proposed PSMC.

The roadmap for the remainder of the paper has been organized in the following way: subsection
2.1 develops the quadrotor’s dynamic model and its discrete-time formulation. Subection 2.2 seeks to design
the control law strategy of DSMC, then NMPC, and in the end the PSMC. Simulation results with different
scenarios are shown in section 3 and finally, the conclusion is in section 4.

2. METHOD
2.1. Quadrotor’s model dynamic

The quadrotor is a VTOL vehicle able to perform quasi-stationary flights. It consists of four fixed-
pitch blades coupled with DC brush-less motors fixed to the end of a rigid cross-shaped body as shown in
Figure 1. Indeed, each propeller is rotating at a certain angular speed ωi generates a force Fi and a moment Mi
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that are given by:

Fi = bω2
i , Mi = dω2

i

with i = 1 : 4, and b, d are the thrust and drag coefficients, respectively.
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Figure 1. The coordinate system frames

To describe the mathematical model of the quadrotor, we define two reference coordinate frames rep-
resented in Figure 1. The inertial frame {I} is defined by {ex, ey, ez}, and the body-fixed frame {B} attached
to the quadrotor’s gravity center and is defined by {bx, by, bz}. To describe the quadrotor’s rotation, we use
Z-Y-X convention of Euler angles {ϕ, θ, ψ}. Therefore, the attitude of the quadrotor is represented by the rota-
tion matrix R which allows the passage from frame {B} to frame {I} and is defined [22]:

R =

cθcψ −cϕsψ + sϕsθcψ sϕsψ + cϕsθcψ
cθsψ cϕcψ + sϕsθsψ −sϕcψ + cϕsθsψ
−sθ sϕcθ cϕcθ

 (1)

where cx (resp. sx) represents the simplified notation of cos(x) (resp.sin(x)).
By applying the fundamental principle of dynamics, we obtain the equations representing the dynamic

behaviour of the quadrotor: {
mr̈ = RTez +mgez +Kftv + Fdes

JΩ̇ = −Ω×JΩ+ τ + τdes
(2)

where r = [x, y, z]T represents the position of the quadrotor, Ω = [Ωx,Ωy,Ωz] is the body angular velocity,m,
I = diag(Ix, Iy, Iz) are the total mass of the quadrotor and moments of inertia respectively, T =

∑4
i=1 bωi,

τ = [τx, τy, τz]
T represent the thrust force expressed in B-frame and the aerodynamic moments generated

by the propellers respectively. The terms Fdes,τdes ∈ R3 represent the external disturbances applied on the
quadrotor. Finally, The termsKft = diag(Kftx ,Kfty ,Kftz ) denote the translation drag coefficients and (x)×

represents the skew-matrix of the vector x.
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The relation between the derivative of Euler angles and the body angular velocities is expressed as (3): Ωx
Ωy
Ωz

 =

1 0 −sθ
0 cθ sϕcθ
0 sθ cϕcθ

×

 ϕ̇

θ̇

ψ̇

 (3)

The relation between the propellers angular speeds and the generated aerodynamic forces and the moments due
to the propellers is expressed as (4):

u1
u2
u3
u4

 =


b b b b
0 −lb 0 lb

−lb 0 lb 0
d −d d −d

×


ω2
1

ω2
2

ω2
3

ω2
4

 (4)

From (2), the quadrotor is an under-actuated system with four inputs {T, τx, τy, τz} and six outputs {x, y, z, ϕ, θ,
ψ}. To put the quadrotor equations in state-space form, the state vector of the system x ∈ R12 is chosen as (5):

x =
[
x, ẋ, y, ẏ, z, ż, ϕ, ϕ̇, θ, θ̇, ψ, ψ̇

]T
=
[
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12

]T (5)

The physical limitations of the quadrotor’s motors speeds are bounded between minimum angular velocity ω
and maximum angular velocity ω̄. The maximum and minimum of thrust force and torques values providing
by these limitations are:

4bω2 ⩽ u1 ⩽ 4bω̄2

bl(ω2 − ω̄2) ⩽ u2 ⩽ bl(ω̄2 − ω2)

bl(ω2 − ω̄2) ⩽ u3 ⩽ bl(ω̄2 − ω2)

2d(ω2 − ω̄2) ⩽ u4 ⩽ 2d(ω̄2 − ω2)

(6)

where [u1, u2, u3, u4]
T = [T, τx, τy, τz]

T for simple notification.

2.1.1. Discrete time quadrotor’s model
According to (2) and (5) the dynamic model can be written in compact form:

ẋ(t) :=

{
x2i−1(t) = x2i(t), i = 1, 2, ..., 6

x2i(t) = fi (x(t)) + ∆fi(x(t)) + (gi (x(t)) + ∆gi(x(t)))u(t) + wi(t)
(7)

Using forward Euler discretization, we obtain the discrete system of (7) as in (8):

x[k] :=

{
x2i−1[k + 1] = x2i−1[k] + hx2i[k] i = 1, 2, ..., 6

x2i[k + 1] = x2i[k] + h (fi (x[k]) + ∆fi(x[k]) + (gi (x[k]) + ∆gi(x[k]))u[k]) + wi[k]
(8)

where h is sampling time, k represents the k-th sampling time, fi (x[k]) and gi (x[k]) are given in Appendix.
∆fi(.) and ∆gi(.) denote the bounded unknown parametric uncertainties, wi[k] is the bounded external distur-
bance, where: ∆fi(.) ⩽ ∆fimax ,∆gi(.) ⩽ ∆gimax and wi[k] ⩽ wimax .

The discrete dynamic system in (8) can be rewritten as (9):{
x2i−1[k + 1] = x2i−1[k] + hx2i[k], i = 1, 2, ..., 6

x2i[k + 1] = x2i[k] + h (fi (x[k]) + gi (x[k])u[k]) + d[k]
(9)

where d[k] = h(∆fi(x[k])+∆gi(x[k])u[k])+wi[k]. Let u[k] = [u1[k], u2[k], u3[k], u4[k]]
T being the control

input. The main objective is to synthesize a non-linear control laws for a quad-rotor in order to track the desired
trajectory {xd, yd, zd, ψd}. In the next section, we assume the case without disturbances, i.e d[k] = 0 and it is
unknown to the controllers.
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2.2. Control design
In this subsection, we synthesis and describe the different non-linear control laws that have been

used in this paper for the trajectory tracking of the quad-rotor. First, we start the synthesis of the discrete
sliding mode control DSMC. Then, the non-linear model predictive control principle is presented. Finally, the
combined sliding mode with predictive control PSCM is designed.

2.2.1. Design of discrete sliding mode control approach
The objective of the SMC law is to constrain the system state trajectory (9) to be reached and then to

maintain it on the sliding surface even in the presence of uncertainties in the system. Let a second-order Slotine
surface [23] is chosen as (10):

si[k] = e2i[k] + λie2i−1[k], i = 1, 2, ..., 6 (10)

where the λi ∈ R+ are the constants of tuning, e[k] are the tracking error which is the difference between the
actual state x[k] and the desired one r[k] and is defined:

e[k] =

{
e2i−1[k] = r2i−1[k]− x2i−1[k]

e2i[k] = r2i[k]− x2i[k]
(11)

where r[k] is the discrete-time of the desired trajectory r(t) =
[
xd, ẋd, yd, ẏd, zd, żd, ϕd, ϕ̇d, θd, θ̇d, ψd, ψ̇d

]
.

{xd, yd, zd, ψd} and its derivatives are provided from the trajectory generator, while {ϕd, θd} and its derivative
can be deduced from the position controller.

The purpose of the control is to force the system to evolve on the sliding surface and prevent it from
getting out of it,

S = {e[k] | si (e[k]) = 0, i = 1, 2, ..., 6} (12)

We introduce the virtual command vi[k] in such a way that x2i[k + 1] = vi[k], which gives us:

vi[k] = x2i[k] + h (fi(x[k]) + gi(x[k])u[k]) (13)

The dynamic of the surface (10) is:

si[k + 1] = si[k] + e2i[k + 1] + λie2i−1[k + 1]

= si[k] + (r2i[k + 1]− vi[k]) + λie2i−1[k + 1]
(14)

The Gao’s reaching dynamics of the sliding surface are [24]:

si[k + 1] = (1− hσi) si[k]− hµisign (si[k]) , i = 1, 2, ..., 6 (15)

where σi and µi are tuning parameters and satisfying 0 ⩽ hσi < 1 and µi > 0.
By equating (15) and (14), the following virtual commands signal are obtained:

vi[k] = σisi[k] + µisign (si[k]) + λie2i−1[k + 1] + r2i[k + 1],

i = 1, 2, ..., 6
(16)

By applying the properties of the rotation matrix [25], we determine the real commands:

u1[k] = m

√
(V1[k])

2
+ (V2[k])

2
+ (V3[k])

2

u2[k] =
V4[k]

g4([xk])
, u3[k] =

V5[k]

g5([xk])
, u4[k] =

V6[k]

g6([xk])

(17)
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where Vi[k] = vi[k]− fi(x[k]), i = 1, 2, ..., 6.
The desired roll and pitch angles ϕd and θd are generated from:

m (V1[k]cψ + V2[k]sψ) = sθu1[k]

m (V1[k]sψ + V2[k]cψ) = sϕcθu1[k]

mV3[k] = cϕcθu1[k]

(18)

We draw from (18): 
ϕd = arctan

(
V1[k]sψd

− V2[k]cψd

V3[k]

)
θd = arctan

(
V1[k]cψd

+ V2[k]sψd√
(V1[k]sψd

− V2[k]cψd
)2 + V3[k]2

) (19)

To alleviate the chattering problem caused by the discontinuous sign function. We replace this latter by a
pseudo-sign function which is defined:

psign(x, η) =
x

|x|+ η
(20)

where 0 < η << 1 has been chosen equal to 0.05.

2.2.2. Design of non-linear model predictive control NMPC
The predictive control problem consists of determining the control vector u that minimizes the selected

cost function while ensuring the satisfaction of the constraints. It can be summarized as the following steps:
− At each sampling time k, the future system outputs are predicted over a prediction horizon N using the

preceding inputs and outputs. These predictions are noted x[k + j|k], j = 0, 1, . . . , N to indicate the
value of the output at instant k + j, calculated at the instant k

− The sequence of future commands u[k + j|k], j = 0, 1, . . . , N − 1 is calculated by optimizing a cer-
tain determined criterion so that the predicted output x[k + j|k] is as close as possible to the reference
trajectory r[k + j|k], j = 1, . . . N ,while minimizing the control effort

− Finally, Only the first component u[k|k] of the optimal control sequence u[k|k + j] is applied to the
system. At the next sampling time k+1, the resolution begins again with step one by taking into account
the new updated measurements of the system x[k + 1] and a new control sequence u[k + 1|k + 1 +
j], j = 0, . . . , N −1 is determined. The control sequence is improved at each sampling period since new
measurements could be taken and consequently the vector of the control signal u[k + 1|k + 1 + j], j =
0, 1, .., N − 1 will be in principle different from u[k + j|k], j = 0, 1, .., N .

Based on the above definition, the discrete-time NMPC formulation with multiple shooting is:

min
u[k+j|k],x[k+j|k]

N−1∑
k=0

Lr (x[k], u[k], r[k]) + Lt (x[N ]) (21a)

s.t : x[0]− x0 = 0 (21b)

x[k + 1]− x[k]− fRK4(x[k], u[k]) = 0, j = 0, . . . , N (21c)

x[k] ∈ X , k = 0, . . . , N (21d)

u[k] ∈ U , k = 0, . . . , N − 1 (21e)

where (21d) and (21e) are respectively, the sets of constraint on states (map margins and Euler-angles limita-
tions −π

2 ≺ ϕ ≺ π
2 ,−π

2 ≺ θ ≺ π
2 , −π ≺ ψ ≺ π) and on inputs that were defined in (6). x0 is the current state.

The running cost function denotes Lr (x[k], u[k], r[j]) and is equal to:
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Lr (x[k], u[k], r[k]) = ∥r[k]− x[k]∥2Q + ∥uref [k]− u[k]∥2R (22)

and Lt (x[N ]) being the terminal cost function and is equal to: L (x[N ]) = ∥r[N ]− x[N ]∥2H. Where Q, H
∈ R12×12, R ∈ R4×4 are a positive-definite tuning matrix.

The control input reference uref is taken to obtain better tracking performance based on desired

trajectory acceleration and defined as: uref =
[
m
√
a21 + a22 + (a3 + g)2, 0, 0, 0

]T
.Where a1, a2 and a3 are

the discrete time of desired trajectory acceleration {ẍd, ÿd, z̈d}.
Herein (21c), the concept of direct multiple shooting [26] is defined as an equality constraint, where

fRK4(.) is the Runge Kutta 4th integration and is defined as (23):

k1 = f(x[k], u[k])

k2 = f(x[k] +
h

2
k1, u[k])

k3 = f(x[k] +
h

2
k2, u[k])

k4 = f(x[k] + hk3, u[k])

fRK4(x[k], u[k]) = 1/6 (k1 + 2k2 + 2k3 + k4)

(23)

and, f(x[k], u[k]) = [x2i , fi(x[k]) + gi(x[k])u[k]]
⊤
, i = 1, . . . , 6.

2.2.3. Non-linear predictive sliding mode control
The non-linear predictive sliding mode control (PSMC) control law is used in this work for the quad-

rotor trajectory tracking problems. This hybrid approach is based on the NMPC and the DSMC in order to
provide the best trade-off between minimum effort energy control, tracking trajectory, and rejection of distur-
bance. The main objective of PSMC is to generate the optimum control input where the PSMC concept is
illustrated in Figure 2. Firstly, at each sampling time k, the DSMC part calculates the reference sliding surfaces
sref [k + j|k], j = 0, . . . , N over the horizon N, invoking the (10) and (15) yields:

sref [k] = s[k]

sref [k + 1] = (1− hσ)sref [k]− hµsref [k]

sref [k +N ] = (1− hσ)sref [k +N − 1]− hµsref [k +N − 1]

(24)

Then, the NMPC computes the control sequence u[k|k+ j] using the plant-model. The computations optimize
the tracking of the predicted sliding functions spred[k+j|k], j = 0, . . . , N while minimizing the control effort.
In the end, the first element of the calculated control sequence is applied to the quadrotor model Figure 2.

Optimizer

Nonlinear Model Predictive Control

Model Constraints
Cost

Function

Discrete Sliding Mode
Control (DSMC)

Eq(14),(15)

Desired
Trajectory

Predictive Sliding Mode Control

stochastic disturbance (Wind) disturbance
on inputs δu

∆fi(x[k]) ∆gi(x[k])

u[k + j|k] spred[k + j|k]
x[k + j|k]

r2i−1[k]
r2i[k]

sref (k + j |k)

=




sref (k + 1)
sref (k + 2)

...
sref (k +N)




u[k|k]
x[k + 1]

+ +

r[k]

Figure 2. Block diagram of predictive sliding mode control strategy
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The mathematical formulation of the non-linear PSMC can be written:

min
u[k+j|k],x[k+j|k],s[k+j|k]

N−1∑
k=0

Jr (x, s, u, r) + Jt(x[N ], s[N ]) (25a)

s.t :x[0]− x0 = 0, (25b)

x[k + 1] = x[k] + hf(x[k], u[k]) (25c)

spredi [k + 1] = spredi [k] + e2i[k + 1] + λie2i−1[k + 1] (25d)

x[k] ∈ X , k = 0, . . . , N (25e)

u[k] ∈ U , k = 0, . . . , N − 1 (25f)

spred[k] ∈ S, k = 0, . . . , N (25g)

where Jr(.) is the running cost function of PSMC and is defined as (26):

Jr (x, s, u, r) = ∥uref [k]− u[k]∥2R + ∥spred[k]− sref [k]∥2λ (26)

and, Jt(.) = ∥spred[N ] − sref [N ]∥2η is the terminal cost function, λ, η ∈ R6×6 are a positive-definite tuning
matrix which penalize the tracking surface functions. X ,U are the same specified in 2.2.2, S is the set of
terminal sliding region that is defined as [21], [24]:

S =

6⋃
i=1

Si, Si = {x | |si(x)| ≤ ∆i, x ∈ X , u ∈ U ,∆i = hµi} (27)

3. SIMULATION RESULTS AND DISCUSSION
Simulation results using MATLAB/Simulink are developed in this section to corroborate the proposed

controllers’ effectiveness. The quadrotor dynamic model from (2) is used to perform all simulations. The
sampling period of the simulation is set to h = 10 ms, and the initial conditions are set to zero except in the
case 3.1. The quadrotor and controllers parameters are given in Tables 1 and 2, respectively. The OCP in (21)
and (25) are transformed into a nonlinear programming problem (NLP) and simulated using CasADi toolkit
[27]. Furthermore, an interior point optimizer (IPOPT) is used to solve the NLP, using up to 2,000 iterations,
a tolerance of 10−6, and the horizon prediction N set to 15. In addition, the constraints on inputs, states and
sliding mode band are tacking:

X :=



x1 ∈ ]−∞,+∞[

...
x6 ∈ ]−∞,+∞[

x7 ∈
[
−π
2
,
π

2

]
x8 ∈ ]−∞,+∞[

x9 ∈
[
−π
2
,
π

2

]
x10 ∈ ]−∞,+∞[

x11 ∈ [−π, π]
x12 ∈ ]−∞,+∞[

,

U :=


u1 ∈ [0, 9.3585]

u2 ∈ [−0.5849, 0.5849]

u3 ∈ [−0.5849, 0.5849]

u4 ∈ [−0.0507, 0.0507]

,

S :=

|si[k + 1]| < hµi
1− hσi

i = 1, . . . , 6.

(28)
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With the aim of carrying out a comparative study between the SMC, integral backstepping control
(IBC), and NMPC controllers, the following performance indexes are taken into account:

− The control signal energy (CSE) and the control effort energy (CEE):

CSE =
∑n
k=1 u

2[k], CEE =
∑n
k=1 (u[k]− u[k − 1])

2 (29)

− The average computational time.
− The position root mean square error (PRMSE)

PRMSE(cm) =

√√√√∑n
k=1

(
(xd[k]− x[k])

2
+ (yd[k]− y[k])

2
+ (zd[k]− z[k])

2
)

n
(30)

− The attitude root mean square error (ARMSE)

ARMSE(◦) =

√√√√∑n
k=1

(
(ϕd[k]− ϕ[k])

2
+ (θd[k]− θ[k])

2
+ (ψd[k]− ψ[k])

2
)

n
(31)

Table 1. Quadrotor’s parameters
Symbol Value Unit

m 0.486 kg

g 9.806 m/s2

l 0.25 m
b 2.9842× 10−5 N/rad/s

d 3.232× 10−7 N.m/rad/s

I

3.8278 0 0
0 3.8288 0

0 0 7.6566

× 10−3 kg/m2

Kft

5.567 0 0

0 5.567 0

0 0 6.354

× 10−4 N/m/s

ω 0 rad/s

ω̄ 280 rad/s

Results of the comparative study of the three commands are shown in Table 3. The IBC and SMC
have been developed in [28]. Moreover, the disturbances, wind turbulence, and uncertainties used in this
case are the same in the aforementioned paper. Regarding the criteria that indicates the amount of energy
consumed by the controllers, it can be seen that the smallest CSE values with respect to u1, u2, u3, and u4 is
determined based on the NMPC approach for both cases (with or without disturbances) compared to SMC and
IBC. Besides, NMPC provides the lowest fluctuations and smoothness at control inputs which are revealed by
the CEE values. Nevertheless, the NMPC shows a high computational burden compared to other controllers.
As a result of the chattering phenomena, the SMC approach has a high effort (CEE and CSE values) compared
to the other controllers. For the three controllers without disturbances, it can be noticed that the PRMSE and
ARMSE values are less than 0.06 cm and 0.09 deg respectively which are considered tolerable. While, in the
presence of disturbances, the SMC outperforms the IBC and NMPC showing good tracking ability in terms
of ARMSE and PRMSE. To demonstrate the effectiveness of the PSMC control, this latter compared to the
NMPC and DSMC controls with the following different scenarios.

3.1. Case 1: nominal performance comparison
The simulation is done here performed using nominal conditions, to track an inclined 8-shaped tra-

jectory without any considering disturbances or parametric uncertainties, and with an initial condition differ-
ent from the equilibrium point. Simulation results in this case are presented in Figure 3 from Figures 3(a)
to 3(i). As can be shown in Figures 3(a)-3(d) and 3(i), all controllers achieve successful tracking. In con-
trast, the DSMC and PSMC exhibit a response time faster than NMPC. The control efforts are shown in the
Figures 3(e)-3(h). While in Figures 3(g) and 3(h), the DSMC has a large control effort exceeding the control
limits for the pitch and yaw torques in comparison with PSMC and NMPC.
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Table 2. Controllers’ parameters
Controller Symbol Value

DSMC λi 71 71 18.5 10 10 25
µi 7.9 7.9 0.9 1.9 1.9 6.9
σi 0.02 0.02 0.18 0.2 0.2 0.5

NMPC Q diag
([

0.5, .05, .5, .05, 60, 20, 20, 3, 20, 3, 65, 53.5
])

H 10×Q

R diag
([

1, 10−2, 10−2, 10−3
])

PSMC R diag
([

1, 10−2, 10−2, 10−3
])

λi 0.05 0.05 18.5 10 10 11
µ diag

([
0.85, 0.85, 0.005, 0.22, 0.22, 0.35

])
σ diag

([
1, 1, 1.5, 0.55, 0.55, 1.85

])

Table 3. A comparison between SMC, IBC, and NMPC tracking of straight-line trajectory. It is done with
CSE and CEE of {u1, u2, u3, u4}T , Average time, PRMSE, and ARMS criterions

Controller CSE CEE Average Time [ms] PRMSE [cm] ARMSE [deg]
without IBC 4.5407e+04 2.2729e-04 0.8528 0.0051 0.0718

disturbances 0.0021 8.9765e-05
0.0069 2.3942e-04

4.7647e-04 5.6564e-08
SMC 4.5407e+04 2.3160e-04 0.6636 0.0151 0.0459

0.0074 9.2390e-04
0.0457 0.0022

5.2894e-04 5.7366e-08
NMPC 4.5407e+04 2.1768e-04 16 0.0584 0.0047

4.4816e-04 1.4897e-05
5.7965e-04 1.5780e-05
4.7172e-04 5.5041e-08

with IBC 6.0236e+04 2.9813 1.6 0.8133 1.9414
disturbances 13.2886 1.1165

8.1007 0.6525
3.3047 0.0016

SMC 6.0241e+04 7.9003 1.5 0.1470 0.4943
30.8017 5.1253
21.1184 3.8687
3.3084 0.0021

NMPC 6.0191e+04 0.2527 26.7 4.6709 1.6334
0.8102 9.6626e-04
0.8088 0.0010
3.2275 0.0008

3.2. Case 2: wind gusts rejection ability
In this case, the quadrotor is undergoing sudden wind gusts as external disturbances in the interval

[10, 30] s. The Dryden wind turbulence model [29] is used to generate a stochastic velocities disturbance
added to the dynamics of the quadrotor, as shown in Figure 4. This has had a great influence on the dynamics
of the aircraft, in particular, the linear, and angular velocities. Figures 4(a) and 4(b) illustrate respectively the
linear and angular velocity components of the applied wind turbulence. Figure 5 from Figures 5(a) to 5(i)
depict the quadrotor response to track the square trajectory against wind gusts effect with the three controllers.
The NMPC fails to track the reference trajectory in the presence of wind, in particular in X and Y positions
Figures 5(a) and 5(b) which has a large error that reaches 0.4 m. With the outperforming of DSMC, this
latter and PSMC exhibit strong tracking ability against wind gusts. As for the control effort, the NMPC has a
minimum effort even in the presence of wind Figures 5(e)-5(h). Although, the DSMC’s good tracking, it has
a large control effort; more chattering phenomena and exceeds the control limits Figures 5(f) and 5(g). While,
the PSMC control effort remains within a limits control, and has minimum chattering compared to DSMC.
On the other hand, the DSMC shows some interesting robustness properties, but in the presence of saturation
on inputs, the stability cannot be ensured. Figures 5(a) to 5(d) shows how the quadrotor deviates when it is
controlled via the DSMC with saturation on inputs represented by a blue dash-dotted line. Figure 5(i) shows
3D tracking square trajectory, both of PSMC and DSMC are successfully tracking the desired trajectory even
in the wind presence, while the NMPC cannot follow the desired trajectory and deviate from it.
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Figure 3. The results of tracking an inclined 8-shaped trajectory in nominal condition with initial condition
x0 = [−15◦, 0, 35◦, 0, 40◦, 0, 1, 0,−0.5, 0, 0.5, 0]T : (a)-(d) the traking trajectory, (e)-(h) the control

inputs, (i) the 3-D traking trajectory
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Figure 4. Velocity components of the applied wind turbulence in the interval [10, 30]s: (a) the linear Vwind
and (b) angular ωwind
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Simulation results showing tracking of square references under wind turbulence in the interval
10,30 s: (a)-(d) tracking trajectory, (e)-(h) the control inputs, and (i) 3-D tracking trajectory. The marked area

indicates the turbulence wind period, and the blue dash-dotted line indicates the DSMC with saturation on
inputs

3.3. Case 3: robustness comparison in the presence of model mismatch
In this case, to check the controllers’ robustness, the unmodeled dynamics are included in the mathe-

matical model of the quadrotor. Since the mass m and the inertia matrix I = diag(Ix, Iy, Iz) are time-variant
in the first at interval 10-30 s, 40% variations of these parameters which are unknown to the controllers, and
they are assumed:

m̃ = m (1 + 0.4 sin(0.5t) + γ)

Ĩ = I3 × (1 + 0.4 sin(0.5t)) I

where γ = −0.125 + 0.25 × rand(1) and rand(.) is a MATLAB function that generates a random number
between 0 and 1, and I3 is (3× 3) identity matrix.

In the second period 40-50 s, we assume that there are uncertainties on the drag and thrust coefficients
which are ordinarily difficult to identify. From (4), this variations on d and b parameters induce a disturbances
on the control inputs as follow: ũ = u + δu, where δu is the added disturbances caused by mismatches thrust
and drag coefficients on the control inputs and is equal to δu = [2, 0.5, 0.5, 0.05]T .

Figure 6 shows the response of the nonlinear controllers under uncertainties. As it can be seen the
PSMC preserves its good tracking performance with small tracking errors Figures 6(a) to 6(d). In
Figures 6(e) to 6(h), it’s observed that DSMC inputs exceeds the limitations on control inputs and has more
chattering compared to PSMC in the presence of mismatched mass and inertia, while NMPC and PSMC pre-
serve the control inputs within bounded constraints.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6. Control performance under parameters uncertainties with helix trajectory (a)-(d) tracking trajectory
error and (e)-(h) the control inputs

4. CONCLUSION
In this paper, the PSMC control strategy is proposed to ensure simultaneously the inputs constraint

and robustness with regard to sudden stochastic disturbances (wind turbulence), and time-variant parametric
uncertainties. This work elaborated from a comparative study between different nonlinear control approaches.
The controllers NMPC, IBC, and SMC have been tested in simulation. The SMC controller exhibited the ro-
bustness against disturbances, while the NMPC has shown lower control effort. These results conduct us to
propose PSMC that merges DSMC and NMPC advantages. The simulation results shown the outperformed
performances of the proposed PSMC with regards to NMPC, IBC, and SMC. Future works comprise the in-
corporation of the adaptive mechanism with PSMC for parameters uncertainties problem to enhance tracking
accuracy in presence of unmodeled dynamics. Further, stability and feasibility analysis will be investigated by
including a nonlinear observer of the state.

APPENDIX

f1(x[k]) =
Kftx

m
x1[k], f4(x[k]) =

(Iy − Iz)

Ix
x10[k]x12[k],

f2(x[k]) =
Kfty

m
x3[k], f5(x[k]) =

(Iz − Ix)

Iy
x8[k]x12[k],

f3(x[k]) =
Kftz

m
x5[k]− g, f6(x[k]) =

(Ix − Iy)

Iz
x8[k]x10[k].

(32)
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g1(x[k]) =
1

m
(cos (x1[k]) cos (x5[k]) sin(x3[k]) + sin(x1[k]) sin(x5[k])), g4(x[k]) =

l

Ix
,

g2(x[k]) =
1

m
(cos (x1[k]) sin (x3[k]) sin(x5[k])− sin(x1[k]) cos(x5[k])), g5(x[k]) =

l

Iy
,

g3(x[k]) =
1

m
cos(x1[k]) cos(x3[k]), g6(x[k]) =

1

Iz
.

(33)
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