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 Feature selection aims to reduce the dimensionality of a dataset by removing 

superfluous attributes. This paper proposes a hybrid approach for feature 

selection problem by combining particle swarm optimization (PSO), grey 

wolf optimization (GWO), and tournament selection (TS) mechanism. 

Particle swarm enhances the diversification at the beginning of the search 

mechanism, grey wolf enhances the intensification at the end of the search 

mechanism, while tournament selection maintains diversification not only at 

the beginning but also at the end of the search process to achieve local 

optima avoidance. A time-varying transition parameter and a random 

variable are used to select either particle swarm, grey wolf, or tournament 

selection techniques during search process. This paper proposes different 

variants of this approach based on S-shaped and V-shaped transfer functions 

(TFs) to convert continuous solutions to binaries. These variants are named 

hybrid tournament grey wolf particle swarm (HTGWPS), followed by S or V 

letter to indicate the TF type, and followed by the TF’s number. These 

variants were evaluated using nine high-dimensional datasets. The results 

revealed that HTGWPS-V1 outperformed other V’s variants, PSO, and 

GWO on 78% of the datasets based on maximum classification accuracy 

obtained by a minimal feature subset. Also, HTGWPS-V1 outperformed six 

well-known-metaheuristics on 67% of the datasets. 
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1. INTRODUCTION  

Feature selection (FS) is an essential technique that has been widely utilized to improve the 

performance of machine learning algorithms in a variety of domains [1]. With the emergence of high-

dimensional datasets, FS becomes a difficult challenge because it seeks to find the optimum combination of 

features that represents the whole set without information loss. According to Liu and Motoda [2] the FS issue 

utilizes comprehensive search, random search, or heuristic search as search techniques. Comprehensive 

search produces and examines all probable feature subsets to pick the ideal one, while random search creates 

and examines stochastic subsets of features. Heuristic search generates a random subset of features and then 

uses the best solution to guide the search until finding the best feature set. A filter or wrapper approaches are 

often used to examine the generated subset of features [3]–[5]. The filter method depends on the associations 

between the features themselves, rather than using any feedback from the learning algorithm [4]. The 

wrapper model, on the other hand, integrates a learning algorithm as the assessment criteria [6]–[8]. The 

hybrid method combines both filter and wrapper to take the advantages of both techniques [9], [10].  

https://creativecommons.org/licenses/by-sa/4.0/
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The literature mentioned a large number of meta-heuristics that are used for optimization issues, 

such as arithmetic optimization algorithm (AOA) [11], aquila optimizer (AO) [12], reptile search algorithm 

(RSA) [13], Archimedes optimization algorithm (AOA) [14], archerfish hunting optimizer (AHO) [15], 

honey badger algorithm (HBA) [16], golden eagle optimizer (GEO) [17], artificial lizard search optimization 

(ALSO) [18], Harris hawks optimization (HHO) [19], genetic algorithm (GA) [20], particle swarm 

optimization (PSO) [21], grasshopper optimization algorithm (GOA) [22], bat algorithm (BA) [23], grey 

wolf optimization (GWO) [24], whale optimization algorithm (WOA) [25], teaching learning based 

optimization (TLBO) [7], and gravitational search algorithm (GSA) [26]. 

Exploration (diversification) and exploitation (intensification) are the two objectives that must be 

balanced in meta-heuristic algorithms to reach the global optima. One method for improving the search 

methodology and maintaining a balance between exploration and exploitation is by employing hybrid  

meta-heuristic techniques. Many hybrids meta-heuristic techniques have been proposed in the literature for 

FS. But, due to the enormous challenges such as high dimensionality, this is still considered an open research 

subject. An example of a hybrid approach, merging the harmony search (HS) algorithm and the artificial 

electric field algorithm (AEFA) for FS, which was named the electrical harmony based hybrid  

meta-heuristic (EHHM) [27]. The obtained findings demonstrated that the EHHM outperformed other  

state-of-the-art FS techniques as well as their parent algorithms in terms of picking the fewest features with 

the maximum classification accuracy. Another hybrid algorithm that combines the mayfly algorithm (MA) 

with HS is presented in [28]. This hybrid algorithm was called mayfly-harmony search (MA-HS) and was 

utilized for the FS task, attempting to balance the local and global searches to obtain the optimal feature 

subset. The findings proved that MA-HS obtained high classification accuracy with a low number of features 

in comparison to the well-known methods from the literature. In study [29], the HHO algorithm was merged 

with simulated annealing (SA) and chaotic initialization to detect coronavirus disease (COVID-19) from 

computerized tomography (CT) scan images. In [30], The HPSO-SSM is a hybrid approach that merges PSO 

with a spiral-shaped mechanism (SSM). This hybrid approach took advantage of the local search ability of 

the SSM and the global search ability of the PSO to achieve the best feature subset with high classification 

accuracy. A hybridization of PSO and GWO was proposed in [31]. This approach was called improved grey 

wolf optimization (IGWO). It utilized the exploratory capability of the PSO to enhance the search 

mechanism of the GWO to obtain the most relevant features with the minimum classification error without 

getting stuck in a local optimum. 

FS is classified as an optimization problem since it can be used to pick the optimal features from 

any dataset. Moreover, FS can also be handled as a binary problem since the features can converted to a 

string of 0’s and 1’s by using any kind of transfer function (TF) as mentioned in [32], [33]. The  

meta-heuristic methods may not yield optimal outcomes for all types of problems. This fact is addressed in 

the No-Free-Lunch theorem [34], which makes this topic an interesting and ongoing research topic for 

attempting to create an effective optimization strategy. This paper introduces a hybrid meta-heuristic 

approach that attempts to tune exploration and exploitation to avoid local optima by utilizing PSO, GWO, 

and tournament selection (TS) [35] as a wrapper-based-FS method. This approach is named the hybrid 

tournament grey wolf particle swarm algorithm and is abbreviated as (HTGWPS). The main contributions of 

this hybrid work are as follows: i) PSO is employed in the first steps of the search mechanism helps the 

algorithm explore the search space for the most promising area; ii) GWO is employed at the end of the 

search process helps the algorithm exploit the global optima; iii) TS mechanism is employed at the end of the 

search process in competition with GWO to maintain exploration not only at the beginning but also at the 

end of the search process to prevent the search algorithm from being trapped in any local optimum; iv) the 

proposed approach used a time-varying transition parameter and a random variable to orient the search 

process toward applying PSO, GWO, or TS; and v) the proposed approach was converted into eight binary 

variants by using four S-shaped and four V-shaped TFs.  

The proposed approach was evaluated using nine high-dimensional, low-sample medical datasets 

[6], [36], [37]. The k-nearest neighbors (KNN) [38] classifier was used for evaluation purposes. The 

performance of the proposed variants was evaluated against each other, against the original PSO and GWO, 

and against some well-known FS meta-heuristics from the literature using a set of evaluation metrics such as 

the average classification accuracy, average selected features, average fitness values, and average 

computational time. The proposed variant of HTGWPS based on V1 TF outperformed other V-shaped 

variants, the original PSO, and the original GWO on 78% of the datasets. Moreover, the proposed V1 variant 

of HTGWPS exceeded six well-known metaheuristics used in the literature for FS on 67% of the datasets in 

attaining the maximum classification performance acquired by picking the smallest set of features. 

The rest of this paper is organized as follows: section 2 introduces the background of the PSO, 

GWO, TS, and the binary version of the optimization problem. Section 3 describes the details of the 

proposed approach. Section 4 describes the dataset and the experimental setup. Section 5 presents the 
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experimental results and discussion. Finally, the conclusion and a future direction are summarized in  

section 6. 

 

 

2. BACKGROUND 

2.1.  Particle swarm optimization 

PSO was initiated by Kennedy and Eberhart in [39]. It simulates the particles’ behavior within the 

swarm when they are searching for food. Each particle has its own position that refers to a feasible solution 

in the search space, and its own velocity that manages the particle’s movement step and direction during the 

search process. Each particle is oriented through its movements by the best particle within the swarm and its 

best location during the search process. The new velocity and the new position of each particle are calculated 

using (1) and (2) as: 

 

𝑣𝑒𝑙𝑛 = 𝑖𝑤 × 𝑣𝑒𝑙𝑜 + 𝑎𝑓1  × 𝑑1  × (𝑝𝑒𝑟𝑏 − 𝑥𝑜𝑙𝑑) + 𝑎𝑓2  × 𝑑2 ×  (𝑔𝑙𝑏𝑙𝑏 −  𝑥𝑜𝑙𝑑) (1) 

 

𝑥𝑛 =  𝑣𝑒𝑙𝑛 +  𝑥𝑜 (2) 

 

where veln and velo represent a particle’s new and old velocity, respectively. The perb and glblb are the 

personal and the global best locations in the search space. The values d1 and d2 are two random numbers in 

the range [0, 1], af1 and af2 are acceleration factors that equal to 2 in many studies in the literature. The iw is 

an inertia weight which reduces linearly or non-linearly over the search strategy to optimize exploration and 

exploitation phases. A new position, xn, is calculated based on the particle’s new velocity, veln, and the 

particle’s old position, xo. 

 

2.2.  Grey wolf optimization 

The grey wolf optimization (GWO) algorithm was proposed by Mirjalili et al. [40]. It mimics the 

hunting behavior of grey wolves. The GWO initializes the algorithm by generating random positions for 

each wolf in the population. Each wolf represents a solution in the search area. The evaluation of these 

solutions is done, and the three best solutions are picked. The best solutions, which are alpha 𝛼, beta 𝛽, and 

delta 𝛿, have the better knowledge about the location of the prey. The rest of the pack is called omega. At 

each iteration, omega wolves follow the three best solutions and changing their locations within the search 

space to stay close and encircle the best solutions. The mathematical formulas that are used to model these 

behaviors are as (3)-(5): 

 

𝐷𝛼 = |𝐶1 . 𝑋𝛼 −  𝑋𝑤| , 𝐷𝛽 = |𝐶2 . 𝑋𝛽 −  𝑋𝑤|, 𝐷𝛿 = |𝐶3 . 𝑋𝛿 −  𝑋𝑤| (3) 

 

𝑋1 =  𝑋𝛼 − 𝐴1 . 𝐷𝛼, 𝑋2 =  𝑋𝛽 − 𝐴2 . 𝐷𝛽, 𝑋3 =  𝑋𝛿 − 𝐴3 . 𝐷𝛿  (4) 

 

𝑋𝑡+1 = 
𝑋1+ 𝑋2+ 𝑋3

3
 (5) 

 

where 𝑋𝑤 is wolf’s location in the search space. 𝑋𝛼 , 𝑋𝛽 , and 𝑋𝛿  are the positions of the three best solutions. 

𝐷𝛼 , 𝐷𝛽 , and 𝐷𝛿  are the distances between each wolf and the best three solutions. 𝑋𝑡+1 is the new location of 

each wolf which will be in any random position around the prey. The two coefficients A and C are calculated 

by using (6), (7). 

 

𝐴 = 2𝑎 . 𝑑1 − 𝑎 (6) 

 

𝐶 = 2 . 𝑑2 (7) 

 

where d1 and d2 are random numbers in the range [0,1], variable a decreases linearly from 2 to 0 during the 

iterations and can be calculated using the: 

 

𝑎 = 2(1 −
𝑡

𝑇
) (8) 

 

where a is a variable that tunes the local and global search of GWO algorithm, t is the current iteration, and 

T is the overall number of iterations. 
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2.3.  Tournament selection strategy 

The TS technique is employed to choose a guiding solution rather than picking the optimal solution. 

In this mechanism, a collection of solutions, known as tournament, is chosen randomly then the best solution 

in the tournament is chosen as a guiding solution [7], [41]. The selected search agent using tournament 

method is used to guide other agents. This strategy is used to emphasize searching more areas in the large 

search space. As shown in (9) and (10) show updating the position mechanism: 

 

𝐷 = |𝐶 . 𝑋𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 −  𝑋| (9) 

 

𝑋(𝑡+1) =  𝑋𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 − 𝐴 . 𝐷 (10) 

 

where Xselected is the search agent selected by the tournament method, D is the distance between each search 

agent and the selected tournament agent. The two coefficients A and C are calculated by using (6) and (7). 

 

2.4.  The binary optimization problem 

FS is a binary issue since all attributes in the dataset may be characterized by a string of zeros and 

ones. Where 0 indicates the unselected features and 1 reflects those that have been picked. According to 

Mirjalili and Lewis [32], the switch from continuous solutions to binaries is based on two types of TFs, 

namely S-shaped and V-shaped. The mathematical formulas of these TFs are shown in Table 1. 

 

 

Table 1. S-shaped and V-shaped TFs [32], [33], [42] 
S-shaped TFs 

S1 𝑇(𝑥) = 1/(1 +  𝑒−2𝑥) 
S2 𝑇(𝑥) = 1/(1 + 𝑒−𝑥) 
S3 𝑇(𝑥) = 1/(1 + 𝑒

−𝑥
2 ) 

S4 𝑇(𝑥) = 1/(1 + 𝑒
−𝑥
3 ) 

V-shaped TFs 

V1 𝑇(𝑥) =  |erf  (
√𝜋

2
 𝑥)| 

V2 𝑇(𝑥) =  |tanh(𝑥)| 

V3 𝑇(𝑥) =  |
𝑥

√1 +  𝑥2
| 

V4 𝑇(𝑥) =  |
2

𝜋
arctan(

𝜋

2
𝑥)| 

 

 

3. METHOD 

The FS issue is a type of optimization problem that looks for the most relevant features in a dataset. 

In this paper, a hybrid wrapper-based meta-heuristic approach is introduced for the FS task. Search 

techniques must tune the explorative and exploitative phases to determine the ideal solution. Throughout this 

paper, PSO with strong exploration potential and GWO with high exploitation capabilities are used, while a 

TS operator is employed to boost the diversity and the search efficiency to avoid getting the local optima. 

This approach is named the hybrid tournament grey wolf particle swarm algorithm (HTGWPS). In this 

paper, the FS issue is treated as a binary problem, which means converting the features into a string of ones 

and zeros with the same number of attributes as there are in the dataset. A one represents a selected feature, 

while a zero represents unselected one. In this work, four S-shaped and four V-shaped TFs were used to 

derive eight variants of the proposed approach. Each variant is named HTGWPS, followed by the type and 

the number of the TF that was used. 

According to this hybrid approach, the initial population is generated randomly. Then, the solutions 

will be optimized by using the PSO, GWO, or TS techniques. This is examined by using a time-varying 

transition parameter, namely Z, that is calculated using (11).  

 

𝑍(𝑡) = 1 −
𝑡

𝑇
 (11) 

 

where t is the current iteration, and T is the maximum number of iterations. 

Figure 1 shows a flowchart of the proposed HTGWPS approach. As shown in the flowchart, the 

solutions are initialized randomly, then the evaluation of these solutions is performed according to the 

tackled problem. The parameter Z is calculated. If Z is greater than or equal to 0.5, then the solutions will be 

updated using PSO mechanism. Otherwise, the solutions will be updated using either GWO or TS depending 
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on a random value, rand, between 0 and 1. These steps are repeated until the maximum iteration is reached 

and the optimal solution is retrieved. 

The PSO in the first half of the iterations assists the algorithm in doing a comprehensive scan of the 

search area by using the PSO’s diversification ability to choose the promising area that may hold the global 

best solution. The GWO technique has intensification properties since it follows the three best solutions 

throughout the search phase. As a result, the algorithm may get stuck in a local optimum, especially if the 

algorithm searches a large search space. To address this issue, this paper employs the TS technique with its 

stochastic behavior in the second half of iterations in competition with the GWO to attain the exploration 

phase, which prevents this approach from being stuck in a local optimum. Referring to the achieved results, 

this tactic efficiently tunes between exploration and exploitation and prevents getting trapped in local optima. 

Algorithm 1 displays the pseudo-code of the HTGWPS. The lines between 2 and 5 initialize the 

number of iterations, the population size, and tune the algorithm’s parameters. In line 8, Z has been 

calculated. The lines between 9 and 20, if the value of Z is greater than or equal to 0.5, then the solutions will 

be improved using the PSO technique based on (1) and (2). Otherwise, a random value, rand, has been 

generated to guide the solutions to update their positions based on the GWO technique using (3) to (8), or 

based on TS tactic using (9) and (10). These steps are repeated until the maximum number of iterations is 

reached and the optimal solution is retrieved. 

 

Algorithm 1. The pseudocode of HTGWPS approach 
1: Start 

2: Set the maximum iteration T 

3: Set the size of population P 

4: Initialize random position and velocity for each individual 

5: Initialize the parameters a, A, C, c1, c2 

6: t ← 1 

7: while t < T do 

8:           Calculate Z based on Eq. (11) 

9:           p ← 1 

10:        for p < P do 

11:               if Z ≥ 0.5 then 

12:                      Update the positions according to PSO 

13:                else 

14:                if rand ≤ 0.5 then 

15:                           Update the positions according to GWO 

16:                  else 

17:                            Apply TS strategy 

18:                end if 

19:               end if 

20:         end for 

21:         Save the fittest solutions for the next iteration 

22:         t++ 

23: end while 

24: Return the best solution 

25: End 

 

 

 
 

Figure 1. Flowchart of the proposed HTGWPS approach 
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4. DATASETS AND EXPERIMENTAL SETUP 

The approach that is proposed in this paper was evaluated by using nine high-dimensional  

small-sample medical datasets that are illustrated in Table 2 and mentioned in [6], [36], [37]. Interacting with 

this form of the dataset is difficult due to the limited number of samples (observations), which makes the 

training of the learning model inadequate, as well as the huge number of attributes that increase the 

complexity of the search process in the search scope. The experimental results compared the proposed 

approach with other investigated approaches in terms of a set of evaluation metrics such as the average 

number of selected features, the average classification accuracy, the average fitness value, and the average 

computational time. 

 

 

Table 2. High-dimensional small-sample medical sets of data 
Data set Instances Features Classes 

14_Tumors 308 15009 26 
11_Tumors 174 12533 11 

Brain_Tumor2 50 10367 4 
Brain_Tumor1 90 5920 5 

Leukemia2 72 11225 3 
Leukemia1 72 5327 3 

Prostate Tumor 102 10509 2 
DLBCL 77 5469 2 
SRBCT 83 2308 4 

 

 

The average classification accuracy is the metric that evaluates the classifier’s predictive accuracy 

using the subset of selected features. It is calculated using (12). 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑀
∑

1

𝑇

𝑀
𝑖=1 ∑ (𝑃 == 𝐴)𝑇

𝑗=1  (12) 

 

where M is the number of runs, T is the number of instances, A and P are the actual and predictive classes, 

respectively. 

The average selected features are a metric that shows the algorithm’s performance in terms of 

features number while solving the FS problem. This metric is calculated using (13). 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =  
1

𝑀
∑

𝑐

𝐶

𝑀
𝑖=1  (13) 

 

Where:  

M : the number of runs,  

c : the number of selected features, and  

C : the overall features. 

The average fitness value is the metric that is a combination of the classification error rate and the 

rate of feature reduction. It is calculated using (14). 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑉𝑎𝑙𝑢𝑒 =  
1

𝑀
∑ 𝐹𝑖𝑡𝑀

𝑖=1  (14) 

 

where M is the number of runs, Fit is the fitness value of the best solution in each run, which is calculating 

using (16). 

The average computational time is the amount of time needed to accomplish a computational 

process. It is calculated using (15). 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑇𝑖𝑚𝑒 =  
1

𝑀
∑ 𝐶𝑜𝑚𝑇𝑖𝑚𝑒𝑀

𝑖=1  (15) 

 

where M is the number of runs, ComTime is the computational time. 

The quality of a solution is defined by two factors: the number of selected features and the 

classification error that is recorded by using these features. As shown in (16) shows the objective function 

that combines these two factors. 

 

𝐹𝑖𝑡 = 𝑚 𝑐𝐸𝑟𝑟 + 𝑛 
|𝑓|

|𝐹|
 (16) 
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where cErr is the classification error. |f| is the number of the picked attributes, and |F| is the overall 

attributes in the dataset. The parameter m ∈ [0, 1] reflects the importance of the classification accuracy, 

while 𝑛 = 1– 𝑚, which reflects the importance of the feature subset length. 

The instances were split randomly into 80% training and 20% testing subsets. The implementation 

of the proposed approach was done by using MATLAB. The testing was done on a machine with 2.2 GHz 

Intel Core i7 and 8 GB RAM. The findings were gathered after 30 runs with 100 iterations and 10 search 

agents. The parameters m and n in the fitness equation were equal to 0.99 and 0.01, respectively. 

 

 

5. RESULTS AND DISCUSSION 

A set of comparisons were conducted to evaluate the proposed hybrid HTGWPS approach that is 

proposed in this paper. In section 5.1, the HTGWPS was initially evaluated by comparing the four S-shaped 

TFs to the original binary versions of PSO and GWO. In section 5.2, the comparisons were conducted to 

assess the HTGWPS using the four V-shaped TFs with the PSO and GWO parent algorithms. Finally, in 

section 5.3, the top HTGWPS variants derived from S or V-shaped TFs were compared to well-known 

metaheuristics from the literature. 

 

5.1.  Evaluating HTGWPS variants based on S-shaped TFs 

The results of the experimental evaluations of the HTGWPS variants based on S-shaped TFs are 

described and analyzed in this section. Table 3 displays the classification accuracy of the HTGWPS-S 

variants. According to the results, HTGWPS-S1 was ranked the best in most datasets. It can be seen that 

HTGWPS-S1 attained the best classification accuracy in five datasets, and it reached 100% accuracy for 

Leukemia1 and Leukemia2. 

 

 

Table 3. The average classification accuracy based on the S-shaped TFs 
Dataset GWO PSO HTGWPS-S1 HTGWPS-S2 HTGWPS-S3 HTGWPS-S4 

11_Tumors 0.7669 0.7505 0.7914 0.7752 0.7752 0.7214 

14_Tumors 0.4001 0.4593 0.4410 0.5250 0.5251 0.3556 
Brain_Tumor1 0.9444 0.7611 0.9412 0.7059 0.7059 0.6667 

Brain_Tumor2 0.5700 1.0000 0.8033 0.9000 0.9000 0.7778 

DLBCL 0.8521 0.7958 0.9375 0.8167 0.8167 1.0000 
Leukemia1 0.9333 0.9267 1.0000 0.8622 0.8578 0.9333 

Leukemia2 1.0000 0.8667 1.0000 0.9511 0.9489 1.0000 

Prostate Tumor 0.9048 0.8571 0.9841 0.9524 0.9524 0.9048 
SRBCT 0.9059 0.9412 0.9431 0.8588 0.8588 0.8020 

Mean Rank 3.44 4.00 2.00 3.56 3.67 4.33 

Rank 2 5 1 3 4 6 

 

 

Table 4 shows the average number of features chosen by each variant for each dataset. The table 

shows that HTGWPS-S2 outperformed the other competitors in five datasets and recorded the best mean 

rank, followed by HTGWPS-S4. According to Table 5, the average fitness results also indicate that 

HTGWPS-S1 achieved the best approach based on S-shaped TF by choosing the minimum relevant 

attributes with the lowest classification error. The outcomes revealed that the HTGWPS-S1 is the fittest 

technique based on the S-shaped TFs, and this is evidenced by the value of the mean rank. Table 6 shows 

that PSO is the best approach in terms of the average computational time, followed by GWO, and this 

superiority is due to the hybridization of the proposed approach, which needs more computational time.  

 

 

Table 4. The average number of selected features based on the S-shaped TFs 
Dataset GWO PSO HTGWPS-S1 HTGWPS-S2 HTGWPS-S3 HTGWPS-S4 

11_Tumors 7879.90 6182.17 6315.30 6067.30 6064.80 5998.60 
14_Tumors 9752.07 7475.73 8364.57 7720.10 7640.30 7854.57 

Brain_Tumor1 2897.17 2810.20 2650.30 2457.70 2492.87 2380.20 
Brain_Tumor2 5859.93 4947.93 4907.20 4427.60 4496.93 4515.00 

DLBCL 3036.77 2611.17 2535.43 1680.63 2476.17 2390.63 
Leukemia1 2619.57 2571.10 2534.03 1878.93 2559.40 2458.90 
Leukemia2 6771.23 5349.20 5041.90 4796.97 5203.53 4688.60 

Prostate_Tumor 5468.77 4995.07 5159.07 4522.03 4877.47 4929.53 
SRBCT 1422.07 1094.27 1029.83 996.33 1070.07 1181.87 

Mean Rank 6.00 4.22 3.89 1.67 2.78 2.44 
Rank 6 5 4 1 3 2 
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Table 5. The average fitness values based on the S-shaped TFs 
Dataset GWO PSO HTGWPS-S1 HTGWPS-S2 HTGWPS-S3 HTGWPS-S4 

11_Tumors 0.2370 0.2520 0.2113 0.2273 0.2274 0.2806 
14_Tumors 0.6004 0.5403 0.5586 0.4753 0.4752 0.6432 

Brain_Tumor1 0.0599 0.2413 0.0624 0.2954 0.2954 0.3340 

Brain_Tumor2 0.4314 0.0048 0.1990 0.1034 0.1033 0.2244 
DLBCL 0.1520 0.2069 0.0649 0.1860 0.1860 0.0044 

Leukemia1 0.0709 0.0774 0.0035 0.1412 0.1456 0.0706 

Leukemia2 0.0060 0.1368 0.0043 0.0531 0.0552 0.0042 
Prostate_Tumor 0.0995 0.1462 0.0200 0.0519 0.0518 0.0990 

SRBCT 0.0993 0.0630 0.0606 0.1445 0.1444 0.2012 

Mean Rank 3.67 4.00 2.00 3.67 3.56 4.11 
Rank 3 4 1 3 2 5 

 

 

Table 6. The average computational time based on S-shaped TFs 
Dataset GWO PSO HTGWPS-S1 HTGWPS-S2 HTGWPS-S3 HTGWPS-S4 

11_Tumors 334.54 259.24 519.50 353.96 672.48 408.50 
14_Tumors 1125.54 871.78 1838.33 2163.07 2039.68 808.25 

Brain_Tumor1 38.35 33.32 127.81 175.55 136.38 71.61 
Brain_Tumor2 37.04 32.55 180.72 123.52 103.18 126.86 

DLBCL 32.02 28.01 106.45 100.94 66.50 64.75 
Leukemia1 30.06 26.64 96.03 61.77 56.50 57.55 
Leukemia2 57.27 45.74 225.40 127.35 111.75 149.20 

Prostate_Tumor 96.79 65.77 276.48 150.18 116.92 155.96 
SRBCT 20.21 18.86 48.77 66.42 26.53 26.15 

Mean Rank 2.11 1.11 5.33 4.78 4.00 3.67 
Rank 2 1 6 5 4 3 

 

 

In this paper, the accuracy rate has a higher priority than the number of selected attributes. So, 

according to the outcomes, the HTGWPS based on S1-TF yielded better performance. The findings revealed 

that HTGWPS-S1 offers a stable trade-off between exploration and exploitation to escape local optima and 

attain higher fitness results. The power of the proposed approach is the high exploration ability at the 

beginning of the search process by using PSO optimizers, while utilizing GWO gives the approach the 

exploitation ability after passing half the number of iterations. The TS tactic is utilized to give the 

exploration a chance at the end of the search process to avoid being stuck in the local optima. 

 

5.2.  Evaluating HTGWPS variants based on V-shaped TFs 

This section presents the results of the HTGWPS variants based on V-shaped TFs in terms of the 

four-evaluation metrics. According to Table 7, it can be seen that HTGWPS-V1 recorded the best average 

classification accuracy on 89% of the dataset, while HTGWPS-V4 was rated second by the mean rank value. 

Table 8 displays the average number of features picked by each V variant. According to the results, GWO 

chose the fewest features in five datasets, followed by HTGWPS-V1 in four datasets. However, when the 

mean rank was determined, both techniques had the same overall rank across the nine datasets included in 

this paper. Table 9 summarizes the average fitness values of all V-shaped HTGWPS techniques. As 

mentioned previously, the fitness values represent the lowest classification error that is obtained from the 

least selected features. Whereas the strategy with the smallest feature subset size and the lowest 

classification error is the most effective. Here, we can see that HTGWPS-V1 was rated first in 78% of the 

datasets. This indicates that the HTGWPS-V1 optimizer can perform a consistent trade-off between 

exploration and exploitation in order to reach the global optima. 

 

 

Table 7. The average classification accuracy based on V-shaped TFs 
Dataset GWO PSO HTGWPS-V1 HTGWPS-V2 HTGWPS-V3 HTGWPS-V4 

11_Tumors 0.8514 0.8400 0.8874 0.7876 0.7800 0.8675 
14_Tumors 0.5067 0.5294 0.6088 0.5521 0.5521 0.5927 

Brain_Tumor1 0.7815 0.8333 0.8464 0.7078 0.7118 0.8049 
Brain_Tumor2 0.9433 0.8000 1.0000 0.9100 0.9033 1.0000 

DLBCL 0.9896 0.9208 0.9938 0.8688 0.8646 0.9917 
Leukemia1 0.9067 0.9333 0.9867 0.8622 0.8622 0.9533 
Leukemia2 1.0000 0.8733 1.0000 0.9733 0.9911 1.0000 

Prostate_Tumor 1.0000 0.8524 1.0000 0.9540 0.9540 0.9968 
SRBCT 1.0000 0.9294 0.9961 0.8961 0.8941 0.9941 

Mean Rank 3.06 4.44 1.33 4.83 5.06 2.82 
Rank 3 4 1 5 6 2 
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Table 8. The average number of selected features based on V-shaped TFs 
Dataset GWO PSO HTGWPS-V1 HTGWPS-V2 HTGWPS-V3 HTGWPS-V4 

11_Tumors 646.10 6029.03 342.10 3871.13 3923.03 533.03 
14_Tumors 785.13 7413.20 1655.07 5720.07 5868.63 1881.17 

Brain_Tumor1 7.93 2710.47 15.33 937.33 976.93 38.23 
Brain_Tumor2 90.57 4971.47 69.03 2144.60 2265.73 148.57 

DLBCL 68.10 2564.53 66.73 1333.70 1373.27 145.03 
Leukemia1 99.63 2476.23 91.00 1531.47 1536.50 163.63 
Leukemia2 132.23 5281.67 199.20 2994.13 3114.70 350.07 

Prostate_Tumor 88.13 5004.73 103.30 2582.43 2799.80 210.83 
SRBCT 49.17 1046.87 50.20 618.80 642.83 81.77 

Mean Rank 1.56 6.00 1.56 4.00 5.00 2.89 
Rank 1 5 1 3 4 2 

 

 

Table 9. The average fitness values based on V-shaped TFs 
Dataset GWO PSO HTGWPS-V1 HTGWPS-V2 HTGWPS-V3 HTGWPS-V4 

11_Tumors 0.1477 0.1632 0.1118 0.2134 0.2209 0.1316 
14_Tumors 0.4889 0.4708 0.3884 0.4472 0.4473 0.4045 

Brain_Tumor1 0.2164 0.1696 0.1521 0.2908 0.2870 0.1932 
Brain_Tumor2 0.0562 0.2028 0.0001 0.0912 0.0979 0.0001 

DLBCL 0.0104 0.0831 0.0063 0.1324 0.1366 0.0085 
Leukemia1 0.0926 0.0706 0.0134 0.1393 0.1393 0.0465 
Leukemia2 0.0001 0.1301 0.0002 0.0291 0.0116 0.0003 

Prostate_Tumor 0.0001 0.1509 0.0001 0.0480 0.0482 0.0033 
SRBCT 0.0002 0.0744 0.0041 0.1056 0.1076 0.0062 

Mean Rank 2.94 4.44 1.33 4.72 5.17 2.39 
Rank 3 4 1 5 6 2 

 

 

Table 10 displays the average computational times. It is demonstrated that the GWO obtained the 

shortest time for all datasets, followed by the PSO. While the proposed variants need more computational 

time due to the hybridization technique. Figure 2 shows the convergence curves of the fitness values during 

100 iterations for HTGWPS-V1, GWO, and PSO in dealing with different datasets that are used in this 

paper. According to these curves, the HTGWPS-V1 obtained the best results on 7 out of 9 datasets. This is 

evident in Figures 2(a) to (i), since HTGWPS-V1 achieved the lowest fitness values in most curves.  

Figure 2(a) describes the behavior of the three algorithms on the 11-Tumors dataset. It shows that 

HTGWPS-V1 curves down according to the iterations until it reaches the lowest fitness value, followed by 

GWO, while PSO stuck in a local optimum. Figure 2(b) shows the fitness value curves of three approaches 

on the 14-Tumors dataset. It also shows that HTGWPS-V1 optimizes the results by minimizing the number 

of features with a minimum classification error during the iterations, followed by PSO, which drops at a 

local minimum value.  

Figure 2(c) shows the convergence curves of the fitness values of three optimizer approaches on the 

Brain-Tumor1 dataset. The curves show that HTGWPS-V1 obtained the minimum fitness value after 

scanning the search space, and this is obvious by the behavior of the curve, which slopes down during the 

iterations while PSO is stuck in the local optima in early iterations, and GWO had the highest fitness values. 

Figure 2(d) shows the fitness value curves of three approaches on the Brain-Tumor2 dataset. It shows that 

HTGWPS-V1 achieved the best fitness value after 40 iterations. As seen in the HTGWPS-V1 curve, the 

values of fitness values are near to zero, which means the algorithm reaches the minimum number of 

features with a minimum classification error.  

 

 

Table 10. The average computational time based on V-shaped TFs 
Dataset GWO PSO HTGWPS-V1 HTGWPS-V2 HTGWPS-V3 HTGWPS-V4 

11_Tumors 53.75 550.25 180.33 277.76 270.18 309.76 
14_Tumors 155.77 1353.26 533.38 1448.22 1834.33 1066.61 

Brain_Tumor1 18.14 45.10 126.70 76.83 108.18 185.10 
Brain_Tumor2 19.66 51.32 197.83 64.02 134.49 188.24 

DLBCL 17.38 39.62 304.20 34.23 81.01 86.33 
Leukemia1 17.17 44.88 129.57 41.38 48.41 93.15 
Leukemia2 22.28 71.70 187.03 78.78 85.93 258.73 

Prostate_Tumor 23.74 64.60 142.81 95.42 99.99 225.89 
SRBCT 15.18 19.00 44.06 29.58 28.34 35.60 

Mean Rank 1.00 2.89 4.78 3.22 4.00 5.11 
Rank 1 2 5 3 4 6 
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Figure 2(e) shows the behavior of the HTGWPS-V1, GWO, and PSO on the DLBCL dataset. The 

curves show that HTGWPS-V1 can reach the minimum fitness value, followed by GWO, then PSO.  

Figure 2(f) illustrates the behavior of the three algorithms on the Leukemia1 dataset. HTGWPS-V1 obtained 

the minimum fitness value during the iterations, followed by PSO, which stuck in local optima after 20 

iterations, followed by GWO. Figure 2(g) shows the fitness value curves when dealing with the Leukemia2 

dataset. The figure shows that GWO and HTGWPS-V1 have the minimum number of features with 

maximum classification accuracy, while PSO cannot clearly optimize its result during 100 iterations.  

Figure 2(h) describes the behavior of the three optimizers on the Prostate-Tumor dataset. The curves show 

that HTGWPS-V1 and GWO obtained the minimum fitness values, which is near to zero, while PSO cannot 

reach the best results during 100 iterations and trapped in the local optima. Figure 2(i) shows the fitness 

value curves of the three optimizers in the SRBCT dataset. It also shows the best results obtained by GWO 

and HTGWPS-V1 with few differences, followed by PSO optimizer. 

 

 

 
(a) (b) (c) 

   

 
(d) (e) (f) 

   

 
(g) (h) (j) 

 

Figure 2. Convergence curves of GWO, PSO, and HTGWPS-V1 using V-Shaped TF on different datasets: 

(a) 11-Tumors, (b) 14-Tumors, (c) Brain-Tumor1, (d) Brain-Tumor2, (e) DLBCL,  

(f) Leukemia1, (g) Leukemia2, (h) Prostate-Tumor, and (i) SRBCT 

 

 

5.3.  Comparing top HTGWPS variants with metaheuristics from the literature 

In this section, a comparison of the top performing variants in both S-shaped and V-shaped with 

well-established optimizers from the literature such as GSA, ant lion optimization (ALO) [33], BA, WOA, 

HHO, and TLBO has been carried out. According to the preceding two sections, HTGWPS-S1 had the best 

performing S-shaped approach, whereas HTGWPS-V1 had the best performing V-shaped approach.  
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Table 11 clearly shows that HTGWPS-V1 outperformed all other techniques in terms of classification 

accuracy, as it produced the best results in five datasets, with 100% accuracy on three datasets. The 

HTGWPS-S1 outperformed other techniques in three datasets. In terms of the average number of features, 

Table 12 shows that WOA performed the best in seven datasets, followed by HTGWPS-V1 in two datasets, 

with a little difference between their results. Table 13 reveals that HTGWPS-V1 outperformed other 

techniques in terms of average fitness values in six datasets, followed by HTGWPS-S1. The results showed 

that V1 is the best TF that is used to binarize HTGWPS, which revealed the superiority in tuning between 

global and local search to avoid the local optima and attain the global solution. 

 

 

Table 11. Comparison of HTGWPS-S1, HTGWPS-V1, and other meta-heuristics in terms  

of classification accuracy 
Dataset HTGWPS-S1 HTGWPS-V1 GSA ALO BA WOA HHO TLBO 

11_Tumors 0.7914 0.8874 0.61875 0.79218 0.72997 0.86286 0.88952 0.85810 
14_Tumors 0.4410 0.6088 0.47718 0.50003 0.39370 0.40985 0.51320 0.53875 

Brain_Tumor1 0.9412 0.8464 0.77778 0.77778 0.85185 0.77778 0.92593 0.72222 

Brain_Tumor2 0.8033 1.0000 0.72333 0.88889 0.45000 0.62000 0.90000 0.80000 
DLBCL 0.9375 0.9938 1.00000 1.00000 0.88958 0.93750 1.00000 0.87500 

Leukemia1 1.0000 0.9867 0.86667 0.86000 0.93111 0.80000 0.87111 0.86667 

Leukemia2 1.0000 1.0000 0.87778 1.00000 0.74222 0.93333 0.93333 1.00000 
Prostate_Tumor 0.9841 1.0000 0.76984 0.90476 0.84921 0.95238 0.80952 0.87778 

SRBCT 0.9431 0.9961 0.85882 0.83922 0.80000 0.92941 0.91569 0.89020 

Mean Rank 3.33 2.06 5.94 4.50 6.44 5.33 3.39 5.00 
Rank 2 1 7 4 8 6 3 5 

 

 

Table 12. Comparison between HTGWPS-S1, HTGWPS-V1, and other meta-heuristics in terms  

of selected features 
Dataset HTGWPS-S1 HTGWPS-V1 GSA ALO BA WOA HHO TLBO 

11_Tumors 6315.30 342.10 6301.13 8121.93 4924.50 322.76 504.77 1036.05 

14_Tumors 8364.57 1655.07 7580.40 11818.33 6060.00 1091.01 1689.28 2122.66 

Brain_Tumor1 2650.30 15.33 2894.20 2900.90 2435.80 44.33 65.18 73.25 

Brain_Tumor2 4907.20 69.03 5175.13 7752.23 4223.17 62.08 95.20 76.88 

DLBCL 2535.43 66.73 2665.13 2688.30 2176.03 37.25 110.97 63.61 

Leukemia1 2534.03 91.00 2628.30 3717.07 2035.77 34.79 97.67 61.01 
Leukemia2 5041.90 199.20 5558.93 5529.17 4585.97 82.84 201.69 99.11 

Prostate_Tumor 5159.07 103.30 5221.27 5202.23 4108.93 105.78 370.09 131.93 

SRBCT 1029.83 50.20 1138.90 1384.60 925.00 19.80 64.33 41.20 
Mean Rank 6.22 2.22 7.00 7.78 5.00 1.22 3.67 2.89 

Rank 6 2 7 8 5 1 4 3 

 

 

Table 13. Comparison between HTGWPS-S1, HTGWPS-V1, and other meta-heuristics in terms  

of fitness values 
Dataset HTGWPS-S1 HTGWPS-V1 GSA ALO BA WOA HHO TLBO 

11_Tumors 0.2113 0.1118 0.3825 0.2122 0.2294 0.1403 0.1137 0.1451 

14_Tumors 0.5586 0.3884 0.5226 0.5029 0.5771 0.5900 0.4874 0.4614 
Brain_Tumor1 0.0624 0.1521 0.2249 0.2249 0.1140 0.2231 0.0771 0.2793 

Brain_Tumor2 0.1990 0.0001 0.2789 0.1175 0.4821 0.3802 0.1022 0.2023 

DLBCL 0.0649 0.0063 0.0049 0.0049 0.0739 0.0650 0.0027 0.1281 
Leukemia1 0.0035 0.0134 0.1369 0.1456 0.0693 0.2012 0.1303 0.1363 

Leukemia2 0.0043 0.0002 0.1260 0.0049 0.2302 0.0695 0.0691 0.0043 

Prostate_Tumor 0.0200 0.0001 0.2328 0.0992 0.1448 0.0514 0.1916 0.1255 
SRBCT 0.0606 0.0041 0.1447 0.1652 0.1512 0.0747 0.0869 0.1132 

Mean Rank 3.17 1.78 6.11 5.00 6.22 5.44 3.33 4.94 

Rank 2 1 7 5 8 6 3 4 

 

 

Table 14 displays the average computational times. It demonstrated that the BA obtained the 

shortest time on 78% of the datasets. The comparisons presented in this section are considered fair 

comparisons since all techniques were run in the same experimental environment. The comparisons clearly 

showed that HTGWPS-V1 outperforms other approaches in terms of average fitness value, which combines 

the size of the features that are picked and the classification error that is obtained from these features. 

The binary version of HTGWPS based on V1 TF obtained very competitive results compared to 

other competitors, followed by HTGWPS based on S1 TF. The main reason is that HTGWPS can achieve a 

more stable balance between exploration and exploitation. It switches effectively between exploration and 
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exploitation using the time-varying parameter, Z, and the random parameter, rand, to produce more 

exploitative behavior not only in the early stages of the search process, but also in the last stages. This 

mechanism reveals the potential of this approach to jump out of local optima. 

 

 

Table 14. Comparison of HTGWPS-S1, HTGWPS-V1, and other meta-heuristics in terms  

of computational time 
Dataset HTGWPS-S1 HTGWPS-V1 GSA ALO BA WOA HHO TLBO 

11_Tumors 519.50 180.33 476.58 424.82 453.79 322.76 504.77 1036.05 
14_Tumors 1838.33 533.38 901.57 2438.23 795.30 1091.01 1689.28 2122.66 

Brain_Tumor1 127.81 126.70 37.35 139.05 32.07 44.33 65.18 73.25 

Brain_Tumor2 180.72 197.83 40.35 123.11 30.65 62.08 95.20 76.88 
DLBCL 106.45 304.20 32.51 96.90 26.28 37.25 110.97 63.61 

Leukemia1 96.03 129.57 30.86 93.30 24.82 34.79 97.67 61.01 

Leukemia2 225.40 187.03 54.49 143.82 43.86 82.84 201.69 99.11 
Prostate_Tumor 276.48 142.81 75.01 221.23 59.39 105.78 370.09 131.93 

SRBCT 48.77 44.06 20.29 33.25 17.84 19.80 64.33 41.20 

Mean Rank 6.78 5.44 2.56 5.56 1.44 2.89 6.33 5.00 
Rank 8 5 2 6 1 3 7 4 

 

 

5.4.  Impact of feature selection on the classification performance 

This section shows a comparison between using the KNN classifier with HTGWPS versus without 

using this novel approach. Based on Table 15, using HTGWPS-V1 with KNN increases the performance of 

the classifier in terms of classification accuracy and the number of relevant features selected. This is also 

clearly observed in Figure 3. 

 

 

Table 15. Comparison of classification accuracy using KNN and HTGWPS 

Dataset 
Classification Accuracy Number of Features 

KNN ONLY KNN with HTGWPS-V1 KNN ONLY KNN with HTGWPS-V1 
11_Tumors 0.7072 0.8874 15009 342 
14_Tumors 0.3968 0.6088 12533 1655 

Brain_Tumor1 0.7700 0.8464 10367 15 
Brain_Tumor2 0.6422 1.0000 5920 69 

DLBCL 0.8625 0.9938 11225 67 
Leukemia1 0.8267 0.9867 5327 91 
Leukemia2 0.8667 1.0000 10509 199 

Prostate_Tumor 0.8349 1.0000 5469 103 
SRBCT 0.8587 0.9961 2308 50 

 

 

 
 

Figure 3. Accuracy rates before and after applying HTGWPS-based FS 
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6. CONCLUSION  

A hybrid approach that is proposed in this paper is used to handle the complexity of the FS problem 

in large datasets. This hybrid approach combines PSO, GWO, and TS techniques in the proper way to avoid 

the local optima, especially when dealing with high-dimensional datasets. The PSO's exploration ability at 

the beginning step of the search mechanism helps the algorithm scan the search space for the promising 

search area. The exploitation capability of the GWO at the end of the search mechanism helps the algorithm 

to converge toward the best solution. The TS applies the exploratory phase at the end of the search process to 

escape from local optima and tend toward the global optima. This approach uses a time-varying transition 

parameter, named Z. Depending on Z’s threshold, the solutions are updated based on the PSO, GWO, or TS. 

The FS is treated as a binary problem by using the TFs to convert continuous solutions to binaries. Eight 

variants of the proposed approach were implemented in this paper. Four variants are based on S-shaped TFs 

and four are based on V-shaped TFs. To evaluate the proposed variants, a variety of high-dimensional  

small-instance medical datasets were used, and the KNN classifier’s feedback was utilized to assess the 

performance of the proposed approach. The experimental findings demonstrated that HTGWPS-V1 

outperformed the other investigated variants and well-known optimizers in terms of average fitness value on 

67% of the datasets. Future work includes utilizing the TS mechanism with other meta-heuristics that suffer 

from global search ability. Also, the Z-parameter can be tuned to other thresholds, which may obtain better 

results. 
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