
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 12, No. 5, October 2022, pp. 5339~5347

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i5.pp5339-5347  5339

Journal homepage: http://ijece.iaescore.com

Efficient failure detection and consensus at extreme-scale

systems

Soma Sekhar Kolisetty, Battula Srinivasa Rao
School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India

Article Info ABSTRACT

Article history:

Received Nov 5, 2021

Revised May 20, 2022

Accepted Jun 14, 2022

 Distributed systems and extreme-scale systems are ubiquitous in recent years

and have seen throughout academia organizations, business, home, and

government sectors. Peer-to-peer (P2P) technology is a typical distributed

system model that is gaining popularity for delivering computing resources

and services. Distributed systems try to increase its availability in the event

of frequent component failures and functioning the system in such scenario

is notoriously difficult. In order to identify component failures in the system

and achieve global agreement (consensus) among failed components, this

paper implemented an efficient failure detection and consensus algorithm

based on fail-stop type process failures. The proposed algorithm is

fault-tolerant to process failures occurring before and during the execution of

the algorithm. The proposed algorithm works with the epidemic gossip

protocol, which is a randomly generated paradigm of computation and

communication that is both fault-tolerant and scalable. A simulation of an

extreme-scale information dissemination process shows that global

agreement can be achieved. A P2P simulator, PeerSim, is used in the paper

to implement and test the proposed algorithm. The proposed algorithm

results exhibited high scalability and at the same time detected all the

process failures. The status of all the processes is maintained in a Boolean

matrix.

Keywords:

Consensus

Epidemic protocol

Failure detection

Fault tolerance

Gossip-based protocol

Message passing interface

process

Scalability

This is an open access article under the CC BY-SA license.

Corresponding Author:

Battula Srinivasa Rao

School of Computer Science and Engineering, VIT-AP University

Amaravati-522 237, Andhra Pradesh, India

Email: sreenivas.battula@gmail.com

1. INTRODUCTION

A collaborative fault-tolerance approach is essential to diminish frequent component failures

efficiently to ensure extreme-scale systems success. Many fields of distributed systems have adopted

algorithm-based fault tolerant procedures to detect failures in the system [1]. In research [2], [3] the authors

have proposed a replication model and load balancing algorithm that provide fault tolerance in large-scale

systems using gossiping with node failures. A gossip-based parallel algorithms are introduced for

high-performance computing, unstructured peer-to-peer networks and decentralized job scheduling in grids

[4]–[6]. Fault tolerant techniques for message passing interface (MPI) applications have been proposed to

detect and recover failures [7]–[11]. Failure detection using machine learning frameworks in high

performance computing systems that automatically detect and diagnose failures [12]–[14]. A state-of-the-art

failure detection, prediction, and recovery techniques in exascale systems has introduced [15]. In research

[16], [17], a fault tolerant framework is designed and implemented for heterogeneous applications to increase

scalability. A various gossip-based algorithms were implemented for failure detection and consensus

[18]–[20].

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 5, October 2022: 5339-5347

5340

This paper particularly focuses on [1] in improving the scalability of the first algorithm with the help

of an efficient failure detection and consensus algorithm. The algorithm presented in this work is completely

fault tolerant. It detects process failures and consensus accurately using gossip protocol. For the purpose of

detecting failures in large-scale systems, gossiping has been used to maintain up-to-date information about

process status. P2P systems can be large scale (millions of nodes) extremely. Process in such systems is

continuously joining and leaving. In this frame, experimenting with a protocol can jeopardizes the efficiency

of the system. In order to cope with these properties, PeerSim simulator was used, in enabling maximum

scalability and dynamism.

Consensus is detected with the help of alive processes using the same approach of gossiping by

preserving the status of all processes in a matrix. Every process in the system maintains the status of other

processes in a fault matrix Mq-holds i2 elements where i is the number of processes in the system. 0 indicate

process is alive. 1 indicate process have failed. Five processes Pv-Pz are shown in Figure 1. We can check for

consensus at any one of the alive processes say Px. We can detect a particular process say Pw is alive or failed

with other alive processes Pv, Pw, Py, and Pz by overlapping process Px with process Pw which is shown in

Figure 1 separately. Hence, in this case, consensus is detected by process Px for process Pw. The size of the

fault matrix increases exponentially with the system size.

Figure 1. Process Pw’s consensus detection

Bosilca et al. [21] presented a scalable method that can tolerate failures of high-frequency and

demonstrated a hypothetical upper bound just on time needed to alter the system that permits novel failures to

occur in a state. This means that the algorithm is tolerant of a random failures number, so long as they do not

appear more frequently. This method was evaluated on large-scale applications using a resilient MPI

distribution. For reasonable detection times in the system, the ring strategy introduces non-measurable or

insignificant extra noise, whereas the strategy of reliable broadcast for alerts permits for efficient delivery of

flaw information once discovered.

Emani et al. [22] suggested a new approach: checkpointable MPI, in which the MPI state is recorded

in a checkpoint with the state of application. MPI and application states are usually recovered from the most

recent checkpoint during the event of a failure. Among the benefits of such a framework are the limited

recovery time, the retention of the MPI state prior to a given failure, the similarity to existing application

checkpoint and restart mechanisms, and the ease of integrating with large-scale scientific applications.

Losada et al. [23] developed a solution for local rollback of MPI applications that integrates a

number of resilience techniques. With user level failure mitigation (ULFM), failure mitigation builds coupled

with a tool of compiler-driven application-level checkpointing (CPPC), as well as the logging of message

facilities of OpenMPI, vProtocol pessimistic message logging, significantly less resilience overhead was

generated. As a result of the ULFM resilience attributes, breakdowns have been identified, communications

infrastructure managed among survivor processes, replaced processes have re-spawned, and communicators

have been rebuilt. The last checkpoint enabled the recovery of failed processes, while message logging

allowed further computations to be progressed.

Using the new ULFM features, Losada et al. [24] extended the CPPC checkpointing framework. A

transparent method for acquiring flexible MPI applications was provided by implementing the original code

of application. Further, multithreaded multiple level check pointing improved scalability by storing

checkpoints in separate memory levels. Tolerating failures in MPI processes resulted in low overhead.

Shahzad et al. [25] presented automatic fault tolerance and checkpoint-restart (CRAFT), a C++

library that provided two functions. The library can easily be expanded to include more data types. CRAFT

simplifies the interface for ULFM-based recovery of dynamic process, reducing the effort and complexity

required to detect faults as well as recover from faults. A combination of application-level checkpoints and

dynamic process recovery allows applications to write application-level checkpoints with small effort. This

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient failure detection and consensus at extreme-scale systems (Soma Sekhar Kolisetty)

5341

project detailed the design and use of the library. For an in-depth analysis of the associated overheads,

several benchmarks were employed.

In our proposed approach, we developed an efficient-scalable failure detection and consensus

algorithm that has implemented for detecting failures and achieving consensus among the failed processes

using a gossip-style protocol. Rest of the sections are: Research method is exhibited in section 2. Whereas

section 3 deals with performance analysis and section 4 concludes the paper.

2. RESEARCH METHOD

The proposed algorithm uses a gossip-based protocol is discussed in this section as a method for

detecting MPI process failures. During the execution, every process periodically pings another random

process to detect failures. In addition, achieving consensus on the list of failed processes while maintaining

the global knowledge at each process for the dissemination of information.

The proposed algorithm has the following assumptions: a reliable mode of communication is

assumed to connect processes, there is an assumption that a failed MPI process ceases communication, a

failed MPI process cannot be recovered since faults are assumed permanent, if a process is detected as failed,

all the other processes will detect that process has failed, the consensus algorithm will stop at some point for

a prolonged period to attain consensus.

2.1. Failure detection approach

In this section, we proposed how failure detection takes place using randomized pinging.

Randomized pinging is closely related to gossip-based protocols. They are especially useful and efficient in

distributed systems where processes are only aware of their local connections and do not have global

knowledge. By executing these gossip algorithms, the processes can work together to achieve the goal of

collecting and disseminating the information across the entire system.

Pseudo-code for the algorithm can be showed in Figure 2. The process u pings a process v at

random, based on a uniform probability distribution function, during the length of a TGossip cycle. As long as

process v responds to process u before the termination of the current gossip cycle, then process u discovers

process v as alive; if not, process v is considered as fail.

The probability of the node being chosen as the destination of zero, a ping message or several ping

messages continues to follow a binomial distribution during a uniform gossiping cycle, thus making failure

detection more scalable and putting a minimum burden on each process. Failures are inevitably detected by

the non-failed processes, causing an exponential transmission of communication to reach concurrence. A

gossip-based technique is fault-tolerant, so it can handle delays and moderate to low message loss rates.

Figure 2. Efficient failure detection

2.2. Global knowledge for consensus

We can achieve consensus using consensus algorithm by retaining global knowledge within every

MPI process. Upon detecting failures, a fault matrix Fp is maintained by each process p to assist in the

memory of all process’s status, as believed by it, as well as by all other processes, as depicted in Figure 3.

Process u detects a failure of process v in its fault matrix and is represented as: Fp[u,v]. (1 if detected to have

failed; 0 otherwise). Four logical tasks can be distinguished depending on the tasks performed: i) initializing,

ii) detecting process failures, iii) updating fault matrix, and iv) checking for consensus.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 5, October 2022: 5339-5347

5342

Figure 3. Efficient consensus detection

Each process assumes that all other processes have already started and that none have detected

before the algorithm starts. Each TGossip time unit, a process p picks a process q at random and disseminate

pings message to it, piggybacking Fp which is the fault matrix of process p. It allows information to spread

exponentially not only by propagating the entire matrix, but also by propagating the detections of other

processes that process p is aware of, which allows more efficient communication. When this ping message is

received, an asynchronous response is sent. If p has not received a response message from q at the time of

current gossip cycle comes to an end, q is directly detected as failed. An event timeout is being set in the

current gossip cycle so that q can provide a response.

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient failure detection and consensus at extreme-scale systems (Soma Sekhar Kolisetty)

5343

In the local fault matrix Fp, the OR function is applied to the relating aspects in Fr, except for the

row p, when a response message is received at position p from position r. The consensus is reached when all

the alive processes have detected a failed process. The algorithm requires O(n2) memory in keeping the local

state knowledge by all the processes.

3. PERFORMANCE EVALUATION

Using PeerSim simulator, we have implemented and tested the failure detection and consensus

algorithm through simulations. PeerSim is a Java-based P2P network simulator. In order to simulate and test

a P2P network in real-life, the simulator excels in creating maximum number of processes (i.e., up to 10

lakh). For EU projects, the DELIS, and BISON, the PeerSim simulator was launched. The PeerSim has been

improved with intense dynamism and scalability. It comprises of two simulation engines, the first one is the

event-driven engine and the second one is the cycle-driven engine.

In this paper, the major purpose for employing the PeerSim simulator rather than diverse simulators

(e.g., NS3) is due to, it supports dynamism, maximal flexibility and enables scalability. The simulator can

cope up with millions of nodes and allow to experiment with a protocol and thus enabling extreme

scalability. Thus, the failure detection and consensus algorithms were implementation using PeerSim

simulator. In the following sections, we define the infrastructure first, and then presented the evaluation

results.

3.1. Simulation infrastructure

PeerSim is a Java-based simulator, and it can be used to generate and observe process failures. Also,

it can be extended for more sophisticated scenarios and functionalities. In this work, a traditional

event-based simulation engine components of PeerSim are used to simulate failure injection and observation.

Mainly, the following Java classes were extended: i) node class added more fields for data recording and

collection, ii) network class added more accessor methods for the modified node class, iii) dynamic network

class added time-slots phenomena to generate failure events at random times during simulation cycles, and

iv) observer class is used to collect data, write it into text files, and compute statistical results for plotting

using Gnuplot tool. The experiment parameters for protocol, control, and PeerSim objects can be set up in the

configuration file. The simulations are run with a configuration file.

3.2. Results and discussion

3.2.1. Algorithm analysis

The fault tolerance and scalability of the proposed consensus algorithm and failure detection were

evaluated. A peer-to-peer (P2P) simulator and PeerSim is used to implement and test the proposed algorithm.

The processes’ fault matrix generated by the proposed algorithm increases with its system size and sending it

as part of gossiping utilizes a high amount of memory.

The proposed algorithm detects failures using ping-response information exchange throughout each

gossip cycle. A gossip cycle has a binomial distribution for each ping message received by the process. The

possibility of a process receiving multiple pinging messages is extremely down, as is the possibility of a

failed process not receiving a ping message. Thus, any process failure is detected within the first few gossip

cycles.

Ping-reply gossip messages are sent to the system’s fault-free processes when a failure is detected. It

is observed that the consensus has reached after a logarithmic number of gossip cycles. As a result of the ping

and response messages in a gossip cycle, messages are disseminated twice as fast. Since the algorithm require

two gossip messages (ping-reply) per cycle to detect consensus at each process, the number of gossip

messages required for detection is twice what is actually required. It takes the proposed algorithm n2 memory

units per process to store the fault matrices, as is each process in the system will store the fault matrix.

3.3. Experimental results

Experiments are conducted using the PeerSim simulator configured in the Eclipse Luna version.

PeerSim is adaptable, scalable, and simple to set up. Gossip-based protocols distribute information

exponentially, so enough processes can reach a consensus on failed injections within a short time. Failures

were injected into randomly selected simulated MPI processes. A failure is detected/committed at different

points in the process cycle (s). Thus, the last process that accomplished this is recorded. The aforementioned

facts have all been verified through experiments.

3.3.1. Global knowledge consensus

We set the gossip cycle length that allowing the matrices to merge completely within a given cycle

for a given system size. The cycle length was 10; 100; 1,000; 10,000; 100,000 ms respectively for system

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 5, October 2022: 5339-5347

5344

sizes {8, 16, 32, 64, 128}, {256, 512}, {1024, 2048, 4096}, {8192, 16384, 32768, 65536} and {131072,

262144, 524288, 1000000}. This is required because matrix merge operations take up a significant portion of

the cycle time. We conducted experiments to test the algorithm’s fault tolerance and scalability.

Failures are injected before the failure detection and makes to run consensus algorithm. Figure 4

displays the relationship between the number of cycles required to achieve consensus and the size of the

system for one failure injected before the algorithm. The number of cycles required to reach consensus is

obviously proportional to the system size. Figure 5 depicts how failure detection information exponentially

spreads for a specific injected failure. The algorithm’s logarithmic complexity is demonstrated in both

figures.

Figure 4. Achieving global agreement after injecting a single failure

Figure 5. For size of the system 220 progression to local consensus after a single failure injection

Figure 6 shows how different processes reach consensus at different cycle numbers. Figure 7 shows

the effect of multiple (eight) failures injected before the algorithm on the consensus time. Compared to the

single failure case, it took only one or two more cycles. Failures were injected into the algorithm during

execution to test its fault tolerance. In Figure 8, multiple failures were injected at random into randomly

selected processes. The number of cycles required to reach consensus has increased gradually. Despite its

fault tolerance, the algorithm is completely reliable.

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient failure detection and consensus at extreme-scale systems (Soma Sekhar Kolisetty)

5345

Figure 6. Spreading consensus detection for 220 system size

Figure 7. Gossip cycles to obtain global consensus before multiple failures injection

Figure 8. Injected multiple failures during execution of algorithm to achieve global consensus

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 5, October 2022: 5339-5347

5346

4. CONCLUSION

An efficient failure detection and consensus algorithm is presented to increase the scalability. As

system size increases at scale, experimental results show logarithmic scalability and nearly constant fault

detection and consensus time. Fault tolerance is implemented by the algorithm, which succeeds even if

process failures are experienced during execution and detects both prior and subsequent failures. The

proposed algorithm is efficient as it uses least amount of time for failure detection and achieving consensus.

To improve scalability of the algorithm, as is implemented with a Boolean matrix at every process in the

system. Previously, simulations were typically conducted with hundreds of nodes. The simulation has scaled

up to ten lakh nodes by incorporating resource discovery mechanisms into PeerSim simulator.

REFERENCES
[1] A. Katti, G. Di Fatta, T. Naughton, and C. Engelmann, “Epidemic failure detection and consensus for extreme parallelism,” The

International Journal of High Performance Computing Applications, vol. 32, no. 5, pp. 729–743, Sep. 2018, doi:
10.1177/1094342017690910.

[2] M. Chatterjee, A. Mitra, S. Roy, and S. K. Setua, “Gossip based fault tolerant protocol in distributed transactional memory using

quorum based replication system,” Cluster Computing, vol. 23, no. 2, pp. 1103–1124, Jun. 2020, doi: 10.1007/s10586-019-02973-
7.

[3] M. Chatterjee, A. Mitra, S. K. Setua, and S. Roy, “Gossip-based fault-tolerant load balancing algorithm with low communication

overhead,” Computers and Electrical Engineering, vol. 81, p. 106517, Jan. 2020, doi: 10.1016/j.compeleceng.2019.106517.
[4] M. Casas, W. N. Gansterer, and E. Wimmer, “Resilient gossip-inspired all-reduce algorithms for high-performance computing:

Potential, limitations, and open questions,” The International Journal of High Performance Computing Applications, vol. 33,
no. 2, pp. 366–383, Mar. 2019, doi: 10.1177/1094342018762531.

[5] R. Azimi and H. Sajedi, “Peer sampling gossip-based distributed clustering algorithm for unstructured P2P networks,” Neural

Computing and Applications, vol. 29, no. 2, pp. 593–612, Jan. 2018, doi: 10.1007/s00521-017-3119-0.
[6] J. Wu and X. Xu, “Decentralised grid scheduling approach based on multi‐agent reinforcement learning and gossip mechanism,”

CAAI Transactions on Intelligence Technology, vol. 3, no. 1, pp. 8–17, Mar. 2018, doi: 10.1049/trit.2018.0001.

[7] N. Losada, P. González, M. J. Martín, G. Bosilca, A. Bouteiller, and K. Teranishi, “Fault tolerance of MPI applications in
exascale systems: The ULFM solution,” Future Generation Computer Systems, vol. 106, pp. 467–481, May 2020, doi:

10.1016/j.future.2020.01.026.

[8] N. Sultana, M. Rüfenacht, A. Skjellum, I. Laguna, and K. Mohror, “Failure recovery for bulk synchronous applications with MPI
stages,” Parallel Computing, vol. 84, pp. 1–14, May 2019, doi: 10.1016/j.parco.2019.02.007.

[9] G. Georgakoudis, L. Guo, and I. Laguna, “Reinit++: evaluating the performance of global-restart recovery methods for MPI fault

tolerance,” arxiv.org/abs/2102.06896, Feb. 2021.
[10] N. Losada, M. J. Martín, and P. González, “Assessing resilient versus stop-and-restart fault-tolerant solutions in MPI

applications,” The Journal of Supercomputing, vol. 73, no. 1, pp. 316–329, Jan. 2017, doi: 10.1007/s11227-016-1863-z.

[11] W. Gropp and E. Lusk, “Fault tolerance in message passing interface programs,” The International Journal of High Performance
Computing Applications, vol. 18, no. 3, pp. 363–372, Aug. 2004, doi: 10.1177/1094342004046045.

[12] O. Tuncer et al., “Online diagnosis of performance variation in HPC systems using machine learning,” IEEE Transactions on

Parallel and Distributed Systems, vol. 30, no. 4, pp. 883–896, Apr. 2019, doi: 10.1109/TPDS.2018.2870403.
[13] B. Mohammed, I. Awan, H. Ugail, and M. Younas, “Failure prediction using machine learning in a virtualised HPC system and

application,” Cluster Computing, vol. 22, no. 2, pp. 471–485, Jun. 2019, doi: 10.1007/s10586-019-02917-1.

[14] G. Zhang, Y. Liu, H. Yang, and D. Qian, “Efficient detection of silent data corruption in HPC applications with synchronization-
free message verification,” The Journal of Supercomputing, vol. 78, no. 1, pp. 1381–1408, Jan. 2022, doi: 10.1007/s11227-021-

03892-4.

[15] R. Canal et al., “Predictive reliability and fault management in exascale systems,” ACM Computing Surveys, vol. 53, no. 5,
pp. 1–32, Oct. 2020, doi: 10.1145/3403956.

[16] C. Chen, Y. Du, K. Zuo, J. Fang, and C. Yang, “Toward fault-tolerant hybrid programming over large-scale heterogeneous

clusters via checkpointing/restart optimization,” The Journal of Supercomputing, vol. 75, no. 8, pp. 4226–4247, Aug. 2019, doi:
10.1007/s11227-017-2116-5.

[17] A. M. Aseeri and A. Mai, “A two-level fault-tolerance technique for high performance computing applications,” International

Journal of Advanced Computer Science and Applications, vol. 9, no. 12, 2018, doi: 10.14569/IJACSA.2018.091207.
[18] T. Yu and J. Xiong, “Distributed consensus-based estimation and control of large-scale systems under gossip communication

protocol,” Journal of the Franklin Institute, vol. 357, no. 14, pp. 10010–10026, Sep. 2020, doi: 10.1016/j.jfranklin.2020.07.019.

[19] G. Wang, Z. Wang, and J. Wu, “A local average broadcast gossip algorithm for fast global consensus over graphs,” Journal of
Parallel and Distributed Computing, vol. 109, pp. 301–309, Nov. 2017, doi: 10.1016/j.jpdc.2017.05.008.

[20] D. Silvestre, P. Rosa, J. P. Hespanha, and C. Silvestre, “Stochastic and deterministic fault detection for randomized gossip

algorithms,” Automatica, vol. 78, pp. 46–60, Apr. 2017, doi: 10.1016/j.automatica.2016.12.011.
[21] G. Bosilca et al., “A failure detector for HPC platforms,” The International Journal of High Performance Computing

Applications, vol. 32, no. 1, pp. 139–158, Jan. 2018, doi: 10.1177/1094342017711505.

[22] M. Emani, I. Laguna, K. Mohror, N. Sultana, and A. Skjellum, “Checkpointable mpi: A transparent fault-tolerance approach for
MPI (No. LLNL-CONF-739586).” Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 2017.

[23] N. Losada, G. Bosilca, A. Bouteiller, P. González, and M. J. Martín, “Local rollback for resilient MPI applications with

application-level checkpointing and message logging,” Future Generation Computer Systems, vol. 91, pp. 450–464, Feb. 2019,
doi: 10.1016/j.future.2018.09.041.

[24] N. Losada, I. Cores, M. J. Martín, and P. González, “Resilient MPI applications using an application-level checkpointing

framework and ULFM,” The Journal of Supercomputing, vol. 73, no. 1, pp. 100–113, 2017, doi: 10.1007/s11227-016-1629-7.
[25] F. Shahzad, J. Thies, M. Kreutzer, T. Zeiser, G. Hager, and G. Wellein, “CRAFT: A library for easier application-level

checkpoint/restart and automatic fault tolerance,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 3,

pp. 501–514, Mar. 2019, doi: 10.1109/TPDS.2018.2866794.

Int J Elec & Comp Eng ISSN: 2088-8708 

Efficient failure detection and consensus at extreme-scale systems (Soma Sekhar Kolisetty)

5347

BIOGRAPHIES OF AUTHORS

Soma Sekhar Kolisetty received his M.Tech. in Software Engineering and

B.Tech. in Computer Science and Engineering from Jawaharlal Nehru Technological

University, Hyderabad, in 2011 and 2009. Currently, he is pursuing his Ph.D. at VIT-AP

University, Amaravati, Near Vijayawada, Andhra Pradesh. He had an academic, industrial and

research experience of 8 years. His research interests include distributed systems, parallel

computing, machine learning, and data science. He can be contacted at email:

sekhar.soma007@gmail.com.

Battula Srinivasa Rao working as Associate professor in School of Computer

Science and Engineering, Vellore Institute of Technology-Andhra Pradesh (VIT-AP)

University, Amaravati, Near Vijayawada, Andhra Pradesh. His research interests are soft

computing, image processing, machine learning and deep learning. He can be contacted at

email: sreenivas.battula@gmail.com.

mailto:sreenivas.battula@gmail.com
https://orcid.org/0000-0001-9272-808X
https://scholar.google.com/citations?user=uRdcT3AAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57577898100
https://publons.com/researcher/5005406/soma-sekhar-kolisetty/
https://orcid.org/0000-0003-2242-3656
https://scholar.google.co.in/citations?user=X4Cb00EAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57210553109
https://publons.com/researcher/5009495/srinivasa-rao-battula/

