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 The integration of distributed generators (DGs), which are based on 

renewable energy sources, energy storage systems, and static VAR 

compensators (SVCs), requires considering more challenging operational 

cases due to the variability of DG production contributed by different 

characteristics for different time sequences. The size, quantity, technology, 

and location of DG units have major effects on the system to benefit from 

the integration. All these aspects create a multi-objective scope; therefore, it 

is considered a multi-objective mixed-integer optimization problem. This 

paper presents an improved multi-objective salp swarm optimization 

algorithm (MOSSA) to obtain multiple Pareto efficient solutions for the 

optimal number, location, and capacity of DGs and the controlling strategy 

of SVC a radial distribution system. MOSSA is a bio-inspired optimizer 

based on swarm intelligence techniques and it is used in finding the optimal 

solution for a global optimization problem. Two sets of objective functions 

have been formulated minimizing DGs and SVC cost, voltage violation, 

energy losses, and system emission cost. The usefulness of the proposed 

MOSSA has been tested with the 33-bus and 141-bus radial distribution 

systems and the qualitative comparisons against two well-known algorithms, 

multiple objective evolutionary algorithms based on decomposition 

(MOEA/D), and multiple objective particle swarm optimization (MOPSO) 

algorithm. 
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1. INTRODUCTION 

With the growing penetration of small-scale distributed generation (DG) technology and static VAR 

compensator (SVC) units in the distribution systems, the usage of these units has become a hot research topic 

for researchers. In general, the mentioned units are used for improving the power network benefits. The 

location, size, and operation planning of DGs and SVCs need to be designed and planned optimally to find 

optimal solutions that provide the benefits of the unit and the optimal economic point of view [1], [2]. Many 

available objectives and constraint factors considered being optimally minimized or maximized. From the 

perspective of mathematical optimization, DG and SVC units sizing, siting, and planning are complex  

multi-objective optimization problems in the distribution system, so many papers optimized single [3], [4] or 

multi objectives [5]–[7] among available objective functions using either analytic or heuristic methods. The 

multi-objective salp swarm algorithm (MOSSA) afforded a robust searching capability in multi-objective 

components to get the most proximate Pareto optimal solutions among various techniques and tools. 

https://creativecommons.org/licenses/by-sa/4.0/
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Different factors such as technical and environmental concerns, increasing purchasing of energy, 

and restructuring electricity markets become the reason for the growth of DG units’ penetration in the 

microgrids. Although appropriate usage of DG units in the system will result in several benefits for both 

utility and DG owners such as increasing power quality [8], reducing the greenhouse gases, losses 

minimization [9], and reliability improvement, but improper incorporation of DG units into the distribution 

networks may cause serious security problems [10]. The SVC units have been used to improve the system’s 

overall power quality by simultaneous control actions [11]. By optimal allocating these units together with 

DG units, they can provide all the mentioned advantages to the system. 

In the classical multi-objective optimization method, multiple-objective optimization problems were 

objective functions formulated as a weighted sum of all objective functions using proper weighting factors. 

By changing these weight factors, finally, the Pareto optimal solutions were obtained. Several multi-objective 

optimization algorithms are developed to automatically handle the problem and find trade-off solutions 

because of the motioned problems. In study [10], DG owner profit and system cost were optimized for 

optimal allocation of small scaled DG units and system reconfiguration problems. In study [12],  

multi-objective mixture teaching-learning based on the grey wolf optimizer algorithm method used to find 

Pareto solution to minimize power losses and improve the system’s reliability. Multiple-objective particle 

swarm optimization (MOPSO) was used for allocating multi-type DGs and battery banks in [13]. The best 

type, location size of distributed generations, SVC, tap changers, and energy storage systems find while 

minimizing the system voltage deviation [14]. The krill herd algorithm (KHA) was used to minimize the 

power losses while finding optimal DG allocation [15]. 

The location of DG units in the radial distribution system optimally found using a multi-objective 

algorithm based on a chaotic differential evolution (MOCDE) algorithm [16]. The multi-objectives such as 

voltage violation, yearly loss and DG costs, and power losses were used to find all the Pareto optimal 

solutions. In studies [17], [18], the wind turbines (WTs) and hybrid energy storage system (HESS) units size 

optimally found using a single-objective optimization algorithm such as genetic and grey wolf algorithms. In 

study [19], the size of multi-type DG units found by water irrigation using genetic algorithm for improving 

the DG owner and utility benefits. The SVC units in [20] used to improve the systems’ voltage stability 

index. Aiming to minimize thermal power plant gas pollution was one of the objectives in [21]. Among those 

various paper research still, there is a gap in finding the Pareto optimal solution of optimal site, size, type, 

number, and operation of DG and SVC units. 

In this paper, two sets of objective functions, including voltage violation, total energy loss, costs of 

DG and SVC units, and thermal power plant emission costs, are considered main objectives. Multiple types 

of DG units modeled as negative load using real wind speed and sun irradiation data. The SVC units are 

considered and modeled to help DG units to improve the system’s power quality. Four different types of 

loads (commercial, residential, industrial, and mixed load models) are considered in this paper. The proposed 

MOSSA algorithm is applied to find the near-optimal solutions of the best number, site, and sizing of the 

DGs and SVC and SVC control strategy.  

The feasibility of the prepared technique was tested on both IEEE 33-bus network and 141-bus 

radial distribution network. The results are compared with well-known algorithms referred to as  

multi-objective particle swarm optimization (MOPSO) algorithm and multi-objective evolutionary 

algorithms based on decomposition (MOEA/D) algorithms. To showing the better quality of Pareto front 

solutions obtained by proposed MOSSA compared to the classical optimization methods, the spacing metric 

(S-metric) and comparison metric (C-metric) considered and compared with a box plot. The main 

contributions of this work explained in the following points: 

a. The MOSSA is presented and implemented with proposed sets of multiple-objectives for finding 

optimal operation strategy, number, size, location, and type of DGs and SVCs.  

b. The optimal Pareto front solutions determined for four different study cases, including installing 

photovoltaic (PV) generation units, installing WT units, installing PV and WT units, and installing 

multi-type DG and SVC units.  

c. The Pareto optimal solution obtained for different scenario load modeling cases.  

d. The quality of Pareto solutions determines by make a results comparison to the MOPSO and MOEA/D 

algorithms result for 20 runs using the C and spacing metrics. 

The structural organization of the paper is as follows. The MOSSA method and objectives 

formulation proposed in section 2, then section 3 is devoted to DG and SVC units, and test system modeling. 

Section 4 shows the simulation results and comparing the quality of the results for test system applications. 

Finally, conclusion is given in section 5.  
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2. MOSSA CONCEPT AND OBJECTIVE MODEL 

2.1.  Multiple objectives optimization concept overview 

Multi-objective optimization formulation can be written as a minimization problem as (1). 

  
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑤. 𝑟. 𝑡 𝒙

 𝐹(𝒙) = {𝑓1(𝒙), 𝑓2(𝒙), … , 𝑓𝑛(𝒙)}    (1) 

 

Subject to ∶ {

𝐺𝑖(𝒙) ≥ 0, 𝑖 = 1, 2, 3, . . . , 𝑝

𝐻𝑖(𝒙) = 0, 𝑖 = 1, 2,3, . . . , 𝑚
𝑙𝑏𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑏𝑖 , 𝑖 = 1, 2,3, . . . , 𝑑

 

 

where 𝑥 is the positions of the solution and the term 𝑛 represents the number of proposed objectives, 𝑝, and 

𝑚 in 𝐺𝑖 and 𝐻𝑖  represent the number of existed equality equations and the inequality constraints, and 𝑑 is the 

number of dimension (variables) between 𝑙𝑏 and 𝑢𝑏 values, respectively. Pareto optimal dominance method 

used to determine the near-optimal Paretos [22]. A set of Pareto optimal solutions for each group of  

multi-objective problems describes the best trade-offs between the multi-objectives. In multi-objective 

optimization, a solution is better than another (dominate it) if it has the same and at least a better value in one 

of the objectives. If this fact does not hold between two solutions, we called these two solutions, Pareto 

optimal (non-dominated solutions). 

 

2.2.  Inspiration, mathematical model of MOSSA 

The MOSSA is presented by Mirjalili et al. in 2017 [23] regarding the swarming social behavior of 

the salps. These species are part of the family of Salpidae; their body is very same as jellyfish. Salps used 

their body to pump the water for movement.  

In the MOSSA modeling, the behavior of salps to better movement and food-seeking are the mimic. 

The population of salps is divided into two groups: leader and followers. Usually, the leaders manage the 

group, and the followers obey the leader either directly or by following the followers indirectly. The salps 

position is updated by (2) and (3): 

 

Sj
1 ∶ {

𝑟1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗) × 𝑟2 + 𝑙𝑏𝑗) − 𝐹𝑗, 𝑟3 ≥ 0.5

𝑟1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗) × 𝑟2 + 𝑙𝑏𝑗) + 𝐹𝑗, 𝑟3 < 0.5
 (2) 

 

𝑟1 = 2𝑒
−𝑅,   𝑅 = (

4𝑙

𝐿
)
2

 (3) 

 

where Sj
1 refers to the j 

tℎ salp leader position with 𝑑 dimensions, 𝐹𝑗 is the food source’s position in the 𝑗 

variable. Note that the food position is selected from the Archive repository space. 𝑟2 and 𝑟3 are random 

numbers between zero to one. The 𝑙 represents the current iteration number while 𝐿 is used for the number of 

maximum iterations, and coefficient 𝑟1 is a parameter that balances the exploration and exploitation phase. 

Follower salps positions, update using Newton’s law of motion and e expressed as (4). 

 

Sj
i = 0.5(Sj

i + Sj
i−1) (4) 

 

where i is a number between 2 and maximum search agent number. 

The MOSSA algorithm can use two-stepping criteria. One is setting a maximum iteration number 

for the main loop of the algorithm. Two for each iteration, the algorithm can stop if the set of Pareto front 

solutions at the current iteration compared to a predefined iteration before has less than a predefined 

tolerance different solution. 

 

2.3.  Optimization objectives 

In this section, we present the formulation of the objectives used for the DGs and SVC units’ 

allocation problem. In (1), the objectives ({𝑓1, 𝑓2, … , 𝑓𝑛}) chosen from our objective function and 𝑥 will be 

site vectors, size vectors and type vectors of DG unit and size vectors and site vectors and operation strategy 

vectors for SVC units. The formulation for any set of objectives can be written as (5). 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝐹1, 𝐹2, 𝐹3} 

𝑤. 𝑟. 𝑡 𝑆, 𝐿,⃗⃗ ⃗  �⃗⃗�   (5) 
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where 𝑆, 𝐿,⃗⃗⃗ and �⃗⃗� denoted the sizes the locations, and operation strategy of the DGs and SVC units. 

 

2.3.1. Voltage violation 

Voltage violation objective for controlling the system’s voltage profile modeled as differences 

between each bus voltage magnitude with connected busses in the feeder as (6). 

 

𝑂𝐹𝑣 = ∑ ∑ (|𝑉𝑗
𝑖 − 𝑉𝑟𝑒𝑓| + 𝐾𝑃𝐹1

𝑖 )
𝑁𝑁𝑈𝑆
𝑗=1

𝑁𝑡
𝑖=1  (6) 

 

where 𝑁𝑡 represents the total hours of the optimization process (period), 𝑁𝑁𝑈𝑆 is the total system’s node 

number, and 𝑉𝑗
𝑖 is the 𝑗𝑡ℎ node’s voltage magnitude at hour 𝑖. The 𝑃𝐹1

𝑖  part works as a penalty in the function 

to find a better solution with minimum number of voltage violations, and 𝐾 is set dynamically between the 

100 to 0 over the term of iteration number at each iteration. 

 

𝑃𝐹1
𝑖 =

{
 

 (𝑉𝑗
𝑖 − 0.95𝑉𝑟𝑒𝑓)

2
, 𝑖𝑓 𝑉𝑗

𝑖 ≤ 0.95𝑉𝑟𝑒𝑓

0, 𝑖𝑓 0.95𝑉𝑟𝑒𝑓 < 𝑉𝑗
𝑖 < 1.05𝑉𝑟𝑒𝑓

(𝑉𝑗
𝑖 − 1.05𝑉𝑟𝑒𝑓)

2
, 𝑖𝑓 𝑉𝑗

𝑖 ≥ 1.05𝑉𝑟𝑒𝑓

 (7) 

 

2.3.2. Total energy losses in system branches 

Real power loss in 𝑗𝑡ℎ branch from 𝑁𝑏𝑟 branch in the system at time 𝑖 can be calculated using  

𝑃𝑙𝑗
𝑖 = (𝐼𝑗

𝑖)
2
. 𝑅𝑗. Where, 𝑅𝑗 is the line resistance of the 𝑗𝑡ℎ branch. The summation of energy loss of the 

network is an objective function to be minimized. This objective function formulated as (8). 

 

𝑂𝐹𝑙 = ∑ ∑ 𝑃𝑙𝑗
𝑖𝑁𝑏𝑟

𝑗=1
𝑁𝑡
𝑖=1  (8) 

 

2.3.3. Annual costs including operation, investment, and maintenance cost 

The annual costs of the WT and PV units include DG unit annualized installation costs and also 

operation and maintenance costs. For this purpose, the DG units’ costs per kW size and expected lifetimes 

are considered to be the same for different DG units. SVC devices cost modeled as the total investment and 

infrastructure costs [24]. This objective can represent mathematically as (9)-(13): 

 

𝑂𝐹𝑐 = 𝐶𝑃𝑉 + 𝐶𝑊𝑇 + 𝐶𝑆𝑉𝐶 (9) 

 

𝐶𝑃𝑉 = ∑ (𝐼𝐶𝑃𝑉 × 𝐶𝜏𝑃𝑉 +
𝑁𝑃𝑉
𝑛=1 𝑂𝑀𝑃𝑉) × 𝑆𝑃𝑉𝑛 (10) 

 

𝐶𝑊𝑇 = ∑ (𝐼𝐶𝑊𝑇 × 𝐶𝜏𝑊𝑇
+

𝑁𝑊𝑇
𝑛=1 𝑂𝑀𝑊𝑇) × 𝑆𝑊𝑇𝑛 (11) 

 

𝐶𝑆𝑉𝐶 = ∑ (
𝑁𝑆𝑉𝐶
𝑛=1 0.0003𝑆𝑆𝑉𝐶𝑛

2 − 0.3051𝑆𝑆𝑉𝐶 + 127.38) (12) 

 

𝐶𝜏𝑥 =
𝑟(1+𝑟)𝜏𝑥

(1+𝑟)𝜏𝑥−1
 (13) 

 

where 𝐶𝑊𝑇 and 𝐶𝑃𝑉 are the annualized operation, investment, and maintenance cost of WTs and PVs, 

respectively. DG units’ cost is dependent on the total installation size of the units in kW, where SVC costs 

depend on device size in kVAr. Here 𝐼𝐶 denotes the investment cost of the units in USD/kW or USD/kWh. 

The term of 𝑂𝑀 denotes the unit’s annual operation and maintenance costs of the units in USD/kW-yr or 

USD/kW h-yr. All the parameters set as the values find at the [25]–[27]. The term 𝜏 is the estimated lifetime 

of the units in years and 𝑆 represents the size of different DGs. 𝑁𝑃𝑉, 𝑁𝑊𝑇 and 𝑁𝑆𝑉𝐶  show the number of DG 

and SVC units, which are determined for each case of study in the optimization process. Finally, an interest 

rate of 𝑟 proposed in capacity recovery factor (𝐶𝜏𝑥) for DG units. 

 

2.3.4. Thermal power plant emission costs 

Global warming has been a primary concern in current years due to the constant rise in greenhouse 

gas emissions. Greenhouse gases produced by the power plants such as 𝐶𝑂2, CO, 𝑆𝑂2, and 𝑁𝑂𝑥, which are 

mainly blamed for causing global warming, occupy a high amount of the total emissions. Atmospheric 

emissions costs of the grid mainly arise due to increasing purchasing electricity from the thermal power 

plant. The mentioned gases pollution emission cost such as emission intensity (EI) and environmental value 
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(EV) shown in Table 1 [28]. Annual emission and electricity generated by the main grid generator formulated 

as (14). 

 

𝑂𝐹𝑒 = (∑ 𝐾𝑗 × 𝐸𝑗)∑ 𝑃𝑀𝐺𝑖
8760
𝑖=1

𝑁𝑔
𝑗=1

 (14) 

 

where 𝐾𝑗 and 𝐸𝑗 are environmental value and emission intensity of 𝑗𝑡ℎ type of gas and 𝑃𝑀𝐺𝑖  shows the 

generated active power in thermal power plant. 

 

 

Table 1. The emission intensities and cost of pollution gases 

 𝑆𝑂2 𝑁𝑂𝑥 𝐶𝑂2 𝐶𝑂 

EI(g/kWh) 6.481 2.884 6239 0.1083 
EV($/kg) 0.875 1.25 0.0041 0.145 

 

 

2.4.  Problem constraints 

Various inequality and equality constraints considered in this work, such as the system power 

balance constraint, SVC, PV, and WT unit constraints. 

- Power balance 

 

𝑆𝑀𝐺
𝑖 + 𝑆𝑃𝑉

𝑖 + 𝑆𝑊𝑇
𝑖 + 𝑆𝑆𝑉𝐶

𝑖 − 𝑆𝐿𝑜𝑎𝑑
𝑖 − 𝑆𝑙

𝑖 = 0,    𝑖 = 1, 2, … , 𝑁𝑇 (15) 

 

where 𝑆𝑀𝐺  is the active and reactive power of the main generator, 𝑆𝑆𝑉𝐶  shows the absorption\injected 

reactive power of SVCs. The 𝑆𝑊𝑇  and 𝑆𝑃𝑉 are output power(s) of DGs. Active and reactive loads shown 

by 𝑆𝐿𝑜𝑎𝑑, 𝑆𝑙 is active and reactive branch losses at time 𝑖, respectively. 

- Main grid generation limits 

 

𝑆𝑀𝐺
𝑖 ≤ 𝑆𝑀𝐺𝑚𝑎𝑥 ,    𝑖 = 1, 2, … , 𝑁𝑇 (16) 

 

- WT and PV generation limits 

 

0.2𝑀𝑊 ≤ 𝑆𝑃𝑉 ≤ 1𝑀𝑊 (17) 

 

0.2𝑀𝑊 ≤ 𝑆𝑊𝑇 ≤ 1𝑀𝑊 (18) 

 

total PV and WT size installed at each bus except slack bus cannot exceed 1MW and DG power factor 

limit set to be 1 in this paper. 

- SVC device limits. 

 

𝑆𝑆𝑉𝐶 ≤ 1𝑀𝑉𝐴𝑟 (19) 

 

𝑄𝑆𝑉𝐶
𝑖 ≤ 𝑆𝑆𝑉𝐶 ,    𝑖 = 1, 2, … , 𝑁𝑇 (20) 

 

where maximum SVC size set to be 1 MVar and at each time step SVC controller can set SVC to be 

between zero and SVC unit size. 

 

2.5.  MOSSA implementation procedure 

Implementation of the proposed objective function into the MOSSA algorithm can be done via the 

following procedure. 

Step 1: Provided the algorithm all the needed input data such as: i) the desired number and outputs for the 

DG units, ii) sizes and locations restrictions, iii) number of search agents (population), maximum Archive 

number, and the maximum number of iterations, and iv) test system line and load data. 

Step 2: Initialize first solutions (initial units’ locations and sizes or SVC operation controls variables) in the 

ranges of the solution search space randomly concerning constraints. 

Step 3: Calculate the objectives with respect to the positions of the search agents and update the solutions 

stored in archive repository. 

Step 4: Update non-dominated solution to Archive repository. 

Step 5: Select an archive solution randomly as a food source. 
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Step 6: Update the salp swarm leader positions, either exploration or exploitation phases concerning food 

source position. 

Step 7: Update the salp swarm followers’ positions using (4). 

Step 8: Check the boundaries of positions of the new solutions and if they are out of search space boundaries 

bring them back to space. 

Step 9: Check stopping condition of MOSSA by either setting a maximum iteration number or proposed 

stopping condition and repeat step 3. 

 

 

3. DOMAIN NAME SYSTEM (DNS), DISTRIBUTED GENERATOR (DG) AND STATIC VAR 

COMPENSATORS (SVC) MODELING 

3.1.  DNS line and load modeling 

The IEEE 33-bus system and also 141-bus systems are radial in nature. Feeders’ data are taken from 

[29], [30] papers. The rated powers levels of the load points were used as peak load in the load curve. The 

33-bus system peak load is 3.715 MW, and power losses matching to this load point were 201.91 kW. 

Respectively for the 141-bus system, the peak load was 11.890 MW, and real power losses for this load point 

was 628.2 kW using forward-backward sweep (FBS) power flow method proposed in [31]. The FBS 

algorithm is based on Kirchoff’s voltage law (KVL) and Kirchoff’s current law (KCL), and it is prepared in 

two significant steps, namely the backward sweep (BS) and the forward sweep (FS). In the backward sweep 

step, the branch currents are calculated using the KCL method, while in the forward sweep step, the busses 

voltage is calculated according to KVL. Industrial, residential, commercial [32] and a real data of distribution 

system with mixed load type [33] model curves have been adopted for the study. This load curves show in 

Figure 1. 

 

 

 
 

Figure 1. Scaled load demand curves 

 

 

3.2.  DNs line and load modeling 

In this paper, the DG unit power factor sets to one and the outputs of DGs are modeled as a negative 

PQ load. The monthly average values estimated for DGs output using real data of wind speed and sun 

radiation. The DG units output assumption contains one day with 24-hour period scaled DG output, this data 

provided in [34], [35]. The monthly time sequence characteristic of PV and WT units are illustrated in  

Figure 2(a) and 2(b). SVC units installed at each bus as negative reactive power and for each time step the 

amount of this reactive power can be controlled using SVC controller. 

 

 

  

(a) (b) 

 

Figure 2. The monthly time sequence characteristic for DG output in (a) PV output and (b) WT output 
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4. RESULT AND DISCUSSION 

4.1.  33-bus system 

The optimal DG and SVC units under consideration using MOSSA has been designed and 

implemented for the different loads and DGs output data provided in the past sections. The MOSSA has been 

applied to various scenarios such as: Optimal size, number, and location of PV units or WT units, optimal 

size, number, and location of PV units and WT units, and optimal size, number, and location of PV units, WT 

units and SVC units. The different load curve characteristic used in proposed scenarios to find out best Pareto 

fronts of minimizing voltage violation, energy losses and DG units’ costs (21) and minimizing voltage 

violation, thermal generators emission cost, and DG units’ costs (22). The minimization problems can 

formulate as (21), (22): 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑂𝐹𝑣 , 𝑂𝐹𝑙 , 𝑂𝐹𝑐} 

𝑤. 𝑟. 𝑡 𝑆, 𝐿,⃗⃗ ⃗  �⃗⃗�  (21) 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑂𝐹𝑣 , 𝑂𝐹𝑒 , 𝑂𝐹𝑐} 

𝑤. 𝑟. 𝑡 𝑆, 𝐿,⃗⃗ ⃗  �⃗⃗�  (22) 

 

where 𝑂𝐹𝑙 value represent total energy losses in MWh, 𝑂𝐹𝑐 value represent total DG and SVC costs in 

million dollars and 𝑂𝐹𝑒 value represent annual emission cost in million dollars. 

The optimization algorithm parameters set as 50 for salp population size, 100 for maximum archive 

size, maximum iteration set as 5000 and MATLAB 2020 used for the simulation on the personal computer 

with 3.6 GHz i-7 processor, and 16 GB RAM configuration. Pareto front solutions in the 33-bus system 

obtained for different load characteristic scenarios. In each scenario, the Pareto solution for 4 cases of the 

study compared to determine the optimal solution from optimal location, number, size, type, and operation of 

DG and SVC units. The scenarios cases include base case without DG and SVC units, case 1 for optimal 

solutions of WT units’ number, size and location, case 2 for optimal solutions of PV plants number, size and 

location, case 3 for optimal solutions of combination number of WT and PV units and units size and location, 

and finally case 4 for optimal solutions of combination number of SVC, WT and PV units and units size and 

location and SVCs control variables. 

The Pareto front solution set of (21) for scenario-1 (residential load curve) shown in Figure 3(a), 

scenario-2 (industrial load curve) shown in Figure 3(b), scenario-3 (commercial load curve) shown in  

Figure 3(c) and scenario-4 (real data load curve with mixed load type) shown in Figure 3(d) for different 

study cases. The solution result obtained by MOSSA for all scenarios shown in the Table 2. The result for 

scenarios shows that case 4 solutions dominate the Pareto solutions in other cases. In the scenario-1 load 

curve, except case 2 (installing PV units), all the cases solve voltage violations because the PV plants do not 

have generated during the nighttime. Total energy losses reduced up to 71.2% in scenario-1, 83.6% in 

scenario-2, 83.6% in scenario-2, 70.8% in scenario-3 and 80% in scenario-4. The voltage profile comparison 

for two cases of the base case without DG and SVC units and the case 4 solutions in scenario-4 for peak load 

hour shown in Figure 4(a). 

The same process done for finding different scenarios and study cases Pareto front while satisfying 

(22) and the voltage profile for the scenario 4 illustrated in Figure 4(b). Different study cases Pareto front for 

each scenario shown in Figures 5(a) to 5(d) and Table 3 listed the result provided by the obtained Pareto 

solutions. As shown in Table 3, almost feeders voltage magnitude brings to between 0.95 and 1.05 pu using 

scenarios study case 1, 3 and 4 and study case2 with installing optimal number, size and site of PV units 

could not solve voltage violation problem during non-sun irradiation hours. The result shows that for the 

scenario-1 load curve, the result can reduce the thermal power plant greenhouse gases by 33.8 to 59.4%. The 

mentioned result for scenario 2 was 26.6 to 60%, for scenario 3 was 32.1 to 59.4%, and for scenario 4 with 

mixed load data was 40 to 60.1%. Figure 4(b) shows the system’s voltage profile for peak load hours  

(6 PM) in scenario 4. 

 

4.2.  141-bus system 

Optimal number, size, location of PV, WT, and SVC units for mixed load curve characteristic to 

find out best Pareto solutions of minimizing voltage violation, energy losses, thermal generators emission 

cost, and DG and SVC units’ costs. The minimization problems can formulate as (23). 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {𝑂𝐹𝑣 , 𝑂𝐹𝑙 , 𝑂𝐹𝑒 , 𝑂𝐹𝑐}  

𝑤. 𝑟. 𝑡 𝑆, 𝐿,⃗⃗ ⃗  �⃗⃗�  (23) 
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(a) (b) 

  

  
(c) (d) 

 
 

Figure 3. Pareto front for 33-bus system study for (a) residential load, (b) industrial load, (c) commercial 

load, and (d) mixed load curve 

 

 

Table 2. Optimal solution result obtained by MOSSA for (21) 
  DG numbers SVC numbers loss at peak hour [kW] voltage [pu] 

base case      201.8 0.913 1 

scenario-1 case 1 5 7   72.0 98.2 0.950 1.031 

 case 2 3 7   201.9 201.9 0.913 1.019 

 case 3 4 7   71.5 201.9 0.951 1.029 
 case 4 1 4 1 5 92.7 775.6 0.952 1.047 

scenario-2 case 1 1 7   71.9 584.6 0.950 1.028 

 case 2 1 7   64.6 584.6 0.935 1.020 
 case 3 1 7   68.4 584.6 0.950 1.041 

 case 4 2 6 1 5 21.3 85.3 0.956 1.049 

scenario-3 case 1 2 7   66.6 89.6 0.952 1.035 
 case 2 2 7   65.1 151.8 0.922 1.037 

 case 3 2 7   64.5 123.5 0.950 1.035 

 case 4 2 3 2 5 37.7 83.4 0.955 1.070 
scenario-4 case 1 2 7   50.4 161.5 0.951 1.018 

 case 2 2 7   50.4 152.5 0.914 1.036 

 case 3 2 7   50.4 142.8 0.951 1.019 
 case 4 1 7 1 5 26.1 126.1 0.950 1.050 

 

 

 

  
(a) (b) 

 

Figure 4. Comparing the voltage profile of case 4 in scenario-4 with the base case for (a) set of (21) 

objectives and (b) set of (22) objectives 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 4, August 2022: 3440-3453 

3448 

  
(a) (b) 

  

  
(c) (d) 

 
 

Figure 5. Pareto front for 33-bus system study for (a) residential load, (b) industrial load, (c) commercial 

load, and (d) mixed load curve 

 

 

Objective function values for ten optimal Pareto solutions shown in Figure 6. The costs of solutions 

are is between 1.13 to 1.59 million dollars. Table 4 compares the benefit provided by each Pareto solution 

with the base case. The result shows that Pareto solutions reduce the total energy losses by 52 to 58% and 

also reduce the generators emissions between 70.1 to 77.6% compared to the base case. Pareto s9 has the 

minimum distance to the origin and, compared to other solutions, it has better emissions, energy losses 

reduction and improving voltage profile. Figure 7 shows the improvement in voltage profile and solving 

voltage magnitude violation compared to the base case for this solution. The solution includes one PV unit 

and 12 WT units and 10 SVCs. Figures 8(a) and 8(b) show the solution s3 losses reduction compared to the 

base case. 

 

 

Table 3. Optimal solution result obtained by MOSSA for (22) 
  DG numbers SVC numbers loss at peak hour [kW] voltage [pu] 

base case      201.8 0.913 1 

scenario-1 case 1 5 7   72.6 117.3 0.950 1.038 

 case 2 5 7   77.8 201.9 0.913 1.050 
 case 3 6 7   75.8 138.7 0.951 1.046 

 case 4 5 6 1 5 28.3 570.3 0.955 1.033 

scenario-2 case 1 5 7   36.6 566.2 0.950 1.032 
 case 2 4 7   36.6 566.2 0.933 1.039 

 case 3 5 7   59.6 566.2 0.950 1.050 

 case 4 6 7 1 5 12.1 78.1 0.951 1.022 
scenario-3 case 1 6 7   14.7 111.8 0.950 1.035 

 case 2 6 7   14.7 169.9 0.928 1.048 
 case 3 6 7   18.8 214.4 0.950 1.050 

 case 4 5 7 1 5 18.8 88.6 0.951 1.034 

scenario-4 case 1 5 7   18.8 102.7 0.952 1.034 
 case 2 5 7   18.8 112.7 0.914 1.047 

 case 3 6 7   18.9 112.1 0.951 1.044 

 case 4 6 7 1 5 21.8 87.1 0.952 1.022 
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Figure 6. Pareto front of 141 bus 
 

 

Table 4. Optimal solution result obtained by MOSSA for (22) 
 DG numbers SVC numbers Min. voltage [pu] TEL [MWh] loss at peak hour [kW] 

Pareto s1 10 10 94.7 6.928 402.668 

Pareto s2 11 10 94.7 7.035 400.269 

Pareto s3  11  10  0.949  6.986  388.955 
Pareto s4  13  10  0.950  7.123  387.348 

Pareto s5  12  10  0.949  7.112  394.981 

Pareto s6  12  10  0.949  6.979  393.946 
Pareto s7  11  9  0.948  7.228  409.192 

Pareto s8  12  8  0.951  7.038  386.360 

Pareto s9  13  10  0.951  6.466  362.065 
Pareto s10  11  10  0.950  7.135  391.536 

base case    0.928  12.275  628.236 

 

 

 
 

Figure 7. Pareto s9 voltage profile 
 

 

4.3.  Multi-objective algorithm comparison 

To analyze the performance and the quality of the MOSSA results, comparisons have been made 

with MOEA/D and MOPSO for the same condition, parameters, and twenty algorithm runs. Since the Pareto 

optimal front for the proposed objective function and data is not known to make sure that MOSSA Pareto 

results are optimal solutions, the algorithms comparisons are based on the C index [36] and spacing metric  

(S metric) [37], [38].  

The S metric is described as the distance of each solution to the closest solution in the search space. 

Determining a smaller number of the S metric indicates that the archive repository solutions are not 

distributed evenly. The zero value for this metric corresponds to that all the set solutions are equally spaced. 

The mathematical formulation for the Spacing metric is shown in (24). 
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𝑆 = √
1

𝑘
∑ (𝑑𝑘
𝑖=1 − 𝑑𝑖)

2  (24) 

 

where 𝑑 is the average of Euclidean distance. The minimum Euclidean distance for two non-dominated 

solutions, can be determined as (25) and (26): 

 

𝑑𝑖 = min {∑ |𝑓𝑚(𝑥𝑖) − 𝑓𝑚(𝑥𝑗)|}, 𝑗 = 1,2,3, … , 𝑘, 𝑗 ≠ 𝑖𝑛
𝑚=1  (25) 

 

𝑑 =
1

𝑘
∑ 𝑑𝑖
𝑘
𝑖=1  (26) 

 

The box-plot of the spacing metric for comparing the algorithm shown in Figure 9. The result shows 

the advantages of MOSSA in finding more evenly distributed solutions. Also, from the result can realize that 

MOPSO finds the worse spacing metric and the average value for the MOSSA results, the spacing metric 

calculated as 0.04.  

For the C index metric, assume there are A and B as two different sets of Paretos found by different 

optimization algorithms. The C index for Pareto sets (C(A, B)) represents a number between 0 and 100 and 

represents the domination percentage of solutions in set B compared to the set A solutions. The definition of 

the C index can be formulated as (27): 

 

𝐶(𝐴, 𝐵) ∶=
|{𝑠2∈𝐵; ∃𝑠1∈𝐴:𝑠1≤𝑠2}|

|𝐵|
× 100 (27) 

 

where 𝑠1 is one of the solutions in the set A and 𝑠2 is a solution in the Pareto solutions set B. 

 

 

  
(a) (b) 

 

Figure 8. The losses for the system’s branches for (a) Pareto s9 and (b) the base case  

 

 

 
 

Figure 9. The box-plots of obtained S metrics for MOSSA, MOPSO, and MOEA/D 
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The box-plot of the C index for comparing algorithm are shown in Figure 10(a) for MOSSA and 

MOPSO methods and Figure 10(b) for MOSSA and MOEA/D algorithms. The result shows that the MOPSO 

and MOEA/D solutions dominated by the MOSSA solution up to 60% while this amount for dominating the 

solution of MOSSA by MOPSO and MOEA/D is less than 10%. The result shows that the MOSSA has 

outstanding searching performance, and the quality and performance of the Pareto front solution are better 

than two other algorithms. 

 

 

  
(a) (b) 

 

Figure 10. C index box-plot for comparing algorithms (a) C index comparison to MOPSO and (b) C index 

comparison to MOEA/D  

 

 

5. CONCLUSION  

In this work, a novel approach based on MOSSA has been presented and applied to find the Pareto 

optimal solutions for various problems in the distribution system. For this purpose, the optimal location, size, 

and type of DG units and also the optimal location and size and the operation strategy of the small-scaled 

SVCs were determined concerning the different objective functions. The problems were formulated as a 

multi-objective optimization problem, consideration of minimum DGs and SVC cost, minimum voltage 

violation, minimum energy losses and minimum system emission cost for different load characteristics. For 

the 33-bus test system, the Pareto front solutions of different scenarios for the characteristic of the load and 

different assumptions for DG type were found for two different sets of objective functions. All the obtained 

benefits, such as improvement in the voltage profile and the reduction of the line losses discussed, and the 

best number of DG and SVC units, were found by comparing the results. In the 141-bus system for a mixed 

load curve and a set of all objective functions, the Pareto solutions determine, and for 10 obtained Pareto 

solutions, all the benefits provided by the solutions compared with the base case. Finally, the MOSSA Pareto 

solution quality and performance compared to the results of MOEA/D and MOPSO algorithms. As the 

conclusion of the result, it is evident that the MOSSA result can be accepted as the near-optimal Pareto 

solution. In addition, the optimal allocation parameters of the DG and SVC units and also operation strategy 

of the units can be used in the real distribution system for different load conditions and DG units’ output. 
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