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 A novel algorithm for working out the Kink energy of quantum-dot cellular 

automata (QCA) circuits and their fault tolerability is introduced. In this 

algorithm at first with determining the input values on a specified design, the 

calculation between cells makes use of Kink physical relations will be 

managed. Therefore, the polarization of any cell and consequently output 

cell will be set. Then by determining missed cell(s) on the discussed circuit, 

the polarization of output cell will be obtained and by comparing it with safe 

state or software simulation, its fault tolerability will be proved. The 

proposed algorithm was implemented on a novel and advance fault tolerance 

full adder whose performance has been demonstrated. This algorithm could 

be implemented on any QCA circuit. Noticeably higher speed of the 

algorithm than simulation and traditional manual methods, expandability of 

this algorithm for variable circuits, beyond of four-dot square of QCA 

circuits, and the investigation of several damaged cells instead just one and 

special cell are the advantages of algorithmic action. 
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1. INTRODUCTION 

Nano science and interdepend technology mid biology and genetic molecular sciences and 

information technology, are the component of third industrial and scientific evolution in recent years. This 

technology is the convergence of different science for further. In this regard, nanoelectronics has many 

applications in other sciences [1]. “Very large-scale integration (VLSI)-complementary metal oxide 

semiconductor (CMOS)” is a famous and current technology for making electronic circuits. Since it has some 

obstacles, in these recent years a lot of studies based on nano electronic technology are down. Quantum-dot 

cellular automata (QCA) is a new method in nano scalable for calculations, data transfer and fabrication of 

Integrated circuits [2], [3]. Advantages of QCA over todays CMOS VLSI technology are its flexibility in 

logical gates design, digital circuits, massive and parallel architectures which is better and more powerful in 

some factors like speed, power consumption, and large scale integration capacity [4]. Nevertheless, there are 

three drawbacks to QCA technology that have not yet reached the actual construction, which are [5], [6]:  

i) normal room temperature causes their efficiency and accuracy to be lost because the QCA circuits work 

properly in a certain temperature range, ii) the problem of connecting the output of these nano circuits to 

other circuits in the microelectronic world, which has made this technology impractical, and iii) fabrication 

defects, which include three models of defects: missing cell, dislocation cell, and misalignment cell. These 

three defects were shown in Figures 1(a) misalignment cell, Figure 1(b) missing cell, and Figure 1(c) 

dislocation cell [7]. 

https://creativecommons.org/licenses/by-sa/4.0/
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In this research, the main discussion is the third kind or fabrication defects. This faults usually 

happen in fabrication and assembling stage. So, fault tolerance circuits design is so essential and necessary. 

In recent years many pieces of research and studies were done on QCA fault tolerance circuits design and 

many papers in this domain were their results. 

In all of these designs, the way of proving fault tolerability is that one key cell in circuit is ignored 

and nevertheless, their performance is monitored [8]. Then with gain results, their fault tolerability is proved. 

Another important tool for researchers is software simulation for their circuits. In this paper, the main 

purpose is to provide an algorithm that performs these calculations. In the other hand target is omitting 

simulation and handy calculations and replace them with an optimum, expandable, very high speed and 

performance algorithm. 

In this regard, we can mention other new technologies that are being studied by scientists. One of 

these technologies is vision-based technology [9]. Vision based technology is used as an engineering tool in 

digital modules for automatic control of industrial tools [10], [11]. This technology includes the technology 

and methods used to automatically extract information from the image, unlike image processing whose 

output is another image [12]. The information extracted can be a simple signal, or a more complex set of data 

such as the identity, position and orientation of each object in the image. This information can be used for 

applications such as automated inspection and process and robot guidance in industry, and security 

monitoring and vehicle navigation. This field includes multiple technologies, hardware and software 

products, integrated systems, activities, methods, and skills [13]. This technology is practically the only term 

used to describe these functions in industrial automation applications; this phrase is less common to describe 

the same applications in other environments such as security environments. It seeks to integrate existing 

technologies with new methods and use them to solve real-world problems so that the needs of industrial 

automation and similar applications are met [14], [15]. 

In the continuation of this research, we can deal with the idea in the future that the circuit designed 

by a designer, considering a series of specific standards is entered into the machine by a camera and after 

performing different image processing on it, it is determined which module algorithm is suitable. Then, by 

applying the pre-given data in the algorithm, it obtains the necessary output and delivers a graphic file called 

the output to the designer. 
 

 

   
(a) (b) (c) 

 

Figure 1. Faults on QCA cells: (a) misalignment cell, (b) missing cell, and (c) dislocation cell 

 

 

2. MATERIALS AND METHOD  

2.1.  Review of quantum-dot cellular automata 

Quantum dot cellular automata is a new architecture in nano-scalable circuit design industrial [16], 

[17]. The basic and arithmetic element in QCA design is a quantum cell. Each quantum cell looks like a 

square which has four quantum dots in each corner [6]. There are two movable electrons in each cell. 

Columbic energy creates two possible states because of their electron locations. These states imply two logic 

values. Logical 0 and 1 [18]. These states are shown in Figure 2(a). A binary wire is shown in  

Figure 2(b). There are several cells which stand continues and make a binary wire. An inverter could be made 

by moving cell like in Figure 2(c) [19]. Majority gate is a useful gate in QCA circuits design. The simplest 

majority gate is three-input gate which its output function is ab + ac + bc, where a, b, c are its inputs. A 

simple majority gate is shown in Figure 2(d) [20], [21]. 

These elements are base components for design another gates and circuits in QCA. For example, as 

shown in (1), if one input is considered 0 on 3-input majority gate, logical “AND” gate will be found. Or if 1 

is considered, logical “OR” will be obtained [22]. 

 

(a AND b)=Majority (a, b, 0), (a OR b)=Majority (a, b, 1) (1) 

 

With these methods, other gates or circuits will be designed and implemented. For example, a simple  

full-adder is shown in Figure 3 [23]. 
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(a) (b) 

 

 
 

(c) (d) 

 

Figure 2. QCA cells: (a) two available polarizations, (b) binary wire, (c) QCA inverter, and (d) 3-input 

majority gate 

 

 

 
 

Figure 3. A simple full adder using three majority gates and two inverters  

 

 

2.2.  QCA implementation 

There are four physically models of QCA implementation: metal, molecular, magnetic and 

semiconductor QCA [24]. Micro-sized QCA devices have been fabricated with metal. This device is 

composed of four aluminum islands (as dots) connected with aluminum oxide tunnel junctions and 

capacitors. The area of the tunnel junctions determines the island capacitance (the charging energy of the 

dots) and hence, the operating temperature of the device. The device has been fabricated using electron beam 

lithography (EBL) and dual shadow evaporation on an oxidized silicon wafer [25]. Semiconductor 

implementation of QCA is advantageous due to well understood behavior of existing semiconductors for 

which several tools and techniques have been already developed [26]. As an alternative technology, 

molecular QCA has several advantages over metal dot QCA. Small cell size (density of up to 1013 devices 

per cm2), a simple manufacturing process, and operation at room temperature are some of the desirable 

features of molecular QCA [27], [28]. In magnetic implementation of QCA (MQCA), magneto static 

interactions between nanoparticles ensure that the system is bi stable. The moments of the nanoparticles point 

either parallel, or anti-parallel with the axis of the chain, Information is propagated via magnetic exchange 

interactions as opposed to the electrostatic interactions in metal and molecular implementations [29]. MQCA 

provides the advantage of operation at room temperature even with current fabrication techniques. However, 

magnetic QCA does not appear to have the switching speed to compete with today’s computers [30]. 
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2.3.  Physical relations 

More QCA designs are based on square schemes. As shown in Figure 4, all cells are considered as a 

square and similar with 18nm side length. All the inter cell spaces are 2 nm. It should be noted that in order 

to achieve more stability, electrons of QCA cell are arranged in such a manner that reaches minimum kink 

energy (the difference in electrostatic energy between the two polarization states) [30].  

 

 

 
 

Figure 4. Cell distances 

 

 

In (2), the kink energy between two electrons QCA cells is shown. “U” refers to Kink energy, “k”, 

which is called the colonic constant, is a constant coefficient of this ratio whose value is 9×10-9, “r” is the 

distance between two electrons and “q1”, “q2” refer to electric charges. “k” and “q1”, “q2” are constant values 

and “k.q1.q2” is denoted “A” (3). Finally, “Ut” will obtain from all king energy summation at a state. It is 

calculated by (4) [2], [4]. 

 

𝑈 =
𝑘𝑞1𝑞2

𝑟
  (2) 

 

kq1q2=9×10-9× (1.6)2×10-38 =23.04×10-29 =A (constant value) (3) 

 

𝑈𝑡 = ∑ 𝑈𝑖
2
𝑖=1   (4) 

 

Finding the output cells polarization is done with computing Kink energy physical relations. With 

this method, the QCA circuit designers demonstrate their reliability of their presented designs. For example, 

one effective cell which has a direct or significant effect on output cell is ignored and then with using kink 

energy relations, the polarization of output cells will be found and fault tolerability of proposed designs will 

be proved [2], [30]. In this paper, an algorithm is presented which calculates the kink energy of output cells 

in a circuit and then detects its fault tolerability. 

 

 

3. PROPOSED ALGORITHM 

In QCA presented designs, calculating of Kink energy is the basic method to obtain the output 

polarization. These actions are done manually in some papers. In other papers, using simulation tools, the 

validity of design functions is proved. Now the main target is proposing an algorithm which does these works 

as a software. In this way, the method of the proposed algorithm will be described and then it will be 

implemented on 3-input majority gate and a full-adder. 

 

3.1. Explain the method 

Some functions are considered which can return Kink energy from two neighbor cells, Kink energy 

and polarization of 3-input and 5-input majority gate and an inverter separately. These functions are: Kink(I), 

3-Maj (a, b, c), 5-Maj (a, b, c, d, e), and INV(I). The base of calculations in all of these is on Kink energy 

relations which were shown in (2), (3), and (4). These functions are used to represent an algorithm to obtain 

the fault tolerance of existing circuits. In this section we describe King(I) function with details. In this 

function, if the input is set on logic 0, there are 0 or 1 possible states for output and if the input is set on logic 

1, 0 or 1 output states are feasible. One state of these conditions is presented in Figure 5(a), One possible 

state for output with 1 input and Figure 5(b) another possible state for output with 0 input. As noted, the 

stable state will be reached based on the lowest kink energy between two logic 0 and 1 for an output. 

According to (2)-(4) in section 2.3, 𝑢 =
𝑘𝑞1𝑞2

𝑟
 and Kq1q2 as a constant value is 23.04×10-29. So, for 

the state (a): 

 

𝑟1𝑥1 = √182 + 22 = 18.11 𝑛𝑚         𝑢 = 1.27 × 10−20  

𝑟1𝑦1 = 18 + 2 = 20    𝑛𝑚                    𝑢 = 1.15 × 10−20  
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𝑟2𝑥1 = 18 + 2 = 20      𝑛𝑚                  𝑢 = 1.15 × 10−20  

𝑟2𝑦1 = √382 + 182 = 42.5 𝑛𝑚         𝑢 = 1.27 × 10−20   

𝑈11 = (1.27 + 1.15 + 1.15 + 1.27) × 10−20 = 4.84 × 10−20   
 

For the state (b) we will have: 

 

𝑟1𝑥0 = √182  + 202 = 26.9 𝑛𝑚        𝑢 = 0.86 × 10−20  

𝑟1𝑦0 = 2 𝑛𝑚                                             𝑢 = 11.52 × 10−20  

𝑟2𝑥0 = 18 + 18 + 2 = 38      𝑛𝑚        𝑢 = 0.61 × 10−20  

𝑟2𝑦0 = √182  + 202 = 26.9 𝑛𝑚         𝑢 = 0.86 × 10−20  

𝑈00 = (0.86 + 11.52 + 0.61 + 0.86) × 10−20 = 13.84 × 10−20  

 

Based on the calculations performed above, U11 is lower than U00, so the state (a) or logic ”1” is 

more stable. As you can see, doing the above calculations manually is very time consuming and significantly 

reduces the speed. Since the speed issue in new technologies, such as nanoelectronics and nanorobotics, is 

very important, it would be difficult to perform manual calculations in the case of complex circuits. Thus, 

there is a demand for an algorithm to perform these computations. 

In the proposed algorithm, there is a Kink(I) function which calculates these computations by its 

input parameter. This parameter is the logical value of the input cell. The polarization of output cell will be 

returned by Kink(I) function. The details of the King(I) function are shown in function 1. 

 
King(I) { 

Input (I); a=23.04; 

if (I=1) {        // we have two condition for “I” input: 0 or 1 

r1.x0=a/2; r1. y0=a/26.9; r2.x0=a/26.9; r2. y0=a/38;    // Figure 5(b) 

r1.x1=a/18.11; r1. y1=a/20; r2.x1=a/20; r2. y1=a/42.5;   // Figure 5(a) 

Ux0=r1x0+r2x0; Uy0=r1y0+r2y0; U00=Ux0+Uy0;    // “r” is distance between 2 electrons. 

Ux1=r1x1+r2x1; Uy1=r1y1+r2y1; U11=Ux1+Uy1; 

If U00>U11 then (output is “1” and king energy=U11) else (output is “0” and king energy 

=U00) 

}}   // this calculation is down for input with 1 value. We have like these for input 0 

Function 1. King(I) 

 
A new design of a fault tolerance 3-input majority is shown in Figure 6. The number of used cells in 

this design is thirteen cells with three inputs (a, b, c) and one output. Its fault tolerability is demonstrated 

before.  

 

 

  
(a) (b) 

 

Figure 5. Two possible states for cells: (a) one possible state for output with 1 input and (b) another possible 

state for output with 0 input 
 

 

Polarization of output cell will be gained from 3-Maj (a, b, c) and Kink(I) functions in three stages: 

polarization of cells 2, 4, 8 will be obtained by calling Kink(a), Kink(b), and Kink(c) functions in the first 

stage. P4=Kink(a); P2=Kink(b); P8=Kink(c). Then in the second stage, considering the obtained values from 

the last stage, cells with numbers 5 by calling 3-Maj (P2, P4, P8) function, 3 by calling Kink(P2) and 9 by 

calling Kink(P8) will get their polarizations too. Finally, number 6 cell which is connected to output cell, will 

get its polarization from 3, 5 and 9 by calling 3-Maj (P3, P5, P9) function. Now its reliability could be 

investigated. There are some states for testing the fault tolerability. They could be one and two missed cells. 

At first, it is considered that the main cell of three input majority (device cell) is missed as shown in  

Figure 7(a), cell number 5. 
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Figure 6. Fault tolerance 3-input majority gate 

 

 

In this state algorithm will execute as follow: First stage: P4=Kink(a), P2=Kink(b), P8=Kink(c). 

These mean that the polarization of cells 2, 4, 8 will be obtained. So, these cells will simply get their 

polarization from inputs. In the second state, P3=Kink (2), P9=Kink (8). Finally, in the third state: cell 4 has a 

half effect than other cells (3 and 9). So, cell 6 will get its polarization: P6=5-Maj (P3, P3, P9, P9, P4). Because 

of the distance ratio, cell 3 and cell 9 have double effect on cell 6 polarization than cell 4. So, we can 

consider that the polarization of cell 6 will be calculated by a five-input majority gate. 

Investigating an example: 

If we consider a= 1, b= 0, c= 1, the result must be 1: 

- In the first stage: 

After calling Kink(I) function for cell 4, its kink energy will obtain 4.12×10 -20 and its polarization will be 1. 

In this way, the polarization of cell 2 and 8 will obtain 0, 1. 

- In the second stage: 

The polarization of 3 will be 0 and 9 will equal 1. 

- In third stage: 

P6= 5-Maj (P3, P3, P9, P9, P4) = 5-Maj (0, 0, 1, 1, 1) = 1. 

So, output logic will be 1. 

After investigating all states of inputs, outputs were obtained in the Table 1. This table demonstrates 

that if the cell 5 is missed, this circuit will work correctly. Because the results obtained in Table 1 are the 

same as the expected results from the output of this majority gate with the given inputs. For cell 6, we have 

similar conditions as cell 5. For other cells, this way is similar to a little change. Missing cells, which are 

connected to inputs directly as shown in Figure 7(b), are 2, 4, 8 which have the same way. Cells 3 and 9 have 

the same state to prove fault tolerability, if they are missed as shown in Figure 7(c). 

As a result, this algorithm says that if one cell of any one of three majority gates is missed, majority 

gates and a total of this circuit will work correctly. If one of the states does not have the correct answer, the 

algorithm declares that the circuit is not fault tolerant. So, there are three similar functions for any state above 

as missing cell for fault tolerability investigation. 

In the second state as shown in Figure 8, two missed cells are considered. For example, missing cells 

number 2 and 4 are considered as shown in Figure 8(a). The state with missing cells number 4, 8 and missing 

cells number 2, 4 have a similar position. This means that if cells 4 and 8 are lost instead of cells 2 and 4, the 

same output polarization procedure is obtained due to the similar position of cell 8 to cell 2. 

For this case the algorithm will calculate the output polarization in three stages: First stage cells 1, 7, 

8 get their polarization: P1=5-Maj (a, a, b, b, c), P7=5-Maj (a, a, c, c, b), P8=Kink(c). In the first stage of 

polarization, cells 1, 7 and 8 are calculated because they are the closest cells affected by the inputs and affect 

the rest of the cells. 5-Maj (a, a, b, b, c) means that if a and b have equal polarization, cell 1 has their 

polarizations and if they do not be equal, input c is determiner. In second stage: P5=3-Maj (8, 7, 1),  

P9=Kink (8), P3=Kink(b) and finally in third stage P6=3-Maj (3,5,9).  

Investigating an example on inputs: (a=1, b=0, c=1): 

Stage 1: P1=5-Maj (1, 1, 0, 0, 1) =1, P7=5Maj (1, 1, 1, 1, 0)=1. 

Stage 2: P5=3-Maj (8, 7, 1) =3Maj (1 ,1 ,1) =1, P9=Kink (8)=1, P3=Kink(b)=0. 

Stage 3: P6=3-Maj (3, 5, 9) = (0, 1, 1)=1. 

The output of three inputs majority gate with a=1, b=0, c=1 notwithstanding two cells is missed 

gains 1 and it is correct. If we investigate the second state which is shown in Figure 8(b), the algorithm will 

say that it is fault tolerance. It results that this design with two missed cells with discussed locations is fault 

tolerance as shown in Table 2. In missed cells 3,9 or 3,5 or 5,9 the algorithm is the same. 

In Figure 8(b), another state of missing two cells is shown. After investigating this state in the 

algorithm, the gained result showed that it works correctly and fault tolerance. Missing two cells with 

numbers: 2, 5 and 5, 8 are similar. In Figure 8(c), two cells with numbers 5, 6 are missing. In this state, if 

 b
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inputs “b”, “c” is equal, the polarization of output cell will be obtained from 3, 9 and is correct. But, if “b”, 

“c” are not equal, arithmetic calculations and algorithm will gain the output polarization from cell 4 which is 

near input “a” and it is certificated that discussed design with these missed cells is fault tolerance. It is not 

stable yet, because the distance between these two cells is long (about 42 nm). So, in reality, it does not fault 

tolerance. To avoid these wrong situations, a condition will be considered in the algorithm which returns to 

polarization calculation between two cells. It will be about distance limitation which implies: distances more 

than 22 nm between two cells is ignored in polarization calculations.  

 

 

   
(a) (b) (c) 

 

Figure 7. Three input majority gates (a): cell 5 is missed, (b): cell 4 is missed, and (c): cell 3 is missed 

 

 

Table 1. Investigating of all inputs states for calculating output polarization 
a b c U0 of output U1 of output Compare Polarization of output 

0 0 0 37.12×10-20 124.55×10-20 U0<U1 0 

0 0 1 75.98×10-20 85.69×10-20 U0<U1 0 

0 1 0 75.98×10-20 85.69×10-20 U0<U1 0 
0 1 1 114.84×10-20 46.83×10-20 U1<U0 1 

1 0 0 46.83×10-20 114.84×10-20 U0<U1 0 

1 0 1 85.69×10-20 75.98×10-20 U1<U0 1 
1 1 0 85.69×10-20 75.98×10-20 U1<U0 1 

1 1 1 124.55×10-20 37.12×10-20 U1<U0 1 

 

 

   
(a) (b) (c) 

 

Figure 8. Three inputs majority gate with missing two cells: (a): 2, 4, (b) 4, 5, and (c) 5, 6 

 

 

Table 2. Investigating of all inputs states for calculating output polarization 
a b c U0 of output U1 of output Compare Polarization of output 

0 0 0 25.69×10-20 113.12×10-20 U0<U1 0 
0 0 1 67.31×10-20 77.02×10-20 U0<U1 0 

0 1 0 64.55×10-20 74.26×10-20 U0<U1 0 

0 1 1 103.41×10-20 35.4×10-20 U1<U0 1 
1 0 0 35.4×10-20 103.41×10-20 U0<U1 0 

1 0 1 74.26×10-20 64.55×10-20 U1<U0 1 

1 1 0 77.02×10-20 67.31×10-20 U1<U0 1 
1 1 1 113.12×10-20 25.69×10-20 U1<U0 1 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Presentation of a fault tolerance algorithm for design of quantum-dot cellular … (Seyed Mehdi Dadgar) 

4729 

So far, six functions have been obtained that investigate the states of one and two missing cells. 

They are 1Fault-a() for missed cell 5 or 6, 1Fault-b() for missed cell 2 or 4 or 8, 1Fault-c() for missed cell 3 

or 9, 2Fault-a() for missed two cells 2, 4 or 2, 8 or 4, 8 or 2, 8 or 3, 5 or 5, 9 or 3, 9, 2fault-b() for missed two 

cells 2, 5 or 4, 5 or 5, 8 and finally 2fault-c() for missing two cells 5, 6. Similarly, missing more than two 

missed cells could be investigated by proposed algorithm and return the fault tolerability of circuit by it. As 

mentioned before, Kink energy and polarization of inverter are calculated by INV(I) function. In this plan, 

cells with numbers 1 and 2 are input cells. A fault-tolerance inverter gate with four QCA cells is shown in 

Figure 9 [30].  

 

 

 
 

Figure 9. Layout of inverter QCA cell  

 

 

P3=INV (1), P4=INV (2) 

 

For fault tolerability we have two statuses: i) cell number 1 is missed: In this status, in one state we 

will have P3=INV (2) and P4=INV (2); and ii) cell number 2 is missed: In this status, in one state we will 

have P3=INV (1) and P4=INV (1). So, if one cell of any seven inverter gates is missed, inverter and total of 

the circuit will work correctly. 

 

3.2.  Algorithmic implementation of a fault tolerance full adder  

A new design of a fault tolerance full adder is shown in Figure 10(a) a new design of a fault tolerant 

full-adder and Figure 10(b) QCA layout [18]. Three majority gates with three inputs and two inverters are 

used in this plan. The number of used cells in this design is 207 cells with three inputs (a, b, c) and two 

outputs (Sum, carry). As shown, there are three blocks with nine cells in the middle of the figure which are 

block1, block2, block3. Besides, seven inverter blocks with four cells which mentioned 1, 2, …, 7 could be 

seen. Polarization of input cells is constant. In spite, middle cells and outputs are variable. Other cells are 

considered as QCA wire. End algorithm on this circuit is summarized in Figure 11 as a flow chart.  

 

 

  
(a) (b) 

 

Figure 10. Full-adder (a) a new design of a fault tolerant full-adder and (b) QCA layout 
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As shown in Figure 11, Kink energy of output cell and its polarization could be obtained in safe 

mode at the first. Next, the algorithm can prove the fault tolerability of design. It will start by determining the 

number of missed cells. Kink energy of output cells will be gained by calling related functions which were 

discussed in these conditions. Fault tolerability of the QCA design will be gained by comparing output 

polarization in these conditions with a safe state. 

 

 

 
 

Figure 11. Flow chart of the proposed algorithm 
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4. RESULTS AND DISCUSSION  

An algorithm for test QCA circuits and check their fault tolerability is presented. Now it will be 

compared with the manual method and simulation. In this way, some notes and advantages were obtained as 

follow: 

 

4.1.  Investigation of several damaged cells instead of one cell 

In all research on fault tolerability designs, just one damaged cell which usually is a key cell is 

considered and then with mathematical relations, its fault tolerability will be proved. For other cells, this way 

will be generalized. But in this proposed algorithm, number and location of damaged cells could be 

determined and then the function of the circuit in available conditions will be investigated. This is an 

important advantage over traditional ways for truth operation and fault tolerability investigation.  
 

4.2.  Comparing with simulation 

The result of the simulation for discussed deign as a fault-tolerance full adder was gained by QCA 

Designer version 2.0.3 simulator. In this circuit, it is considered that cell 5 on 3-input majority is missed. As 

shown in Table 3, all states of input data which are fed in the algorithm are investigated and outputs of the 

algorithm in each possible state with missing cell 5 in a three inputs majority block are determined. 

For example, inputs are considered as a=1, b=1, c=0. Result of both simulation and algorithm could 

be seen which output Sum is 0 and output Cout is 1 with considering cell 5 is missed. In other states of inputs, 

the results of simulation and outputs of algorithm are equal. 

In this method, comparing another note about speed is obtained. The speed of the algorithm is much 

higher than the simulation. Also, a lot of time should be wasted for drawing the circuit in the simulator. This 

algorithm was run in C++ compiler with an Intel Core-i7 CPU with a 2.5 GHZ speed several times.  

2.4 millisecond was the average of run time. Then discussed Full-Adder was run in QCA Designer simulator 

version 2.0.3 with the same processor. Average time for simulation of this circuit gained 3.9 seconds. If the 

proportion of these running is calculated, it will be determined that the speed of algorithmic running is about 

1625 times more than the speed of simulation. This proportion is shown in (5). 
 

running time of simulation

running time of algorithm
=

3.9

0.0024
= 1625  (5) 

 

 

Table 3. Inputs and outputs of the algorithm 
a b c Kink energy of Sum Sum Kink energy of Cout Cout 

0 0 0 411.18×10-20 0 195.61×10-20 0 

0 0 1 382.02×10-20 1 205.33×10-20 0 

0 1 0 382.32×10-20 1 205.33×10-20 0 
0 1 1 411.18×10-20 0 205.33×10-20 1 

1 0 0 411.18×10-20 1 205.33×10-20 0 

1 0 1 382.02×10-20 0 205.33×10-20 1 
1 1 0 382.02×10-20 0 205.33×10-20 1 

1 1 1 411.18×10-20 1 195.61×10-20 1 

 

 

4.3. Expandability of algorithm 

King(I) function was used in the manufacturing of this algorithm at the first. Then other functions as 

Inv(I), 3Maj (a, b, c), 5Maj (a, b, c, d, e) were used. In the proposed design each function was called in its 

suitable position and was used for King energy computations. Nevertheless, in fault tolerance discussion, it 

depends on that which cell is damaged. After that, the needed functions are called and the King energy is 

calculated in different cases. The internal structure of the evaluated design is the most important subject in 

calling functions order. For example, in the previous design, the order of calling functions was determined 

based on its structure. So, we can claim that this algorithm is expandable with considering to this note that 

the order of calling functions will be changed by the internal structure of the design and which cell is 

damaged. On the other hand, this algorithm has expandability claim with a little change in the order of 

functions calling. 
 

4.4.  Supporting all states of QCA cells 

All of the simulations consider four-dot square for QCA cells and with this condition, circuits design 

will be presented. In this proposed algorithm, other conditions like 3-dot triangle state, pentagon state, and 

could be considered. In this plan the most important factor for calculations is the distance between dots of 

cells and material of work is an algorithm, so it could be claimed that this work is not limited just for four-dot 

square state and it is responsible for all of the states of QCA designs. 
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5. CONCLUSION  

A novel algorithm for validity test of QCA circuits and their fault tolerability is presented. In this 

algorithm, input values are entered and with physical Kink energy relations, the polarization of each cell and 

finally output cells are returned. Besides, we can ignore one or more cells as missed cells on a QCA circuit 

and find its fault tolerability. Outputs of the proposed algorithm were compared with simulation and manual 

calculations on a new fault-tolerance full adder and some advantages were found. These advantages are: 

much higher speed of proposed algorithm than simulation, expandability of algorithm on any circuit 

implementation, this algorithm works in four-dot square state and can generalize for other states like a three-

dot triangle, five-dot pentagon, considering several damaged cells instead of just one and special cell in 

traditional ways to prove reliability. 
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