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 In cloud mobile networks, precise assessment for the position of the 

virtualization powered cloud center would improve the capacity limit, latency 

and energy efficiency (EEf). This paper utilized the Monte Carlo oriented 

particle swarm optimization (PSO) and genetic algorithm (GA) to first, obtain 

the optimal number of virtual machines (VMs) that maximize the EEf of the 

mobile cloud center, second, optimize the position of the mobile data center. 

To fulfil such examination, a power evaluation framework is proposed to 

shape the power utilization of a virtualized server while hosting an amount of 

VMs. In addition, the total power consumption of the network is examined, 

including data center and radio units (RUs). This evaluation is based on linear 

modelling of the network parameters, such as resource blocks, number of 

VMs, transmitted and received powers, and overhead power consumption. 

Finally, the EEf is constrained to many quality of service (QoS) metrics, 

including number of resource blocks, total latency and minimum user's data 

rate. 

Keywords: 

Cloud networks 

Heauristic algorithms 

Optimization 

Placement 

Virtualization 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Yassir Al-Karawi 

Department of Communications, College of Engineering, University of Diyala 

Alqudus cross, Diyala, 23001, Iraq 

Email: yassirameen22@gmail.com 

 

 

1. INTRODUCTION 

Aiming to provide multiple times higher spectral and energy efficiency (EEf) in the next generation 

systems, mobile administrators deployed small coverage cells individually or within a heterogeneous system. 

While this has expanded the network's capacity, it has likewise, prompted utilizing more power. This means 

causing releasing more harmful gases. To decrease this consumption, cloud mobile networks are proposed. In 

cloud mobile, also called cloud radio access networks, the base band units servers (BBs) are cloudified in a 

centralized area, called data center or base band unit pool BB pool. Thus, the radio unit (RU) is left exceedingly 

straightforward at the cell site, with just electrical to optical converter, amplifier, and antenna [1]–[5]. These 

BBs are in charge of processing the higher layers and large portion of the physical layer signals, including base 

band, radio frequency, media access control (MAC) layer signals. However, cloud mobile contradicts the 

conventional long term evolutions (LTE) framework, in the latter, the functions of the BB are handled in the 

eNodeB at the cell site itself. 

Consequently, cloud mobile decreases the operational (OPEX) and capital (CAPEX) expenses via 

diminishing the maintenance cost and minimizing the sites' visits [6]. In addition, taking away the BBs from 

the evolved NodeB (eNodeBs) to the cloud has brought several advantages, such as advanced coordination, 

utilizing the available bandwidth, controlling the traffic variation and reducing the required cooling. This 

results in reducing the total power consumption. 

https://creativecommons.org/licenses/by-sa/4.0/
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In spite of this paradigm has promoted the EEf, however, escalating the quantity of the shall expand the power 

consumption [7]. Subsequently, offering new solution is an essential matter. So as to meet it, the networks has 

grasped the use of network function virtualization (NFV) [8]. NFV has granted the capability to benefit more 

of the available cloud resources, decreases the maintenance cost and activate the multi-tenant method of 

service. In which, each VM runs the BB functions and shares the assets of the host server with different VMs 

in a timely limited way. Running several VMs on the server demands a coordinator, called Hypervisor (HV), 

it gathers the data of all VMs regarding the number of users (UEs) each VM is capable to serve for specific 

time, in addition to their QoS requirements. Truth be told, both cloud networks and NFV speak to the key 

achievement advancements in the coming ages of networks generations [3].  

To this level, several works have been proposed to make easy such adaptation. A low complexity, 

efficient and virtualization oriented resources scheduler has been proposed in [5] to maximize the throughput 

of the network users. Another scheduling process was proposed in [9] for transmitted power minimization with 

delay satisfaction for the users, similarly in [10]. However, in [11], both throughput and delay are optimized. 

Subsequently, the coexistence of the VMs inside the mobile server rises the server's RAM accessing, central 

processing unit functions complexity and hard drive usage. Consequently, increases the power overhead and 

latency of the host server. Note that both virtualization and cloudification are excellent candidates for the next 

generation networks. Yet, the consequences of these technologies are not yet fully tested. Hence, this paper 

evaluates the trade-offs of these technologies up on the power consumption, latency, processed resource blocks, 

data rate and energy efficiency. Furthermore, knowing the position of the virtualized cloud centers should 

perfectly help designing networks with low average delay, improved interference levels and more energy 

efficient. To fulfil these evaluations, the following contributions have been made: 

Contributions: i) by utilizing genetic algorithm (GA), particle swarm optimization (PSO) and Hybrid 

GA-PSO, the position of the data center, together with the number of VMs are optimized; ii) we proposed to 

measure the traffic volume (number of RUs, channel gains, transmitted power) using the Monte Carlo, adapted 

inside the main algorithm to cover massive number of network traffic snaps while using poison point process 

(PPP) distribution for the RUs; and iii) the way VMs and resource blocks influence the power consumption of 

the servers is modelled. This modelling provides a logical assessment to the power consumption at the unit 

level. 

Virtualization trade-off: virtualization technology is capable of reducing the increment in the power 

consumption [12]. Such power reduction is achieved by running the VMs on the host server. This is conceivable 

when the server is running off-line based applications where the latency constraint is relaxed. However, a 

virtualized server with 1 VM may take around multiple times more execution time to process the information 

compared to bare servers [13]. Such delay, when running on-line services, cannot be maintained so easily. 

Henceforth, optimizing the quantity of the installed VMs in one host server is essential. In addition, the delay 

of BB functions is direct proportional to the coming resource blocks. This implies when the scheduled resource 

blocks to each VM is increased, more delay is produced. This requires the number of allocated resource blocks 

for each VM must be optimized too. On the other side, the host server increases its power consumption as its 

components are now fully utilized. Thus, a virtualized server might consume about 40% extra power when 

compared to conventional partners [13]. Finally, since optimizing the delay and power consumption is a crucial 

to maintain an acceptable level of QoS, optimizing the position of the virtualized cloud center is further 

necessary due to following reasons: i) it ensures reduced distances to all the connected RUs, which results in 

less link delay; ii) less distance requires less transmitted power from the data center to the RUs. This in turn 

reduces the required transmitted power to the UEs and saves the energy; and iii) less delay means less path loss 

attenuation, this means maintaining accepted level of the transmitted signals to the UEs. This implies less 

consumption due to amplification process, which saves the energy.  

Related research: in [14], an on-request VMs migration algorithm was proposed for disseminated 

server farms. These works aimed to diminish the carbon dioxide (CO2) footprint. Zhani et al. [15] have 

proposed live migration techniques among the servers to adjust the traffic fluctuation dynamically. The 

problem of VMs placement in the data center was also discussed in many researches [16], were the placement 

of VMs can be subjected to the amount of traffic to reduce the power consumption of the data center, improving 

the scalability and offering higher data rates. Furthermore, Wu et al. [17] considered the issue of VMs 

optimization over servers that are spread over distributed clouds using heuristic algorithms. To realize, the cost 

of power during the migration process of a VM may reach about (10 W and 32 W) in the destination and source 

servers, respectively [18]. Moreover, the placement of VMs in mobile data center was presented in [19], where 

the network traffic was evaluated using an EEf functions and then optimized using heuristic algorithms. 

However, the positioning of the data center itself was not examined. Alhumaima et al. [20] have optimized the 

number of active VMs under the restriction of link capacity limit, to reduce the cost of cloud mobile network. 

Yet, these works have further ignored the problem of positioning the data center and EEf evaluations. To 

follow, Alhumaima et al. [21] have discussed the issue of placing the BB pool. However, this case was without 

extensive consideration of UEs' resources allocation and virtualization. The non-virtualization case of the BB 
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pool placement in cloud environment was also discussed in [22]. Karneyenka et al. [23] proposed to centralized 

the BBs servers depending on the traffic pattern and mobility of the UEs. Likewise, the virtualized BBs 

placement problem was discussed in [24]. In addition, an optical-wise architecture has been proposed in [25] 

to support the virtualized service chains. For which, an approach based on optimal weighting for the non-

coherent detection has been proposed in [26] for the purpose of minimizing the bit error rate and higher 

accuracy for the detection process. A 2000 km fiber transmission channel was proposed to transfer the 

generated information while improving the dispersion characteristic of the single mode fiber that can be used 

for the proposed method amongst the cloud center and RUs [27]. In addition, an energy-efficient approach 

based on utilization factor has been proposed for placing the virtual machines in the cloud centers using 

heuristic [28]. Finally, the problem of routing the traffic flow and virtual machines placement have been 

proposed in [29] to reduce the energy cost. 

 

 

2. SYSTEM MODEL 

2.1.  Channel capacity and power allocations 

The cloud network has been assumed to contain a number of RUs 𝑁. These RUs follow PPP type of 

deployment and coverage. Every RU 𝑛 has a number of UEs 𝑈𝑒𝑛 that are PPP placed with axes (𝑥𝑢𝑒 , 𝑦𝑢𝑒), 

each with small scale fading ℎ. In addition, each UE 𝑢𝑒is located at distance 𝑑𝑛,𝑢𝑒 from the RU 𝑛, where 

𝑑𝑛,𝑢𝑒 =  √(𝑥𝑛 − 𝑥𝑢𝑒)2 +  (𝑦𝑛 − 𝑦𝑢𝑒)2. The RUs are located at the coordinates (𝑥𝑛,𝑦𝑛), each RU is optical fiber 

connected and positioned with distance 𝑑𝑛,𝑜 to the pool, where 𝑑𝑛,𝑜 =  √(𝑥𝑛 − 𝑥𝑜)2 + (𝑦𝑛 − 𝑦𝑜)2, and the 

BB pool holds the location 𝑥𝑜 and 𝑦𝑜 to be optimised. In this manner, two strategies are proposed to pass the 

BB pool's power to the optical connected RUs. The first power distribution method is based on the distance, 

where RU will receive power depending on the distance 𝑑𝑛,𝑜 to the pool. Meaning, the closer RU 𝑛 is to the 

pool, the less power 𝑃𝑛
𝑟  it will get when contrasted with different RUs, i.e., 

 

𝑃𝑛
𝑟 = ((𝑃𝑝

𝑡 − 𝐿) 𝑑𝑛,𝑜)/(∑ 𝑑𝑛,𝑜
𝑁
𝑛=1 ) (1) 

 

where 𝑃𝑛
𝑟  denotes the received power of the 𝑛-th RU, 𝐿signifies the losses of the fiber, and 𝑃𝑝

𝑡 is the transmitted 

power from the pool. To demonstrate, this model is based on the RU's distance, when the distance is less, it is 

directly proportional to the received power 𝑃𝑛
𝑟 , which lessens the latter on account that the total received power 

of all RUs is equal to the total power of the pool. In traditional network, the requirement for such power 

allocation (from the BB pool to RUs) is overlooked, in light of the fact that the BB processing unit is located 

inside the eNodeB. With cloud network, the BB unit is moved to the pool to generate the UEs' signals. The 

second method is based on both, the pool-RUs distance and channel gain of the UEs 𝑈𝑒𝑛. When the latter is 

high, and the RU is more far off to the pool, this allows an increase in the received power by the RU to 

compensate such attenuation, i.e., 

 

𝑃𝑛
𝑟 = ((𝑃𝑝

𝑡 − 𝐿) (ℎ𝑢𝑒
𝑛

 𝑑𝑛,𝑜))/(∑ ∑ (
𝑈𝑒𝑛
𝑢𝑒=1

𝑁
𝑛=1 ℎ𝑢𝑒

𝑛
 𝑑𝑛,𝑜)) (2) 

 

where 𝑢𝑒 denotes UE's index, and ℎ𝑢𝑒
𝑛 = |ℎ𝑢𝑒|2 holds the attenuation of the UE 𝑢𝑒 located in RU 𝑛. It is worth 

mentioning that these methods can be converted to wireless power allocation if the loss 𝐿 of optical fiber is 

removed from the above formula and replaced with wireless path loss. On the other side, the UE can be 

allocated an amount of power based on its distance 𝑑𝑛,𝑢𝑒, the received channel gain ℎ𝑢𝑒
𝑛,𝑘

 and its path loss when 

compared to other UEs within the RU 𝑛, i.e. 

 

𝑃𝑛,𝑢𝑒
𝑘 = (𝑃𝑛

𝑟  ℎ𝑢𝑒
𝑛,𝑘

 𝑑𝑛,𝑢𝑒 𝑟𝑢𝑒
𝑛 )/(∑ ∑ ℎ𝑢𝑒

𝑛,𝑘𝑈𝑛
𝑢𝑒=1

𝑁
𝑛=1  𝑑𝑛,𝑢𝑒 𝑟𝑢𝑒

𝑛 )  (3) 

 

where 𝑃𝑛,𝑢𝑒
𝑘  and ℎ𝑢𝑒

𝑛,𝑘
 signify UE's 𝑢𝑒 power and gain from RU 𝑛that is served by VM 𝑘, 𝑟𝑢𝑒

𝑛 = (𝑑𝑛,𝑢𝑒)−𝛼  

denotes path loss of the RU 𝑛 to UE 𝑢𝑒, while $\alpha$ represents the exponent of the path loss. Sequentially, 

the channel capacity is given as: 

 

𝐶 = ∑ ∑ ∑ ∑ 𝐵𝑜
𝐵𝑘
𝑏=1

𝑈𝑒𝑛
𝑢𝑒=1

𝐾
𝑘=1

𝑁
𝑛=1 𝑙𝑜𝑔 2 (1 + 𝑃𝑛,𝑢𝑒,𝑏

𝑘 𝜎𝑛,𝑢𝑒,𝑏
𝑘 )  (4) 

 

where 𝐵𝑘 is the total resource blocks that is apportioned to the VM 𝑘 at band-width 𝐵𝑜, 𝑃𝑛,𝑢𝑒,𝑏
𝑘  denotes the 

power transmitted on resource block 𝑏. Furthermore, The SNIR is given as: 
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𝜎𝑛,𝑢𝑒,𝑏
𝑘 = (𝑃𝑛,𝑢𝑒,𝑏

𝑘  ℎ𝑢𝑒,𝑏
𝑛,𝑘

 𝑟𝑢𝑒
𝑛 )/(𝐵𝑜𝑁𝑜 + 𝐼) (5) 

 

where 𝜎𝑛,𝑢𝑒,𝑏
𝑘  denotes the signal to noise plus interference ratio (SINR) of the the resource block 𝑏 that is 

allocated to UE 𝑢𝑒, served by 𝑛-th RU that is connected to 𝑘-th VM, and 𝑁𝑜 is the additive white Gaussian 

noise (AWGN) of the UE's channel. 𝐼 = ∑ ℎ𝑢𝑒
𝑖𝑓𝐼𝑓

𝑖𝑓∈𝜙/𝑛  𝑟𝑢𝑒
𝑖𝑓

 is sum interference from different RUs (𝑖𝑓) rather 

than serving RU 𝑛. In addition, 𝑟𝑢𝑒
𝑖𝑓

= (𝑅𝑢𝑒
𝑖𝑓

)−𝛼 represents path loss of interferers RUs 𝑖𝑓of 𝑢𝑒-th UE, and 𝑅𝑢𝑒
𝑖𝑓

 

is distance set of interferers RUs 𝑖𝑓 to 𝑢𝑒-th UE, while ℎ𝑢𝑒
𝑖𝑓

 is channel gain of 𝑖𝑓 interferer to 𝑢𝑒-th UE. It 

merits referencing that maximising the channel capacity for the UEs doesn't ensure that each UE's capacity is 

maximised separately. Henceforth, the capacity of every UE has been constrained, as displayed in (4). Further 

to channel capacity, the power consumption evaluation is the second part of the EEf problem, the following 

Sub-section presents modelling the cloud power consumption along with the expected delay. 

 

2.2.  Network energy consumption and latency 
It was referenced in [30], [31] that the virtualized server's energy consumption is exponentially 

relative to the quantity of VMs. Nevertheless, there are four significant members inside the server required that 

participate to such assumption, the virtualized server power consumption is given as: 

 

𝑃𝑠𝑒𝑟𝑣𝑒𝑟 = (𝑃ℎ𝑑 + 𝑃𝑛𝑐 + 𝑃𝑐𝑢 + 𝑃𝑟𝑚) × 𝑒𝜉𝐾    (6) 

 

where 𝐾 denotes the total number of VMs, 𝑃ℎ𝑑 , 𝑃𝑛𝑐, 𝑃𝑐𝑢 and 𝑃𝑟𝑚 represent the primary power consumptions of 

the hard drive, network identification card, central processing unit and random access memory, respectively. 

The 𝑒𝜉𝐾  part has been added to show the dynamic power consumption that is based on the traffic, which is 

increased because of VMs' presence, where 𝜉 is a constant. Moreover, because each VM serves some UEs, it 

has been expected that the traffic based consumption is directly corresponding to the processed resource blocks 

[12]. This implies that more UEs being served, more processed resource blocks and higher dynamic 

consumption. Subsequently, the gross resource blocks processed by the server (𝐵 = ∑ 𝑏𝑘
𝐾
𝑘 ) has been jointly 

combined with 𝑃𝑠𝑒𝑟𝑣𝑒𝑟  to reproduce the power utilization (𝑃𝑠𝑣𝑟 = 𝑃𝑠𝑒𝑟𝑣𝑒𝑟 + 𝑒ℓ𝑘×𝐵). The amount 𝑏𝑘 indicates 

the number of resource blocks handled by each VM 𝑘, and ℓ𝑘 is a constant factor. It is worth mentioning that 

ℓ𝑘 and the other constant factors are determined using try and error process, as it is the value that makes the 

power consumption of the server reaches its maximum consumption, starting from an initial value, i.e., when 

the server experiences no traffic. 

Moreover, the power consumption of a virtualized server is exposed to the impacts of other power 

losses, i.e., cooling, DC and AC power conversion losses. The power consumption of these losses is scaled 

linearly with other units' power consumption and estimated as factors ∧𝑐, ∧𝑑𝑐, ∧𝑎𝑐, respectively [32]. 

Subsequently, total power consumption of the cloud virtualized network, denoted as𝑃𝑉𝐶  can be modelled by 

combining the power consumption of cloud part, as in (7):  

 

𝑃𝑉𝐶 =
(𝑃𝑠𝑣𝑟+𝑃𝑜𝑝,𝑝)

(1−∧𝑐)(1−∧𝑑𝑐)(1−∧𝑎𝑐)
+

𝑃𝑎𝑚𝑝+𝑃𝑟𝑎𝑑𝑖𝑜+𝑃𝑜𝑝,𝑟

(1−∧𝑑𝑐)(1−∧𝑎𝑐)
  (7) 

 

where𝑃𝑜𝑝,𝑟 and 𝑃𝑜𝑝,𝑝 symbolise the optical device's power consumption of the RU and the pool, respectively. 

∧𝑎𝑐 and ∧𝑑𝑐 denote the RU's mains supply and DC loss factors, successively. At the end, 𝑃𝑟𝑎𝑑𝑖𝑜  is radio 

frequency component's power consumption, (𝑃𝑛
𝑡/𝜂𝑎𝑚𝑝) denotes the power amplifier's power consumption. To 

sum up, Figure 1 briefly shows how the system model parameters are related to each other and establish the 

EEf calculations. 

Another important factor within this modelling is the time it takes the VMs to process the resources 

blocks. This time in traditional server is linearly increasing with the quantity of resource blocks and coding 

scheme utilized for resource blocks transmission. Concerning virtualization, a VM demands 𝜏 times extra delay 

to handle the packet when contrasted with the conventional partners because of the expanded computations 

among the hypervisor-server units and HV-VMs, where𝜏can reach 5 times [12]. Modelling this concept 

requires introducing a factor called coding scheme factor, denoted as 𝑀, to describe the linear relationship 

between the resource blocks and execution time in a bare BB server, denoted as 𝐺𝑡𝑟, where 𝐺𝑡𝑟 = 𝐺𝑝𝑟𝑖 + (𝑀 ×

𝑏𝑘), 𝐺𝑝𝑟𝑖 is the primary delay that is originated by other functions within the server, excluding the coding 

scheme. Moreover, the HV delay 𝜏 is added to 𝐺𝑡𝑟 to deliver the execution time of the virtualized server 𝐺𝑘 

when single VM can be found, that is, 𝐺𝑘 = 𝐺𝑡𝑟 + 𝜏. Hence, the gross execution time for all the VMs, denoted 

as 𝐺 is given as 𝐺 = ∑ 𝐺𝑘𝐾
𝑘 . 
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Figure 1. A flow diagram to show the EEf calculation through the system model 

 

 

3. PROBLEM FORMULATION 

The EEf (𝐸𝐸𝑓) of virtual cloud network can be described as the received data rate in one watt. Such 

problem is formulated in (8) to (16): 

 

max  EEf (𝐾, 𝑥𝑜 , 𝑦𝑜) =
𝐶

𝑃VC
     (8) 

 

s.t    𝐶𝑛,𝑢𝑒,𝑏
𝑘 ≥ 𝐶𝑡ℎ,  ∀ 𝑢𝑒, 𝑏  (9) 

 

𝐺𝑢𝑒 + 𝐺𝑛 + 𝐺 ≤ 𝐺𝑡ℎ  (10) 

 

𝐺 ≤ 𝐺𝑣𝑚𝑠
𝑡ℎ𝑟     (11) 

 

𝑏𝑘 ≤ 100,  ∀ 𝑘   (12) 

 

∑ 𝑏𝑘
𝐾
𝑘 ≤ 𝐵  (13) 

 

∑ ∑ 𝑃𝑛,𝑢𝑒,𝑏
𝑘𝑏𝑘

𝑏
𝑈𝑒𝑛
𝑢𝑒 ≤ 𝑃𝑛

𝑟 ,  𝑃𝑛,𝑢𝑒,𝑏
𝑘 ≥ 0,  ∀ 𝑢𝑒, 𝑏  (14) 

 

∑ 𝑃𝑛
𝑟𝑁

𝑛 ≤ 𝑃𝑝
𝑡 ,  ∀ 𝑛 (15) 

 

where the data rate can be given as 

 

𝐶𝑛,𝑢𝑒,𝑏
𝑘 = 𝐵𝑜 𝑙𝑜𝑔 2 (1 + 𝑃𝑛,𝑢𝑒,𝑏

𝑘 𝜎𝑛,𝑢𝑒,𝑏
𝑘 )  (16) 

 

𝐶𝑡ℎ represents the minimum data rate requirement. The constraint in (10) restricts the time delay due to 

processing the resource blocks and link delay, where 𝐺𝑢𝑒 =∗ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑑𝑛,𝑢𝑒/𝑐) × 2, represents the signal's 

round trip delay for the most far UE. Moreover, 𝐺𝑛 =∗ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑑𝑛,𝑜/𝑉𝑝ℎ) × 2, is the maximum delay for the 

signal that travels from 𝑛-th RU to the pool, and 𝐺𝑣𝑚𝑠
𝑡ℎ𝑟  is the threshold time of all VMs. In addition, 𝑉𝑝ℎ =

𝑐/𝑖𝑑is the speed of light (𝑐) within the fiber, while 𝑖𝑑 is its refractive index. Subsequently, 𝐺 represents the 

delay of all VMs, which is equivalent to the sum of all VMs ∑ 𝐺𝑘, where 𝐺𝑘 is the delay of a single VM, where 

𝐺𝑘 = 𝐺𝑡𝑟 + 𝜏. The delay of processing the resource blocks can be evaluated by 𝐺𝑡𝑟along with the VMs 

supervisor delay (𝜏). Hence, the third constraint combines the delay restrictions of processing the resource 

blocks and signals round trips. 

By substituting the third constraint into the second, the latency for the network can be controlled and 

does not overcome 𝐺𝑡ℎ, where 𝐺𝑡ℎ is the total time threshold of the network. In constraint (11), any VM 𝑘 does 
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not exceed the allowed number of resource blocks 𝑏𝑘. In addition, (12) manipulated the maximum processed 

resource blocks in one server. As processing capability of the server becomes larger and extra efficient by time, 

the total number of resource blocks has been assumed to be 700. Such number can then be shared by all 

participating VMs. The following constraint (13) expresses the limit of received power by the each UE to 

maintain the QoS. At the end, (14) ensures the received total power of all the RUs doesn't surpass the overall 

power transmitted by the pool 𝑃𝑝
𝑡. 

 

3.1.  Heuristic algorithms 

To solve the proposed problem, PSO, GA and HGAPSO are utilized to look through the space of the 

objective function to find the sub-optimal position of the virtualized BB pool 𝑥𝑜, 𝑦𝑜 and the sub-optimal VMs 

𝐾 that increase the EEf given in (8). Such optimisation issue faces two main difficulties, i) the time limitations, 

it means for how long the solution is considered effective? and ii) the sub-optimality of the heuristic natured 

solution. Regarding first limit, considering a particular topographical zone where the pool existed, an immense 

measure of potential traffic has been considered. For every Monte Carlo cycle, new resource block assignments, 

channel conditions, RUs and UEs are set up by utilizing PPP. This iteration shall examine and cover all the 

possibility of traffic variations within the geographical area for a very large time period. Henceforth, running 

the process of optimization every time the UEs' traffic is varied becomes unnecessary. 

The second limit in this problem is the results fall in to sub-optimal, but not optimal. This matter can 

also be ignored because of the nature of our problem. When the required amount of optimized VMs shall be 

an integer, the final solution is scaled down to overcome such behavior and to prevail server's overloading. 

The explanation of adjusting PPP at every iteration is to think about the practical cell coverage and genuine 

situations during the appropriation of UEs and RUs. The Poison method estimates the likelihood that a specific 

number of occasions happen inside a specific time-frame [31]. The heuristic algorithms primarily initializes 

their particles, with every particle speaking to a conceivable solution, such possibility at that point experiences 

the procedure of Figure 2, at which, the conceivable solution is exposed to the limitations. 

In Figure 2 each particle 𝑖 is evaluated by the given objective function 𝐸𝐸𝑓with previous best stored 

solution, denoted by 𝑝𝑏𝑒𝑠𝑡 and global best stored solution, denoted by 𝑔𝑏𝑒𝑠𝑡. In light of current positions of 

𝑥𝑖 , 𝑦𝑖, and 𝐾𝑖, their speed, denoted by 𝑣𝑖, their previous particle best solution 𝑝𝑏𝑒𝑠𝑡𝑖 and global particle best 

solution 𝑔𝑏𝑒𝑠𝑡𝑖, the particle will be updated until the maximum number of particles 𝐼 is reached. In addition, 

the acceleration constants, denoted by 𝑐1 and 𝑐2, jointly with random vectors, denoted as 𝑟1 and 𝑟2, they all 

manage the stochastic impact on the speed of the particle [30]. Besides, the Monte Carlo procedure repeats 𝐽 

times at the 𝑖-th particle to produce (𝐼 × 𝐽) of assignment formations. When 𝐽 is expanded, the quantity of 

traffic shots becomes nearer to endlessness and this will empower the activity of the results. In any case, this 

requires more execution time, which has been recently surpassed. All things considered; this time cost shall be 

increased when bigger geological area is deployed. 

 

 

 
 

Figure 2. Main PSO algorithm 
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4. RESULTS AND ANALYSIS 

To correspond our results with experimental situations, the subsequent parameters were chosen from 

[30]–[32], as appeared in Table 1. These parameters established about 40\% power consumption increase inside 

each virtualized server because of server's over-using due to the presence of VMs [12]. Nevertheless, the 

proposed model is not limited to yield such amount of power. Rather, it is valid for any kind of server through 

tuning the model's inputs. 

Figure 1 presents the EEf evaluation of cloud mobile network using distance-based power distribution 

from the BB pool to the RU. Due to the computational exertion that is required for PSO to arrive at its solution 

less than what is required by the GA to reach the same quality of solution, it was noticeable that PSO 

performance is better than GA. Moreover, in Figure 3 the EEf comparison has been shown using distance and 

channels gain from the BB pool to the RU. 

 

 

Table 1. Model parameters 
Components Units Values Components Units Values 

𝜂𝑎𝑚𝑝 - 0.36 𝜉 - 0.007 

𝑖𝑑 - 1.5 ℓ - 0.001 

𝛿 - 0.9 𝑃𝑟𝑎𝑑𝑖𝑜 W 12.6 

𝛼 - 4 𝑃𝑛𝑐 W 2 

𝑏𝑛 - 90 𝑃𝑐𝑢 W 29.6 

𝐼 - 100 𝑃𝑜𝑝,𝑟 W 1 

∧𝑐 - 0.1 𝑃ℎ𝑑 W 10 

∧𝑎𝑐 - 0.09 𝑃𝑜,𝑡 W 21 

∧𝑑𝑐 - 0.075 𝐶𝑡ℎ𝑟 kbps 10 

𝑐1 - 0.2 AWGN dB/Hz 2620 

𝑐2 - 1.2 𝐺𝑝𝑟𝑖 sec 80 

𝜈 - 0.005 𝐺𝑣𝑚𝑠
𝑡ℎ𝑟  ms 6 

   𝐿 dB/Km 0.51 

 

 

 
 

Figure 3. EEf evaluation of virtualization based cloud network using distance based allocation from the pool 

to the RU 

 

 

It is worth mentioning that the first method, which is based on the distance shows better QoS than the 

second method, which is based on channel gain and distance, because of two main reasons: 

 The channel gain (translated to attenuation) existence in the second allocation always degrades the EEf of 

the UEs as it reduces the received power by the RU, which in turn reduces the power received by the UE. 

Consequently, the SINR 𝜎𝑛,𝑢𝑒,𝑏
𝑘 is reduced and caused reduction in the amount of data rate (channel 

capacity). As the EEf is directly proportional to the value of the data rate, the amount of 𝐸𝐸𝑓will be 

reduced too. This procedure is not allowed in the first method. 

 The first method classifies the UEs to edge and center UEs within each RU. Since there is no channel gain 

assumptions, the EUs that are located at the center of the RU are always assumed to get good channel 
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conditions, while the UEs at the edge of the cell are assumed to always have poor channel conditions. 

Hence, extra power will be allocated to the edge UEs to compensate this poor channel. Subsequently, the 

SINR and channel capacity are increased, and this maximizes the EEf. 

Figure 4 shows the EEf indicator when the network is in not under virtualization. Clearly, this case 

has delivered more power consumption, which is inversely proportional to the EEf, this degrades the latter as 

well as the QoS. To elaborate more on calculating the traditional power consumption, first the impact of VMs 

𝑒𝜉𝐾 is deducted from the server's power consumption 𝑃𝑠𝑒𝑟𝑣𝑒𝑟 . If we assume 𝑃𝑏𝑎𝑟𝑒 = (𝑃ℎ𝑑 + 𝑃𝑛𝑐 + 𝑃𝑐𝑢 + 𝑃𝑟𝑚) 

is the server's power consumption without virtualization, it will be multiplied by the number of traditional 

servers, denoted as BU. Along with 𝑃𝑅𝑈, i.e. ((𝐵𝑈 × 𝑃𝑏𝑎𝑟𝑒) + 𝑃𝑅𝑈) they produce the total power consumption 

of Figure 5. 

This amount of power has produced more power than in the virtualization case because traditionally, 

the bare servers are multiplied by the number of bare servers, while in the virtualization method, the server 

power consumption 𝑃𝑠𝑒𝑟𝑣𝑒𝑟only influenced by the number of VMs. Surely, the latter produces less power 

overhead than 𝐵𝑈effect. However, the model results a value of the number of VMs between 7 and 8, this 

number then is down converted to 7. Additionally, Figure 5 combines all the proposed methods and techniques 

with respect to the EEf, including distance, and channel gain, using PSO, GA or HGAPSO, with virtualization 

(V) and without virtualization (NV). 

 

 

 
 

Figure 4. EEf of virtualization cloud mobile using channel and distance allocation from the pool to the RU 

 

 

 
 

Figure 5. EEf performance without using virtualization method 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 3276-3286 

3284 

The parameters for PSO are selected: the particles number 𝐼 is 100, (𝑤 = 0.91) denotes the inertia 

weight, (𝑐1 = 0.21) denotes the cognitive factor, (𝑐2= 1.2) is the social factor. In GA, generation number is also 

100, size of population is equivalent to 100, and crossover probability is set to 0.81. The algorithm has been 

run 30 times to avoid the random behavior that is concurrent with the heuristic algorithm. Thereafter, the run 

that records higher is selected.  

To further notice how the various parameters affect the optimization variables 𝑥𝑜, 𝑦𝑜and 𝐾, we have 

elaborated via the following steps, i) the 𝐸𝐸𝑓 is based on the UE's received power, which depends on the power 

received from the RU that is received from the BB pool, ii) the received power of the RUs are evaluated using 

power allocation methods, iii) these methods also include the distances of the RUs-pool, which in turn, hold 

the axes of the RUs 𝑥𝑛 , 𝑦𝑛and the optimisation variables of the BB pool position 𝑥𝑜 , 𝑦𝑜, and iv) these axes then 

influence the received power of the RUs via the distances parameters, which affects the received power of the 

UEs and its data rate. As the data rate is affected, the EEf does too. 

On the other side, the total power consumption is based on the received power of the RU that 

influences the power consumption of the power amplifier, as well as the number of VMs 𝐾. Hence, the latter 

will be optimised to a value so that the problem constraints will not be exceeded, in addition, the EEf and the 

QoS will not be degraded. If no constraints are found, 𝐾 will be zero. This is because such value will minimise 

the total power consumption, which amplifies the EEf. However, two crucial limitations prevent such failure, 

i) the delay limit, which ties the VMs' latency to the value that is confined and ii) the total quantity of resource 

blocks is engaged with both the channel capacity and power consumption. The resource blocks plan to build 

the pace for channel capacity, at the same time, increases the power consumption because progressively 

executed resource blocks implies more consumed power. 

 

 

5. CONCLUSION  

The maximization problem of EEf in the virtualized based cloud mobile network is exhibited with 

regards to optimizing the position of the data center and the quantity of VMs in a single server. To empower 

such an assessment, the server's power consumption and transmitted power of the pool and RUs are modelled. 

These models quantify the consequence of expanding the processed resource blocks, the quantity of virtual 

machines and the transmitted power.  

Moreover, the time limitation because of virtualization is displayed just as the execution time of the 

resource blocks in the servers. This plan is incorporated with the total latency of the cloud mobile network to 

take an interest in the optimization procedure so as the network's QoS will not be degraded. By adjusting Monte 

Carlo within the GA, PSO and Hybrid PSOGA in the area of interest, the need to run the procedure of 

optimization each time the traffic behavior changed is overridden. Finally, virtualization techniques and 

network planning are very useful in the long run when applied in cloud networks as they boost the EEf. But, 

they require extra caring with regards to fulfilling the UEs' QoS concerning the inherent delay. In the future, 

adapting this work to the newly coming software defined network architecture is motivating, where new 

assumptions that require new architecture suggestions, traffic flow design, resources allocation, complexity 

manipulation and costs estimation will be tested. 
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