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 Fractional differential equations play a major role in expressing 

mathematically the real-world problems as they help attain good fit to the 

experimental data. It is also known that fractional order controllers are more 

flexible than integer order controllers. But when it comes to the numerical 

approximation of fractional order functions inaccuracies arise if the 

conversion technique is not chosen properly. So, when a fractional order 

plant model is approximated to an integer order system, it is required that the 
approximated model be accurate, as the overall system performance is based 

on the estimated integer order model. Nitisha-Pragya-Carlson (NPC) is a 

recent approximation technique proposed in 2018 to derive the rational 

approximation of fractional order differ-integrators. In this paper, three 
fractional order plant models having fractional powers 3.1, 1.25 and 1.3 is 

analyzed in frequency domain in terms of magnitude and phase response. 

The performance of approximated third and second order NPC based integer 

model is studied and compared with the integer models developed using 
other existing technique. The approximation error is calculated by 

comparing the frequency response of the developed models with the ideal 

response. It has been found that in all the three examples NPC based models 

are very much close to the ideal values. Hence proving the efficacy of NPC 
technique in approximation of fractional order systems. 
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1. INTRODUCTION  

It is well known fact that fractional calculus plays an important role in two major areas, one is to 

frame a precise mathematical expression of any physical processes and the second one is designing a 

controller for processes industries. This is because with the help of fractional calculus an exact adaptation of 

the physical system can be modelled for simulation and analysis purposes and an accurate controller can be 

designed. Worldwide researchers have been able to explore fractional behavior in almost all branches of 

science, engineering, business and management [1]–[7]. The fractional order mathematical models have 

derivatives and integrals with fractional powers and it is not easy to implement such a model. Therefore, 

conversion to integer order system is done using different approximation techniques which are based on 

continued fraction expansion, least squares, alternate placement of poles and zeros, Newton iterations, 

optimization algorithms and so on [8]–[15]. The resulting integer order transfer functions depends on the 

technique used. It is usually seen that to achieve desired accuracy the highest power of approximated overall 

integer order system is very large. Such a large order system is not realizable practically. So, to reduce the 
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order of the system reduction techniques are applied [16]–[20], [21]–[26]. In this paper the authors have 

presented a detailed analysis of approximating fractional order plant using the most recent Nitisha-Pragya-

Carlson (NPC) technique developed in 2018 [15]. Three plants having fractional powers 3.1, 1.25 and 1.3 is 

analyzed in frequency domain. The NPC technique is a modified version of the Carlson technique which is 

based on Newton iterations [14]. The advantage of NPC technique is that it can be applied in any desired 

frequency range which was actually a drawback in Carlson method. 

The paper consists of four sections: introduction is covered in section 1. The NPC formula and the 

different order reduction technique used in this paper is briefed section 2. The frequency domain analysis of 

three fractional order plants is detailed in section 3. Section 4 concludes the paper.  

 

 

2. METHOD 

The iterative formula for solving fractional order function 𝐹(𝑥) = 𝑎1/𝑛 was given by Carlson and 

Halijak [14] as (1): 

 

𝐹(𝑥) = a
1

𝑛 = 𝑥 [
(𝑛−1)𝑥𝑛+(𝑛+1)𝑎

(𝑛+1)𝑥𝑛+(𝑛−1)𝑎
] (1) 

 

where a is real variable and 𝑛 ∈ 𝑁. The fractional order integrator was obtained after replacing ′𝑎′ by 
1

𝑠
 in (1). 

In this method, it is not possible to choose the frequency range in which the approximation is to be 

developed. But on observation it is found that the frequency responses of the approximation are constructed 

with centre frequency 1 rad/s.  

A more generalized approximation for fractional order function proposed by NPC is an algorithm 

given by the recursive formula for 𝐹(𝑥) = 𝑎±1/𝑛 as (2): 

 

𝐹(𝑥) = 𝑥𝑖 = 𝑥(𝑖−1) [
(±𝑛−1)𝑥(𝑖−1)

±𝑛 +(±𝑛+1)𝑎

(±𝑛+1)𝑥(𝑖−1)
±𝑛 +(±𝑛−1)𝑎

] (2) 

 

where 𝑖 = 1,2,3 … denotes iterations. The first value 𝑥0 for the frequency range [𝑅1𝑅2] rad/s, is given as (3): 

 

𝑥0 = 𝑅𝑐
±

1

𝑛 (3) 

 

where 𝑅𝑐 = √𝑅1𝑅2. 𝑅1 is the lower frequency and 𝑅2 is the upper frequency. Replacing the real variable ‘𝑎’ 

by the complex variable ‘𝑠’ the fractional order function becomes: 

 

𝐹(𝑠) = 𝑠±
1

𝑛 (4) 

 

in the specified frequency range.  

The approximation for fractional order differs-integrator is: 

a. Fractional order differentiator 𝑠1/𝑛 

- First iterate: 

 

𝑥1 = 𝑅𝑐

1

𝑛 [
(𝑛−1)𝑅𝑐+(𝑛+1)𝑠

(𝑛+1)𝑅𝑐+(𝑛−1)𝑠
] (5) 

 

- Second iterate: 
 

𝑥2 = 𝑥1 [
(𝑛−1)𝑥1

𝑛+(𝑛+1)𝑠

(𝑛+1)𝑥1
𝑛+(𝑛−1)𝑠

] (6) 

 

b. Fractional order integrator 
1

𝑠1/𝑛 

- First iterate: 

 

𝑥1 = (
1

𝑅𝑐
)

1

𝑛
[

(−𝑛−1)
1

𝑅𝑐
+(−𝑛+1)𝑠

(−𝑛+1)
1

𝑅𝑐
+(−𝑛−1)𝑠

] (7) 

 

- Second iterate: 
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𝑥2 = 𝑥1 [
(−𝑛−1)(

1

𝑥1
)

𝑛
+(−𝑛+1)𝑠

(−𝑛+1)(
1

𝑥1
)

𝑛
+(−𝑛−1)𝑠

] (8) 

 

 

3. RESULTS AND DISCUSSION 

This section covers the analysis done for three fractional order plant models. For each case an 

equivalent approximated integer system of the fractional order plant model is developed by applying the NPC 

formula to all the fractional terms in the model. As the developed model is of higher order, it is reduced to 

second and third orders using the following approximation techniques: i) balanced truncation (BT) method, 

ii) matched DC gain (MDG) method, iii) moment matching (MM) (also known as Padé approximation 

(Pade)) method, and iv) sub-optimum (SOP) method. 

A detailed description of how these reduction methods can be applied to integer approximated 

fractional order models is explained in [17]. All the lower order models are compared by plotting their 

frequency responses and calculating maximum magnitude and phase errors in the frequency range 

[10−2 102] rad/s. To know the maximum magnitude and phase errors it is required that the approximated 

models be compared with the actual response. The actual magnitude and phase values of a fractional order 

term for any specific frequency ω rad/s is found out as: i) actual magnitude =+/- (order of the fractional 

term)*20log ω dB and ii) actual phase =+/- (order of the fractional term)*90 degree. 

Thus, the reference frequency response for each example is plotted and the plots of the 

approximated 2nd and 3rd order models are compared with the actual response. This is done to show the 

accuracy of approximated lower order models, as for hardware realization it is preferred that the models be of 

lower order. The reference plots for each of the three examples are shown as F1(s), F2(s) and F3(s) in  

Figures 1(a) and 1(b), Figures 2(a) and 2(b), and Figures 3(a) and 3(b) respectively. 

 

 

  
(a) (b) 

 

Figure 1. Frequency response of 𝐹1(𝑠), 𝐹𝐼𝑁𝑇1_𝑁𝑃𝐶(𝑠) and lower order models, (a) second-order models of 

𝐹1(𝑠) and (b) third-order models of 𝐹1(𝑠) 

 

 

3.1.  Example 1 

A first fractional order plant [27] considered is: 

 

𝐹1(𝑠) =
3𝑠2+10𝑠0.9+0.2

0.8𝑠3.1+3𝑠2+0.5𝑠1.8+11𝑠0.9+0.2
 (9) 

 

This fractional order plant model has fractional powers 3.1, 1.8 and 0.9. To apply NPC formula the terms 𝑠3.1 

and 𝑠1.8 are split into two as 𝑠3.1 = 𝑠3 × 𝑠0.1and 𝑠1.8 = 𝑠 × 𝑠0.8 respectively.  

The integer approximation function (𝐹𝐼𝑁𝑇1_𝑁𝑃𝐶(𝑠)) of 𝐹1(𝑠) using NPC method is of order 19. The 

results obtained after applying further model reduction techniques are investigated. 𝐹𝐼𝑁𝑇1_𝑁𝑃𝐶(𝑠) is reduced 

to second and third order models. The models reduced using BT method are termed 𝐹𝑅𝐸𝐷1_𝐵𝑇2_𝑁𝑃𝐶(𝑠) and 

𝐹𝑅𝐸𝐷1_𝐵𝑇3_𝑁𝑃𝐶(𝑠) for second and third orders respectively. The models reduced using matched DC gain 
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method are represented by 𝐹𝑅𝐸𝐷1_𝑀𝐷𝐺2_𝑁𝑃𝐶(𝑠) and 𝐹𝑅𝐸𝐷1_𝑀𝐷𝐺3_𝑁𝑃𝐶(𝑠) for second and third orders 

respectively. The models reduced using moment matching (Pade approximation) method are given as 

𝐹𝑅𝐸𝐷1_𝑀𝑀2_𝑁𝑃𝐶(𝑠) and 𝐹𝑅𝐸𝐷1_𝑀𝑀3_𝑁𝑃𝐶(𝑠) for second and third orders respectively, and the models obtained 

using sub-optimum method are named 𝐹𝑅𝐸𝐷1_𝑆𝑂𝑃2_𝑁𝑃𝐶(𝑠) and 𝐹𝑅𝐸𝐷1_𝑆𝑂𝑃3_𝑁𝑃𝐶(𝑠) for second and third orders 

respectively. 

The characteristics of lower order models obtained using NPC approximation are analyzed by 

plotting their frequency responses and magnitude and phase errors. The lower value of frequency is  

10−2 rad/s and upper frequency is 102 rad/s. Figures 1(a) and 1(b) show the frequency response plots of 

(𝐹1(𝑠)), its integer order approximation (𝐹𝐼𝑁𝑇1_𝑁𝑃𝐶(𝑠)) and second and third order models. Figures 2(a) and 

2(b) shows the error plots. The Tables 1 to 4 show maximum magnitude and phase errors of the models 

developed using NPC and Oustaloup methods respectively. Comparing the second order models it can be 

seen that NPC model reduced using BT method shows better results and in third order models 

𝐹𝑅𝐸𝐷1_𝐵𝑇2_𝑂𝑈𝑆𝑇(𝑠) has least maximum magnitude error where as maximum phase error is less for 

𝐹𝑅𝐸𝐷1_𝑆𝑃𝑂2_𝑁𝑃𝐶(𝑠). Thus, for implementation purposes NPC approximated second order model reduced using 

BT method can be used. 

 

 

  
(a) (b) 

 

Figure 2. Magnitude and phase error plots of lower order models of 𝐹1(𝑠) approximated using NPC method, 

(a) second order models of 𝐹1(𝑠) and (b) third order models of 𝐹1(𝑠) 

 

 

Table 1. Errors of lower order models of 𝐹1(𝑠) approximated using NPC method 

Plant model Method Lower order models Lower Order (3rd/2nd) 
Error 

(decibel) (degree) 

𝐹1(𝑠) BT 𝐹𝑅𝐸𝐷1_𝐵𝑇3_𝑁𝑃𝐶(𝑠) 3 0.0228 5.5130 

MDG 𝐹𝑅𝐸𝐷1_𝑀𝐷𝐺3_𝑁𝑃𝐶(𝑠) 0.0355 26.9703 

MM 𝐹𝑅𝐸𝐷1_𝑀𝑀3_𝑁𝑃𝐶(𝑠) 0.6338 78.7815 

SOP 𝐹𝑅𝐸𝐷1_𝑆𝑂𝑃3_𝑁𝑃𝐶(𝑠) 0.0259 5.2664 

BT 𝐹𝑅𝐸𝐷1_𝐵𝑇2_𝑁𝑃𝐶(𝑠) 2 0.0668 5.4687 

MDG 𝐹𝑅𝐸𝐷1_𝑀𝐷𝐺2_𝑁𝑃𝐶(𝑠) 0.0988 77.1589 

MM 𝐹𝑅𝐸𝐷1_𝑀𝑀2_𝑁𝑃𝐶(𝑠) 0.6338 78.7722 

SOP 𝐹𝑅𝐸𝐷1_𝑆𝑂𝑃2_𝑁𝑃𝐶(𝑠) 0.7051 45.3131 

 

 

Table 2. Errors of lower order models of 𝐹1(𝑠) approximated using oustaloup method 

Plant model Method Lower order models Lower Order (3rd/2nd) 
Error 

(decibel) (degree) 
𝐹1(𝑠) BT 𝐹𝑅𝐸𝐷1_𝐵𝑇3_𝑂𝑈𝑆𝑇(𝑠) 3 0.0198 7.1343 

MDG 𝐹𝑅𝐸𝐷1_𝑀𝐷𝐺3_𝑂𝑈𝑆𝑇(𝑠) 0.0419 49.0691 
MM 𝐹𝑅𝐸𝐷1_𝑀𝑀3_𝑂𝑈𝑆𝑇(𝑠) 0.6342 74.3342 
SOP 𝐹𝑅𝐸𝐷1_𝑆𝑂𝑃3_𝑂𝑈𝑆𝑇(𝑠) 0.0389 6.8591 
BT 𝐹𝑅𝐸𝐷1_𝐵𝑇2_𝑂𝑈𝑆𝑇(𝑠) 2 0.0691 7.1273 

MDG 𝐹𝑅𝐸𝐷1_𝑀𝐷𝐺2_𝑂𝑈𝑆𝑇(𝑠) 0.1200 88.7147 
MM 𝐹𝑅𝐸𝐷1_𝑀𝑀2_𝑂𝑈𝑆𝑇(𝑠) 1.1232 44.7957 
SOP 𝐹𝑅𝐸𝐷1_𝑆𝑂𝑃2_𝑂𝑈𝑆𝑇(𝑠) 0.7024 45.0358 
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3.2.  Example 2 

A second fractional order plant [28] considered is: 

 

𝐹2(𝑠) =
12.46𝑠+64.47

39.69𝑠1.25+12.46𝑠+65.068
 (10) 

 

Similar analysis is also performed for 𝐹2(𝑠). The expression of (10) has only one fractional order term 𝑠0.25. 

The fractional order plant 𝐹2(𝑠) is approximated using NPC technique. The order of the resulting integer 

order function, 𝐹𝐼𝑁𝑇2_𝑁𝑃𝐶(𝑠) is 6. 𝐹𝐼𝑁𝑇2_𝑁𝑃𝐶(𝑠) is reduced to 2nd and 3rd order models. Following terminology 

is used to represent the second and third order reduced models: i) BT method: 𝐹𝑅𝐸𝐷2_𝐵𝑇2_𝑁𝑃𝐶(𝑠) and 

𝐹𝑅𝐸𝐷2_𝐵𝑇3_𝑁𝑃𝐶(𝑠); ii) matched DC gain method: 𝐹𝑅𝐸𝐷2_𝑀𝐷𝐺2_𝑁𝑃𝐶(𝑠) and 𝐹𝑅𝐸𝐷2_𝑀𝐷𝐺3_𝑁𝑃𝐶(𝑠); iii) moment 

matching (Pade approximation method): 𝐹𝑅𝐸𝐷2_𝑀𝑀2_𝑁𝑃𝐶(𝑠) and 𝐹𝑅𝐸𝐷2_𝑀𝑀3_𝑁𝑃𝐶(𝑠); and iv) sub-optimum 

method: 𝐹𝑅𝐸𝐷2_𝑆𝑂𝑃2_𝑁𝑃𝐶(𝑠) and 𝐹𝑅𝐸𝐷2_𝑆𝑂𝑃3_𝑁𝑃𝐶(𝑠). 

The plots showing frequency versus magnitude and phase characteristics of 2nd and 3rd order models 

compared with 𝐹𝐼𝑁𝑇2_𝑁𝑃𝐶(𝑠) and also with the original f-o plant 𝐹2(𝑠) are given in Figures 3(a) and 3(b) 

respectively. The corresponding magnitude and phase errors for the 2nd and 3rd order reduced models are 

shown in Figures 4(a) and 4(b).  

 

 

  
(a) (b) 

 

Figure 3. Frequency response of 𝐹2(𝑠), 𝐹𝐼𝑁𝑇2_𝑁𝑃𝐶(𝑠) and lower order models, (a) second-order models of 

𝐹2(𝑠) and (b) third-order models of 𝐹2(𝑠) 

 

 

  
(a) (b) 

 

Figure 4. Magnitude and phase error plots of lower order models of 𝐹2(𝑠) approximated using NPC method 

(a) second order models of 𝐹2(𝑠) and (b) third order models of 𝐹2(𝑠) 
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Table 3. Errors of lower order models of 𝐹2(𝑠) approximated using NPC method 

Plant model Method Lower order models Lower Order (3rd/2nd) 
Error 

(decibel) (degree) 
𝐹2(𝑠) BT 𝐹𝑅𝐸𝐷2_𝐵𝑇3_𝑁𝑃𝐶(𝑠) 3 0.0126 3.3619 

MDG 𝐹𝑅𝐸𝐷2_𝑀𝐷𝐺3_𝑁𝑃𝐶(𝑠) 0.0080 5.0607 
MM 𝐹𝑅𝐸𝐷2_𝑀𝑀3_𝑁𝑃𝐶(𝑠) 0.0231 3.6180 
SOP 𝐹𝑅𝐸𝐷2_𝑆𝑂𝑃3_𝑁𝑃𝐶(𝑠) 0.0461 18.6233 
BT 𝐹𝑅𝐸𝐷2_𝐵𝑇2_𝑁𝑃𝐶(𝑠) 2 0.0124 3.3619 

MDG 𝐹𝑅𝐸𝐷2_𝑀𝐷𝐺2_𝑁𝑃𝐶(𝑠) 0.0146 4.1414 
MM 𝐹𝑅𝐸𝐷2_𝑀𝑀2_𝑁𝑃𝐶(𝑠) 0.0580 13.0245 
SOP 𝐹𝑅𝐸𝐷2_𝑆𝑂𝑃2_𝑁𝑃𝐶(𝑠) 0.0871 81.8434 

 

 

Table 4. Errors of lower order models of 𝐹2(𝑠) approximated using oustaloup method 

Plant model Method Lower order models Lower Order (3rd/2nd) 
Error 

(decibel) (degree) 
𝐹2(𝑠) BT 𝐹𝑅𝐸𝐷2_𝐵𝑇3_𝑂𝑈𝑆𝑇(𝑠) 3 0.0174 4.0593 

MDG 𝐹𝑅𝐸𝐷2_𝑀𝐷𝐺3_𝑂𝑈𝑆𝑇(𝑠) 0.0126 4.6817 
MM 𝐹𝑅𝐸𝐷2_𝑀𝑀3_𝑂𝑈𝑆𝑇(𝑠) 0.0688 23.2661 
SOP 𝐹𝑅𝐸𝐷2_𝑆𝑂𝑃3_𝑂𝑈𝑆𝑇(𝑠) 0.0160 5.1395 
BT 𝐹𝑅𝐸𝐷2_𝐵𝑇2_𝑂𝑈𝑆𝑇(𝑠) 2 0.0597 20.4803 

MDG 𝐹𝑅𝐸𝐷2_𝑀𝐷𝐺2_𝑂𝑈𝑆𝑇(𝑠) 0.0169 15.5358 
MM 𝐹𝑅𝐸𝐷2_𝑀𝑀2_𝑂𝑈𝑆𝑇(𝑠) 0.0543 31.9633 
SOP 𝐹𝑅𝐸𝐷2_𝑆𝑂𝑃2_𝑂𝑈𝑆𝑇(𝑠) 0.0789 68.1738 

 

 

3.3.  Example 3 

A third fractional order plant [27] considered is: 

 

𝐹3(𝑠) =
3

2𝑠1.3+1
 (11) 

 

Using NPC approximation technique 𝐹3(𝑠) is approximated to 6th order function 𝐹𝐼𝑁𝑇3_𝑁𝑃𝐶(𝑠). 𝐹𝐼𝑁𝑇3_𝑁𝑃𝐶(𝑠) 

is reduced to lower order models. The models reduced using BT method are 𝐹𝑅𝐸𝐷3_𝐵𝑇2_𝑁𝑃𝐶(𝑠) and 

𝐹𝑅𝐸𝐷3_𝐵𝑇3_𝑁𝑃𝐶(𝑠); using matched DC gain method are 𝐹𝑅𝐸𝐷3_𝑀𝐷𝐺2_𝑁𝑃𝐶(𝑠) and 𝐹𝑅𝐸𝐷3_𝑀𝐷𝐺3_𝑁𝑃𝐶(𝑠); using 

moment matching method (Pade approximation method) are 𝐹𝑅𝐸𝐷3_𝑀𝑀2_𝑁𝑃𝐶(𝑠) and 𝐹𝑅𝐸𝐷3_𝑀𝑀3_𝑁𝑃𝐶(𝑠) and 

using sub-optimum method are 𝐹𝑅𝐸𝐷3_𝑆𝑂𝑃2_𝑁𝑃𝐶(𝑠) and 𝐹𝑅𝐸𝐷3_𝑆𝑂𝑃3_𝑁𝑃𝐶(𝑠) for second and third order 

respectively. 

The performance of NPC approximated model and reduced second and third order models is 

analyzed by plotting their frequency responses and magnitude and phase errors in the frequency range 
[10−2 102] rad/s. Figures 5(a) and 5(b) show the frequency response plot of the original fractional order 

model (𝐹3(𝑠)), its integer order approximation (𝐹𝐼𝑁𝑇3 NPC(𝑠)) and second and third order models 

respectively and the magnitude and phase errors for the 2nd and 3rd order models are plotted in  

Figures 6(a) and 6(b) respectively. The Tables 5 and 6 show maximum magnitude and phase errors of the 

models developed using NPC and Oustaloup methods respectively. Comparing the second-order models as 

shown in Figure 5 (a), it is observed that the model obtained using MDG technique shows better performance 

in terms of magnitude response, and for the 3rd order models as shown in Figure 5(b) maximum magnitude 

and maximum phase error is least for the model obtained using BT technique. 

The three examples considered here are fractional order plant models. The direct implementation, 

simulation and analysis of a model based on fractional calculus is not very easy, therefore its integer 

approximation is developed. The other thing which attracts our attention in the above examples is that, four 

different reduction techniques are used to generate 2nd and 3rd order models. This is because the parameters of 

the approximation algorithms are chosen in such a way that the basic characteristics of the approximated 

integer order model should be very close to the ideal characteristics. And it is usually found that, for accurate 

models the highest power of the polynomial is very high. So, it has to be reduced to lower orders. Of the four 

order reduction methods used in our work, BT and MDG methods are based on Hankel singular value 

decomposition whereas MM and SOP methods are based on Pade approximation and Powel’s algorithm 

respectively. Now, to check the loss of accuracy on reducing the order of the model, each 2nd and 3rd order 

models are compared with a reference graph which is the ideal response characteristics of the fractional order 

plant model. The verification of the accuracy is done in the frequency domain. In all the three examples it can 

be seen that the 2nd and 3rd order models developed using BT and MDG methods give a good frequency 

response plot and have lower error values compared to models developed using MM and SOP methods.  
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(a) (b) 

 

Figure 5. Frequency response of 𝐹3(𝑠), 𝐹𝐼𝑁𝑇3_𝑁𝑃𝐶(𝑠) and lower order models, (a) second-order models of 

𝐹3(𝑠) and (b) third-order models of 𝐹3(𝑠) 

 

 

 
(a) 

 

 
(b) 

 

Figure 6. Magnitude and phase error plots of lower order models of 𝐹3(𝑠) approximated using NPC method 

(a) second order models of 𝐹3(𝑠) and (b) third order models of 𝐹3(𝑠) 
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Table 5. Errors of lower order models of 𝐹3(𝑠) approximated using NPC method 

Plant model Method Lower order models Lower Order (3rd/2nd) 
Error 

(decibel) (degree) 
𝐹3(𝑠) BT 𝐹𝑅𝐸𝐷3_𝐵𝑇3_𝑁𝑃𝐶(𝑠) 3 0.0125 22.8640 

MDG 𝐹𝑅𝐸𝐷3_𝑀𝐷𝐺3_𝑁𝑃𝐶(𝑠) 0.1080 366.31 
MM 𝐹𝑅𝐸𝐷3_𝑀𝑀3_𝑁𝑃𝐶(𝑠) 0.4670 39.1161 
SOP 𝐹𝑅𝐸𝐷3_𝑆𝑂𝑃3_𝑁𝑃𝐶(𝑠) 0.2598 28.0871 
BT 𝐹𝑅𝐸𝐷3_𝐵𝑇2_𝑁𝑃𝐶(𝑠) 2 0.0319 16.6193 

MDG 𝐹𝑅𝐸𝐷3_𝑀𝐷𝐺2_𝑁𝑃𝐶(𝑠) 0.0115 365.10 
MM 𝐹𝑅𝐸𝐷3_𝑀𝑀2_𝑁𝑃𝐶(𝑠) 0.4723 30.0869 
SOP 𝐹𝑅𝐸𝐷3_𝑆𝑂𝑃2_𝑁𝑃𝐶(𝑠) 0.0445 22.2963 

 

 
Table 6. Errors of lower order models of 𝐹3(𝑠) approximated using Oustaloup method 

Plant model Method Lower order models Lower Order (3rd/2nd) 
Error 

(decibel) (degree) 
𝐹3(𝑠) BT 𝐹𝑅𝐸𝐷3_𝐵𝑇3_𝑂𝑈𝑆𝑇(𝑠) 3 0.0332 24.2367 

MDG 𝐹𝑅𝐸𝐷3_𝑀𝐷𝐺3_𝑂𝑈𝑆𝑇(𝑠) 0.0057 362.7609 
MM 𝐹𝑅𝐸𝐷3_𝑀𝑀3_𝑂𝑈𝑆𝑇(𝑠) 0.5724 33.8774 
SOP 𝐹𝑅𝐸𝐷3_𝑆𝑂𝑃3_𝑂𝑈𝑆𝑇(𝑠) 0.0371 25.9575 
BT 𝐹𝑅𝐸𝐷3_𝐵𝑇2_𝑂𝑈𝑆𝑇(𝑠) 2 0.0545 25.4714 

MDG 𝐹𝑅𝐸𝐷3_𝑀𝐷𝐺2_𝑂𝑈𝑆𝑇(𝑠) 0.1134 365.8793 
MM 𝐹𝑅𝐸𝐷3_𝑀𝑀2_𝑂𝑈𝑆𝑇(𝑠) 0.3706 58.6144 
SOP 𝐹𝑅𝐸𝐷3_𝑆𝑂𝑃2_𝑂𝑈𝑆𝑇(𝑠) 0.2382 28.4658 

 

 

4. CONCLUSION 

The application of fractional order controllers and fractional filters is growing at a fast pace. This is 

because it provides an additional degree of freedom for fine tuning. Also, mathematical modelling of any 

physical process is best done using fractional differ-integrators. However, it is very important to apply a 

correct approximation technique to obtain an accurate integer order function of fractional systems. In this 

paper interger approximation of three fractional order plant models are developed using NPC technique and 

the results thus obtained are compared with the actual values. The error plots are shown and the maximum 

magnitude and phase error values for each lower order models are tabulated. The results are also compared 

with the integer models developed using Oustaloup technique. In all the three examples it is found that the 

frequency versus magnitude and phase response characteristics of the models developed using NPC method 

give better results and are also very much close to the ideal characteristics. 
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