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 Modeling and regulating the internal climate of a greenhouse have been a 

challenge as it is a complex and time variant system. The main goal is to 

regulate the internal climate considering the difference between nighttime 

and diurnal phases of the day. To depict the comportment of the greenhouse, 

a multi model approach based on two multivariable black box models have 

been proposed representing the diurnal and nighttime phases of the day. The 

least-squares method is utilized to identify the parameters of these two 

models based on an experimental collected data. We have shown that these 

two models are more representative than one model to describe the dynamic 

behavior of the greenhouse. The second contribution is to control the internal 

temperature and hygrometry respecting constraints on actuators and 

controlled variables. For this purpose, a constrained model predictive control 

scheme based on the multi-modeling approach have been developed. The 

optimization problem of the control law is transformed to a convex 

optimization problem includes linear matrix inequalities (LMI). The 

simulation results show that the adopted control method of indoor climate 

allows rapid and precise tracking of set points and rejects effectively the 

external disturbances affecting the greenhouse. 
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1. INTRODUCTION  

In recent years, the greenhouse control has attracted considerable interest and the use of advanced 

controllers have been a huge necessity to provide adequate internal climate conditions and improve the 

agricultural production. Greenhouse process is a system of safeguarding and improvement of culture 

development. In order to provide a proper space for plants growing and ensure the biological needs of 

cultivation, the internal climate of the greenhouse should be controlled [1], [2]. The regulation system 

consists of a near tracking of the set points values and reducing the effect of the strong external disturbances. 

In this study, the main goal is to achieve a stable operation by maintaining the internal parameters of the 

greenhouse near to the desired values. in spite of the interdependencies of the indoor climate with external 

weather. Greenhouse is multi-inputs/outputs (MIMO) complex system. Physically the process is 

characterized by a nonlinear variable that depend strongly on the outside weather (wind velocity, 

temperature, humidity, and solar radiation) and several functioning constraints (actuators and controlled 

variables). In late many years, numerous scientists have centered on modeling and monitoring the greenhouse 

environment. Diverse technics are used such as multi-model and neural modeling [3], [4], fuzzy control [5], 

[6] optimal control [7], [8] robust control [9]. The non-efficiency of classical methods has forced researchers 

looking forward advanced methods namely neural networks or more specially artificial intelligence (AI) 
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[10]–[13]. However, many researchers propose the so-called heuristic algorithms based on swarm 

comportment to control the internal climate of greenhouses like particle swarm optimization (PSO) [14]. 

Most of the submitted studies do not treat the physical difference between diurnal and nocturnal phases [3], 

[15], [16]. That affects considerably the aptness of the developed controllers to attain the desired 

performances. In addition, the physical constraints subjected to the greenhouse climate must be incorporated 

into the controller design. Model predictive control is a strategy that includes constraints in control law 

formulation [17]–[20].  

In this work, we combine the advantages of constrained model predictive control (CMPC) with the 

linear matrix inequalities (LMI) as two tools to control the internal climate, characterized by inside 

temperature and hygrometry. The advantage is to consider both physical constraints and the specifics 

characteristics of diurnal and nocturnal periods. In this scheme, the LMI based model predictive control 

(MPC) controller is predesigned to operate strictly under ranges of constraints in accordance with actuators 

limitations and farmers’ requirements.  

This paper is organized into five sections. Section 2 is consecrated to greenhouse modeling and 

parametric identification. Section 3 focuses on the MPC scheme and LMI approach considering constraints 

on inputs/outputs. Section 4 is devoted to the presentation of the simulation results, which show the 

feasibility of the proposed strategy to simultaneously control temperature and hygrometry inside a 

greenhouse. Finally, a conclusion is given in the last section.  

 

 

2. GREENHOUSE CLIMATE MODELING AND PARAMETRIC IDENTIFICATION 

2.1.  Introduction to greenhouse climate modeling 

The MPC is an evolved control technic, that is utilized to control process variables. MPC are 

synthesized using linear models established by identification algorithms. This section is dedicated to model 

the dynamics of the greenhouse environment. where the whole system’s variables are widely coupled. 

Namely, the outdoor disturbances and the commands applied to the actuators, which are closely linked to the 

internal climate [15], [16]. In this work, we adopted the linear models that represent the real physical 

behavior of the process perfectly appropriate for simulation task. For control law design, the performances of 

a simple model are limited owing to the differences between diurnal and nocturnal physical behaviors. Two 

linear black-box models are elaborated to emulate the greenhouse process in two phases.  

 

2.2.  Greenhouse process presentation  

The main variables related to the greenhouse climate studied here are summarized and grouped into 

three classifications: 

− U is the control input; i) Ht: heating provides the warmth that plants need, especially at night and during 

the winter. Here, the command is on/off type; ii) Op (°): opening. The roof opening varies between 0° and 

32°. It allows an exchange of air between inside and outside of the greenhouse. It influences the 

temperature, the humidity and the concentration of CO2 inside the greenhouse; iii) Sd (m): shading is 

mechanically adjustable between 0 and 3 m. Shading helps to maintain or lower levels of the temperature 

inside the greenhouse. It also keeps the plants safe and protects them from excessive solar radiation; and 

iv) Mt: moistening manipulated by on-off control.  

− ym is the measured and controlled variables; i) Ti (°C) is internal temperature and ii) Hi (%) is internal 

hygrometry.  

− w is the outside disturbances; i) Gr (W/m2) is global radiation; ii) Te (°C) is external temperature;  

iii) He (%) is external hygrometry; and iv) Ws (m/s) is wind speed. 

A synoptic scheme of the greenhouse process is illustrated by Figure 1. Figure 2 presents the data 

measurement, collected each minute in closed-loop situation during one day (from midnight to midnight). 

This day was chosen among others because the input signals are rich and therefore very interesting for 

parametric identification. The controller implemented in this experience acts with two binary commands (Mt 

and Ht) and two analogue commands (Sd and Op). 

 

 

 
 

Figure 1. Block diagram of greenhouse 
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Figure 2. Measures collected during 24 hours 

 

 

2.3.  Simple and multi-model development of greenhouse  

The greenhouse presents a thermal behavior quite different from residential buildings, due to its 

particular characteristics, of which we quote: i) a structure, covered by transparent material allows the 

passage of an important quantity of solar radiations; ii) incident solar radiations is a fundamental element for 

plantations transpiration, accordingly in creating latent heat of vaporization and sensible heat; iii) the soil 

surface is also influenced by solar radiation. Therefore, it constitutes a source of latent heat; and iv) 

greenhouse thermal exchanges are insured by soil surface. Contrary to buildings, where heat transfer is 

constituted by the interaction between cover and walls. These characteristics occur at different phases. Some 

parameters are influential during one period of the day and completely absent during other periods. For 

example, we can mention solar radiation. In the same way, some controls are very weak or even absent while 

they are strongly activated during certain periods of the day. A typical example is the heating system, which 

is often required at night and inactive during the middle of the day. Consequently, it is important to consider 

a model taking into account that the behavior of the greenhouse is quite different according to the period of 

the day. 

In our work, we suggest a modeling technique considering the time-varying character of the 

greenhouse by developing two models. One model describes the behavior of the greenhouse during the 

diurnal period and the other during the nocturnal period. To validate this approach, we propose to develop a 

simple model describing the behavior of the greenhouse over a day. Then we present a comparative study to 

validate the multi-model approach. For both, simple and the multi-model approach, we consider a black-box 

model that is combined with the parametric modeling methods. It is simply the functional relationship 

between the inputs and the outputs of the greenhouse. Although the parameters of these functions do not have 

any physical meaning, the black box models are very effective. The objective is to accurately represent 

certain trends in the behavior of the greenhouse. The proposed simple linear model is a black-box one, 

outputs are linearly correlated with control actions and disturbances. This one is presented:  

 

{
 

 
𝑇𝑖(𝑘 + 1) = 𝑓(𝑇𝑖(𝑘), 𝐻𝑖(𝑘), 𝑢(𝑘), 𝑤(𝑘), 𝜆)

𝐻𝑖(𝑘 + 1) = 𝑔(𝑇𝑖(𝑘), 𝐻𝑖(𝑘), 𝑢(𝑘), 𝑤(𝑘), 𝜃)

𝑤(𝑘) = [𝑇𝑒(𝑘), 𝐻𝑒(𝑘), 𝐺𝑟(𝑘),𝑊𝑠(𝑘)]

𝑢(𝑘) = [𝐻𝑡(𝑘), 𝑂𝑝(𝑘) , 𝑆ℎ(𝑘),𝑀𝑡(𝑘)]

 (1) 

 

where 𝑓 and 𝑔 are two linear functions (𝜆, 𝜃), are a set of modeling parameters to be identified. As this 

model is assumed linear with regard to the parameters (𝜆, 𝜃), we have applied the off-line least-squares 

method as presented in [9]. The linear model formulated herein is describing indoor climate behavior.  

To improve the modeling and identification quality, we propose the multi-modeling approach to 

estimate internal climate behavior of the greenhouse. The main idea of the multi-modeling approach is to 

describe the dynamics of the greenhouse process by a set of linear time-invariant systems. Each one is 

dedicated to representing a phase of the day.  

We distinguish two behaviors characterizing the greenhouse process:  

a) In nocturnal phase  

The external temperature involves near its minimum value. Global radiation is practically  

non-existent so it can be neglected in nocturnal model formulations. The external hygrometry remains almost 

constant at maximal value during the night phase. 
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b) In diurnal phase  

In this phase, the global radiation starts to appear then its amplitude increases until it reaches a 

maximum value at noon. The external temperature gradually increases towards a maximal value then it 

decreases towards the minimum at the end of the day. The behavior of the external hygrometry is opposite of 

that of temperature it decreases towards a minimal value then it increases progressively until its maximal 

value at midnight. 

For nocturnal and diurnal phases, mean values of disturbances are presented in Table 1. For both 

phases, a linear discrete state-space model is proposed:  

 

{
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑈𝑈(𝑘) + 𝐵𝑤𝑤(𝑘)
𝑦(𝑘) = 𝑥(𝑘)

 (2) 

 

Figure 3 represents the synoptic schema of diurnal and nocturnal models and the corresponding parameters. 

As shown in Figure 4 the estimated variables match approximatively the measured ones during one day. 

Table 2 shows the result performances of the adopted simple and multi-model linear models, where the mean 

squared error (MSE) is used as a criteria performance to validate the modeling and identification parameters. 

 

 

Table 1. Mean values of meteorological disturbances 
Nocturnal phase Diurnal phase 

Gr TE He Gr TE He 

0w/m2 7°C 60% 800w/m2 16°C 30% 

 

 

 

 

Figure 3. Synoptic schema of diurnal and nocturnal periods 

 

 

 
 

Figure 4. Internal climate estimated by multi-modeling and simple models approach 
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Table 2. Validation of simple and multi-modeling approach to estimate greenhouse dynamics 
MSE MMA SM 

( ) ( )( )
1440 2

1

1440

Ti k Tiest k−
 

0.40 0.50 

( ) ( )( )
1440 2

1

1440

Hi k Hiest k−
 

2.97 6.26 

 

 

2.4.  Comparison between simple and multi-model approaches 

The predicted and measured variables are presented in Figure 4. The internal temperature and 

hygrometry estimated by the multi-modeling approach represents adequately the behavior of the greenhouse 

process. Table 2 confirms this superiority of the adopted multi-model approach to estimate efficiently the 

internal climate variables. In this comparison, the mean squared error (MSE) is used as performance metric. 

 

 

3. MPC DESIGN TO CONTROL GREENHOUSE INDOOR CLIMATE WITH LMI APPROACH 

3.1.  Multi-model predictive control formulation  

In the context of multi-modeling approach to the control design, a conventional method is to 

consider two controllers which switch according to the corresponding period of the day. Nevertheless, the 

switching controllers have the main drawback to produce excessive variations in control signals when 

switching is made. This unwanted comportment could seriously corrupt the control loop and may lead to 

destabilizing the process.  

In this case, the question is which criterion should be used to ensure smooth switching. To avoid 

these drawbacks, the MPC design is considered combined with LMI as a tool to take into account the  

multi-modeling approach. The MPC seems to be an appropriate choice due to its robustness and efficiency 

[21], [22]. One of the reasons for its popularity is that it is practically the only technique that provides a 

methodology that systematically considers constraints in control law synthesis. The controller considers the 

difference of behavior between diurnal and nocturnal phases by using two models representing each period. 

The control design structure is adopted to force controlled variables evolving near to desired ones respecting 

different physical and operational constraints. The two linear models proposed previously are required for the 

prediction stage. In general, the MPC controller is a method based on a receding finite-horizon optimization 

problem [18].  

The cost function is optimized at each sampling period to obtain the optimal series of control inputs 

to keep the output as close as possible to the reference trajectory. The controller uses the current state and the 

predicted state using a model of the plant. In the case of multi-modeling approach, the standard formulation 

is insufficient to solve the optimization problem. Here, the LMI tool is adopted to transform the MPC 

problem into a convex optimization problem [21], [22]. First, we recall the main of the MPC method and then 

extend it to multi-modeling case, which would ultimately lead to a convex optimization problem solved by the 

LMI tool.  

Let a discrete-time model for the greenhouse (2). The cost function to be minimized is given by (3): 
 

𝐽(𝑘) = ∑
𝑁𝑝
1 𝐸𝑇(𝑘 + 𝑖/𝑘)𝑄𝑖  𝐸(𝑘 + 𝑖/𝑘) + ∑

𝑁𝑐−1
0 𝛥𝑢𝑇(𝑘 + 𝑖/𝑘)𝑅𝑖𝛥𝑢(𝑘 + 𝑖/𝑘) (3)  

 

where 𝐸(𝑘 + 𝑖/𝑘) = 𝑟(𝑘 + 𝑖/𝑘) − 𝑥(𝑘 + 𝑖/𝑘), 𝑁𝑝 is prediction horizon; 𝑁𝑐 ≤ 𝑁𝑝 control horizon.  

𝑥(𝑘 + 𝑖/𝑘) is future value at time 𝑘 + 𝑖 of the state𝑥 which is assumed at time 𝑘. 𝑟(𝑘 + 𝑖/𝑘) =
[𝑇𝑐(𝑘 + 𝑖/𝑘) 𝐻𝑐(𝑘 + 𝑖/𝑘)]𝑇 is future value at time 𝑘 + 𝑖 of the reference trajectory, which is assumed at 

time 𝑘. 𝛥𝑢(𝑘 + 𝑖/𝑘) is future increment of the input 𝛥𝑢, which is assumed at time 𝑘. 𝑄𝑖 , 𝑅𝑖 are diagonal 

weighting matrices, penalizing the tracking errors and the input increment, respectively. We suppose that 

𝑄𝑖 = 𝑄 ≥ 0 and𝑅𝑖 = 𝑅 > 0 ∀𝑖,  i.e the weighting matrices are constant on the considered horizons.  
 

{

𝑥(𝑘 + 1) = 𝐴𝑗𝑥(𝑘) + 𝐵𝑢𝑗𝛥𝑢(𝑘) + 𝐵𝑢𝑗𝑢(𝑘 − 1) + 𝐵𝑤𝑗𝑤(𝑘)

𝑦(𝑘) = 𝑥(𝑘)
𝑗 = 1,2

 (4) 

 

To present the optimization problem in matrix form compatible with MPC formulation, future control law 

increments are stored in vector 𝛥𝑈 with 𝑁𝑐 elements. Future states, input changes, disturbances, and 

references are organized in vectors 𝑋, 𝛥𝑈, 𝑊, and 𝑋𝑐 respectively.  
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𝑋 = [

𝑥(𝑘 + 1/𝑘)

𝑥(𝑘 + 2/𝑘)
⋮

𝑥(𝑘 + 𝑁𝑝/𝑘)

]     𝛥𝑈 = [

𝛥𝑢(𝑘/𝑘)

𝛥𝑢(𝑘 + 1/𝑘)
⋮

𝛥𝑢(𝑘 + 𝑁𝑐 − 1/𝑘)

] (5) 

 

𝑊 = [

𝑤(𝑘/𝑘)

𝑤(𝑘 + 1/𝑘)
⋮

𝑤(𝑘 + 𝑁𝑝 − 1/𝑘)

]     𝑋𝑐 = [

𝑥𝑐(𝑘 + 1/𝑘)

𝑥𝑐(𝑘 + 2/𝑘)
⋮

𝑥𝑐(𝑘 + 𝑁𝑝/𝑘)

] (6) 

 

𝛥𝑢(𝑘 + 𝑖/𝑘) =  𝑢(𝑘/𝑘) − 𝑢(𝑘 − 1);  𝑖 = 0 

 

𝛥𝑢(𝑘 + 𝑖/𝑘) = 𝑢(𝑘 + 𝑖/𝑘) − 𝑢 (𝑘 + 𝑖 −
1

𝑘
)  𝑖 = 1,2. . 𝑁𝑐 − 1  

 
𝛥𝑢(𝑘 + 𝑖/𝑘) = 0, 𝑖 = 𝑁𝑐, . . , 𝑁𝑝 − 1.  

 

In the context of multi-modeling, the state space models of greenhouse process are presented for both phases 

of the day: 

 

{

𝑥(𝑘 + 1) = 𝐴𝑗𝑥(𝑘) + 𝐵𝑢𝑗𝑢(𝑘) + 𝐵𝑤𝑗𝑤(𝑘)

𝑦(𝑘) = 𝑥(𝑘)
𝑗 = 1,2

 (7) 

 

where the subscript 𝑗 is relative to the period of the day. To adapt the discrete model (7) of greenhouse 

towards multi-model predictive algorithm, the increment 𝛥𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1) is used to compensate 

model plant mismatch and system disturbances. It is integrated: 

 

{

𝑥(𝑘 + 1) = 𝐴𝑗𝑥(𝑘) + 𝐵𝑢𝑗𝛥𝑢(𝑘) + 𝐵𝑢𝑗𝑢(𝑘 − 1) + 𝐵𝑤𝑗𝑤(𝑘)

𝑦(𝑘) = 𝑥(𝑘)
𝑗 = 1,2

 (8) 

 

Over the prediction horizon 𝑁𝑝, the vector of controlled state is estimated as:  

 

𝑋 = 𝐹𝑗𝑋(𝑘) + 𝜑𝑢𝑗 𝛥𝑈 + 𝜑0𝑗 𝑢(𝑘 − 1) + 𝜑𝑤𝑗 𝑊 (9) 

 

where, for j=1, 2. 

 

𝐹𝑗 =

[
 
 
 
 
𝐴𝑗

𝐴𝑗
2

⋮
𝐴𝑗
𝑁𝑝
]
 
 
 
 

 𝜑0𝑗 =

[
 
 
 

𝐵𝑢𝑗
𝐴𝐵𝑢𝑗 + 𝐵𝑢𝑗

⋮
𝐴𝑗
𝑁𝑝−1𝐵𝑢𝑗 + 𝐴𝑗

𝑁𝑝−2𝐵𝑢𝑗 …+ 𝐵𝑢𝑗]
 
 
 

 (10) 

 

{
 
 
 
 

 
 
 
 

𝜑𝑢𝑗 =

[
 
 
 

𝐵𝑢𝑗 0 ⋯ 0

𝐴𝐵𝑢𝑗 + 𝐵𝑢𝑗 𝐵𝑢𝑗 ⋯ 0

⋮ ⋮ ⋯ 0
∑𝑁𝑝−1𝑖=0 𝐴𝑗

𝑖𝐵𝑢 ∑𝑁𝑝−2𝑖=0 𝐴𝑗
𝑖𝐵𝑢 ⋯ 𝐵𝑢𝑗]

 
 
 

𝜑𝑤𝑗 =

[
 
 
 

𝐵𝑤𝑗 0 ⋯ 0

𝐴𝐵𝑤𝑗 𝐵𝑤𝑗 ⋯ 0

⋮ ⋮ ⋯ 0
𝐴𝑗
𝑁𝑝−1𝐵𝑤𝑗 𝐴𝑗

𝑁𝑝−2𝐵𝑤𝑗 ⋯ 𝐴𝑗
𝑁𝑝−𝑁𝑐𝐵𝑤𝑗]

 
 
 

 (11) 

 

Then, the cost function (3) is obtained rewritten in form (12): 

 

𝐽(𝛥𝑈) = (𝑋𝑐 − 𝑋)𝑇𝑄(𝑋𝑐 − 𝑋) + 𝛥𝑈𝑇𝑅𝛥𝑈 (12) 
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where 𝑄 and 𝑅 are given by: {
𝑄 = 𝐷𝑖𝑎𝑔(𝑄, 𝑄, . . 𝑄) 𝜖 𝑅(2×𝑁𝑝,2×𝑁𝑝)

𝑅 = 𝐷𝑖𝑎𝑔(𝑅, 𝑅, . . 𝑅) 𝜖 𝑅(4×𝑁𝑐,4×𝑁𝑐)
. Let 𝜀𝑗(𝑘)expressed as (13). 

 

𝜀𝑗(𝑘) = 𝑋𝑐 − 𝐹𝑗𝑋(𝑘) − 𝜑0𝑗𝑢(𝑘 − 1) − 𝜑𝑤𝑗𝑊 (13) 

 

It is interpreted as the difference between the future desired output and the process output over the prediction 

horizon when the control signal does not change over the same horizon, i.e. 𝛥𝑈(𝑘) = 0. Using (9), (10), and 

(11) in (12), the cost functions becomes as (14). 

 

{
𝐽1(𝛥𝑈) = 𝜀1

𝑇𝑄 𝜀1 − 2𝛥𝑈
𝑇𝜑𝑢1

𝑇 𝑄 𝜀1 +  𝛥𝑈𝑇(𝜑𝑢1
𝑇 𝑄 𝜑𝑢1 + 𝑅)𝛥𝑈

𝐽2(𝛥𝑈) = 𝜀2
𝑇𝑄 𝜀2 − 2𝛥𝑈

𝑇𝜑𝑢2
𝑇 𝑄 𝜀2 +  𝛥𝑈𝑇(𝜑𝑢2

𝑇 𝑄 𝜑𝑢2 + 𝑅)𝛥𝑈
 (14) 

 

In practical situation, the tracking performance of the desired inside climate is limited by constraints 

depending on the power available on the actuators. In addition, the comfort required by the plants during the 

growth period requires also constraints on the controlled variables. MPC allows explicitly handles constraints 

[17]. In the study case, constraints are linked to the maximal and minimal of power that can be delivered by 

the actuators. They are designated: 

 

 

 

T
max max max max max

T
min min min min min

u Ht    Mt   Op  Sh

u Ht    Mt   Op  Sh     

=

=






 (15) 

 

where the subscripts min and max denote the minimum and maximum values respectively of the control 

inputs. Therefore, the input signals must verify the following constraints: 

 

𝐻𝑡𝑚𝑖𝑛 ≤ 𝐻𝑡 ≤ 𝐻𝑡𝑚𝑎𝑥 

𝑀𝑡𝑚𝑖𝑛 ≤ 𝑀𝑡 ≤ 𝑀𝑡𝑚𝑎𝑥 

𝑂𝑝
𝑚𝑖𝑛

≤ 𝑂𝑝 ≤ 𝑂𝑝
𝑚𝑎𝑥

 

𝑆ℎ𝑚𝑖𝑛 ≤ 𝑆ℎ ≤ 𝑆ℎ𝑚𝑎𝑥 (16) 

 

Future control actions are represented over the control horizon Nc:  

 

[

𝑢(𝑘/𝑘)

𝑢(𝑘 + 1/𝑘)
⋮

𝑢(𝑘 + 𝑁𝑐 − 1/𝑘)

] = 𝑀2 [

𝛥𝑢(𝑘/𝑘)

𝛥𝑢(𝑘 + 1/𝑘)
⋮

𝛥𝑢(𝑘 + 𝑁𝑐 − 1/𝑘)

] + 𝑀1𝑢(𝑘 − 1) (17) 

 

𝑀2 = [

𝐼4  𝑂 ⋯ 𝑂 𝑂
𝐼4  𝐼4  ⋱ ⋮ 𝑂
⋮ ⋮ ⋱ ⋮ ⋮
𝐼4  𝐼4  ⋯ 𝐼4  𝐼4  

] ,   𝑀1 = [

𝐼4  

𝐼4  

⋮
𝐼4  

] (18) 

 

Therefore, constraints on future control actions (16) are integrated: 

 

−𝑀2𝛥𝑈 ≤ −𝑈𝑚𝑖𝑛 +𝑀1𝑢(𝑘 − 1) 
  𝑀2𝛥𝑈 ≤ 𝑈𝑚𝑎𝑥 −𝑀1𝑢(𝑘 − 1) (19) 

 

𝑈𝑚𝑖𝑛  and 𝑈𝑚𝑎𝑥  are column vectors with 𝑁𝑐 elements of 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 respectively.  

Similarly, constraints on the controlled variables are represented by the following inequalities: 

 

𝑇𝑖𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖𝑚𝑎𝑥 ;            𝐻𝑖𝑚𝑖𝑛 ≤ 𝐻𝑖 ≤ 𝐻𝑖𝑚𝑎𝑥  
𝑥𝑚𝑎𝑥 = [𝑇𝑖𝑚𝑎𝑥 𝐻𝑖𝑚𝑎𝑥]𝑇; 𝑥𝑚𝑖𝑛 = [𝑇𝑖𝑚𝑖𝑛 𝐻𝑖𝑚𝑖𝑛]𝑇  (20) 

 

where 𝑇𝑖𝑚𝑖𝑛 and 𝑇𝑖𝑚𝑎𝑥  are the lower and upper bounds of temperature, 𝐻𝑖𝑚𝑖𝑛  and 𝐻𝑖𝑚𝑎𝑥 are the lower and 

upper bounds of relative humidity. The minimal and maximal values of state variables are chosen according 

to the need of the plantation type. The ranges are determined by farmers’ experience. 
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Considering the state prediction (9), the constraints (20) are expressed in terms of 𝛥𝑈 over the 

prediction horizon 𝑁𝑝 as:  

 

{
 

 
𝜑𝑢1𝛥𝑈 < 𝑋𝑚𝑎𝑥 − 𝐹1 𝑥(𝑘) − 𝜑01𝑢(𝑘 − 1) − 𝜑𝑤1𝑊

𝜑𝑢2𝛥𝑈 < 𝑋𝑚𝑎𝑥 − 𝐹2 𝑥(𝑘) − 𝜑02𝑢(𝑘 − 1) − 𝜑𝑤2𝑊

−𝜑𝑢1𝛥𝑈 < −𝑋𝑚𝑖𝑛 + 𝐹1𝑥(𝑘) + 𝜑01𝑢(𝑘 − 1) + 𝜑𝑤1𝑊

−𝜑𝑢2𝛥𝑈 < −𝑋𝑚𝑖𝑛 + 𝐹2 𝑥(𝑘) + 𝜑02𝑢(𝑘 − 1) + 𝜑𝑤2𝑊

 (21) 

 

𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥  are column vectors with 𝑁𝑝 elements of 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 respectively. Finally, the MPC 

problem is become as computing future increment control action 𝛥𝑈 minimizing the cost functions (14) 

subject to the inequality constraints: 

 

𝑀𝛥𝑈 ≤ 𝑁 (22) 

 

where,  

 

 𝑀 =

[
 
 
 
 
 
−𝑀2
𝑀2
𝜑𝑢1
𝜑𝑢2
−𝜑𝑢1
−𝜑𝑢2]

 
 
 
 
 

, 𝑁 =

[
 
 
 
 
 
 

−𝑈𝑚𝑖𝑛 +𝑀1𝑢(𝑘 − 1)

𝑈𝑚𝑎𝑥 −𝑀1𝑢(𝑘 − 1)

𝑋𝑚𝑎𝑥 − 𝐹1 𝑥(𝑘) − 𝜑01𝑢(𝑘 − 1) − 𝜑𝑤1𝑊

𝑋𝑚𝑎𝑥 − 𝐹2 𝑥(𝑘) − 𝜑02𝑢(𝑘 − 1) − 𝜑𝑤2𝑊

−𝑋𝑚𝑖𝑛 + 𝐹1 𝑥(𝑘) + 𝜑01𝑢(𝑘 − 1) + 𝜑𝑤1𝑊

−𝑋𝑚𝑖𝑛 + 𝐹2 𝑥(𝑘) + 𝜑02𝑢(𝑘 − 1) + 𝜑𝑤2𝑊]
 
 
 
 
 
 

 

 

The problem is therefore the following: calculate the future increments of the control signal which 

minimize the criterion 𝐽 given by the relation (12) while satisfying constraints given by (22). This approach 

leads to the quadratic programming problem. The synthesis of the control law is generally solved by a 

conventional constrained optimization tool called the “Quadprog” function in MATLAB [23]. The 

particularity in this study, that there are two cost functions to optimize simultaneously. So, the “Quadprog” 

function is no longer suitable for our study [24]. Therefore, the LMI appears as a suitable method to be 

applied to the constrained convex optimization problem as it will be detailed in the next section. 

 

3.2.  LMI based multi-model predictive control design 

In this section, a formulation of MPC control scheme is presented using LMI tools to solve 

numerically the optimization problem in the multi-model case as is summarized in the Figure 5. The model 

predictive controller uses predicted disturbances and measures of controlled internal climate to compute a 

sequence of control actions subject to inequality constraints. For multi-model case, we must minimize the 

two-cost functions 𝐽1, 𝐽2 given by (14). In general, the minimization of convex quadratic functions 𝐽1 and 𝐽2 

can be expressed in an equivalent minimization strategy as: minimize 𝛾 and find an admissible 𝛥𝑈: 

 

γ
min  Subject to {

𝐽1(𝛥𝑈) < 𝛾

𝐽2(𝛥𝑈) < 𝛾
𝑀𝛥𝑈 < 𝑁

 (23) 

 

Let us define the affine functions 𝑄(ℎ),𝑆(ℎ),𝑅(ℎ) with variable decision ℎ = [𝛥𝑈, 𝛾]𝑇 . 
 

 

 
 

Figure 5. Robust MPC control of greenhouse process with LMI formulation 
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Using Schur lemma, the multi-model MPC optimization problem (23) is transformed into form (24):  

 

𝑚𝑖𝑛
𝛾
With {

𝑍1 ≤ 0
𝑍2 ≤ 0
𝑀𝛥𝑈 ≤ 𝑁

 

 

𝑍1 = [
𝑄1(ℎ) 𝑆1(ℎ)

𝑆1(ℎ)
𝑇 𝑅1(ℎ)

] , 𝑍2 = [
𝑄2(ℎ) 𝑆2(ℎ)

𝑆2(ℎ)
𝑇 𝑅2(ℎ)

] (24) 

 

where, 

 

{
  
 

  
 
𝑄1(𝑥) = 𝜀1

𝑇�̄�𝜀1 − 2𝛥𝑈
𝑇𝜑𝑢

𝑇
1
�̄�𝜀1 − 𝛾

𝑄2(𝑥) = 𝜀2
𝑇�̄�𝜀2 − 2𝛥𝑈

𝑇𝜑𝑢
𝑇
2
�̄�𝜀2 − 𝛾

𝑆1(ℎ) = 𝑆2(ℎ) = 𝛥𝑈
𝑇

𝑅1(ℎ) = −(𝜑𝑢
𝑇
1
�̄�𝜑𝑢1 + �̄�)

−1

𝑅2(ℎ) = −(𝜑𝑢
𝑇
2
�̄�𝜑𝑢2 + �̄�)

−1

 (25) 

 

The constraints (22) are initially non-symmetric matrix; thus, it is restructured in a diagonal symmetric form 

compatible with LMI formalism. Using the LMI solver of MATLAB, we obtain at each iteration the 

optimization objective defined as: ℎ = [𝛥𝑈, 𝛾]𝑇. Since the global optimization problem is min 𝑐𝑇ℎ, where: 

 

𝑐𝑇 = [0 … 0⎵     
4.𝑁𝑐

1]. 

 

In the MPC algorithm, over the control horizon we consider the first n elements of the global 

solution. Where n is the number of system inputs. This scenario is repeated at each sampling time. Therefore, 

the first four elements of the vector 𝛥𝑈𝑜𝑝𝑡 are applied to the controlled process. 

At time k the vector 𝛥𝑈𝑜𝑝𝑡 is computed as (26): 

 

𝛥𝑢𝑜𝑝𝑡(𝑘) = [
𝐼4 04 04 ⋯ 04⏟          

𝑁𝑐−1
] 𝛥𝑈𝑜𝑝𝑡(𝑘) (26) 

 

where 𝐼4is the (4,4) identity matrix, and 𝑂4 is the (4,4) zero matrix. From (26), we deduce the optimal 

control at the time 𝑘. 

 

[
 
 
 
 
𝐻𝑡𝑜𝑝𝑡(𝑘)

𝑀𝑡𝑜𝑝𝑡(𝑘)

𝑂𝑝𝑜𝑝𝑡(𝑘)

𝑆ℎ𝑜𝑝𝑡(𝑘)]
 
 
 
 

=

[
 
 
 
 
𝛥𝐻𝑡𝑜𝑝𝑡(𝑘)

𝛥𝑀𝑡𝑜𝑝𝑡(𝑘)

𝛥𝑂𝑝𝑜𝑝𝑡(𝑘)

𝛥𝑆ℎ𝑜𝑝𝑡(𝑘)]
 
 
 
 

+

[
 
 
 
𝐻𝑡(𝑘 − 1)

𝑀𝑡(𝑘 − 1)

𝑂𝑝(𝑘 − 1)

𝑆ℎ(𝑘 − 1)]
 
 
 
 (27) 

 

The MPC algorithm requires future disturbances over the prediction horizon. As this information is 

not available in the practical case. It can be collected from the weather forecast. We suppose that the 

disturbance vector 𝑊 is constant, equal to the last measured outside weather over the same horizon 𝑁𝑝. It can 

be expressed as in (28). 

 

𝑊 = [

𝑤(𝑘/𝑘)

𝑤(𝑘 + 1/𝑘)
⋮

𝑤(𝑘 + 𝑁𝑝 − 1/𝑘)

] = [

𝐼4
𝐼4
⋮
𝐼4

] [

𝑇𝑒(𝑘)

𝐻𝑒(𝑘)

𝐺𝑟(𝑘)

𝑊𝑠(𝑘)

] (28) 

 

 

4. SIMULATION RESULT AND DISCUSSION 

The multi-model MPC controller developed in the last section is combined with an LMI solver of 

MATLAB [25] at each iteration the control of the greenhouse process is equivalent to an optimization 

objective, satisfying simultaneity constraints in control actions and agriculturist’s exigencies on the 

controlled parameters. The aptness of the LMI MPC controller depends strongly on the linear model used in 

the control design, the non-repetitive disturbances in amplitude and frequency of apparition. The most 
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important factors for MPC performance are the control and prediction horizons as they directly influence the 

size of the optimization problem. Here, we simulate the developed scheme in realistic conditions using a set 

of parameters summarized in Table 3. The simulation of the controlled process in a closed-loop is done in 

one day corresponding to 1,440 sampling time. The set point is assumed constant during the simulation and 

equal to 11 °C and 70% for the temperature and hygrometry respectively. Table 4 represents different 

constraints on the controlled parameters and control actions.  

Figure 6. shows the time evolution of the internal temperature and hygrometry for 24 hours.  

Figure 7. depicts the time evolution of applied commands during the same day. The control objective was 

achieved perfectly since all constraints on the limitation of actuators are respected. The controlled parameters 

are maintained near the desired trajectory except in the middle of the day (12 to 16 h) where the 

meteorological disturbances are too intense and strongly affect the controller response. The greenhouse 

considered here is an experimental process with insufficient actuators power. We have tried to ensure 

climatic conditions as predefined in controlled parameter constraints, it is not possible to reach the setpoint 

exactly without increasing the power of the actuators and/or relaxing the constraints. In this case, better 

performances will be achieved. Also, in greenhouse internal climate control, the objective is not to attain 

exactly the desired trajectory, but we search for a satisfying range where indoor climate involves. 

 

 

Table 3. Tuning parameters of MPC 
Np NC Qi Ri 

3 2 10 0.01 

 

 

Table 4. Physical and operational constraints on input/output 
 TI Hi Ht Mt Sh Op 

Max 19 75 1 1 3 32 
Min 10 70 0 0 0 0 

 

 

 

Figure 6. Time evolution of internal temperature and hygrometry (during 24 hours) 

 

 

 

Figure 7. Time evolution of control actions (during 24 hours) 

 

 

5. CONCLUSION  

This paper refers to a climatic control problem in agricultural greenhouses. The controlled internal 

climate is defined by two relevant variables, namely internal temperature and hygrometry. For dynamic 
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modeling of the greenhouse, a multi-model approach is used successfully to emulate the greenhouse system 

taking into account the different behavior of diurnal and nocturnal phases. The comparison with the single 

model approach confirmed this success. To control the internal climate conditions under strict physical 

constraints, a hybrid MPC is adopted. The optimization problem is transformed into a set of LMI and solved 

successfully using MATLAB software tools. The combination of the multi-model approach and the 

constrained model predictive control provides an effective strategy for the inside climate control problem of 

agricultural greenhouses. The challenge is to keep the temperature and the hygrometry within an acceptable 

range around the reference trajectory, which is the farmers are looking for. We believe this challenge has 

been met with the MPC controller. 
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