
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 12, No. 6, December 2022, pp. 6684∼6696
ISSN: 2088-8708, DOI: 10.11591/ijece.v12i6.pp6684-6696 ❒ 6684

Acoustic event characterization for service robot using
convolutional networks

Fernando Martı́nez, Fredy Martı́nez, César Hernández
Facultad Tecnológica, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
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ABSTRACT

This paper presents and discusses the creation of a sound event classification model
using deep learning. In the design of service robots, it is necessary to include routines
that improve the response of both the robot and the human being throughout the inter-
action. These types of tasks are critical when the robot is taking care of children, the
elderly, or people in vulnerable situations. Certain dangerous situations are difficult
to identify and assess by an autonomous system, and yet, the life of the users may
depend on these robots. Acoustic signals correspond to events that can be detected
at a great distance, are usually present in risky situations, and can be continuously
sensed without incurring privacy risks. For the creation of the model, a customized
database is structured with seven categories that allow to categorize a problem, and
eventually allow the robot to provide the necessary help. These audio signals are
processed to produce graphical representations consistent with human acoustic identi-
fication. These images are then used to train three convolutional models identified as
high-performing in this type of problem. The three models are evaluated with specific
metrics to identify the best-performing model. Finally, the results of this evaluation
are discussed and analyzed.
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1. INTRODUCTION
The technological development of today has made life easier for human beings, particularly for those

individuals with limitations and/or special needs. Among the first technologies designed by men to improve
their living conditions were prescription lenses and glasses. Thanks to them, a person with reduced visual
capacity was able to interact socially without restrictions. Today this technology has evolved to incorporate
ultralight and intelligent materials that adapt not only to the user but also to the conditions of the environment.
This is an example of current smart hardware, but hand in hand with this hardware has also evolved software
tools, which in the case of glasses allow not only the design but also to estimate the future performance of
the lenses and even their acceptance among users. These developments are strongly marked by their ability to
integrate with the human being, they must not only be able to solve a problem but they must also be accepted
by people [1].

Here is where service robotics research has found a broad niche with significant research problems to
solve. Today’s society has new challenges that demand the provision of specialized services, such as the care
of people (elderly and children), or special training processes (children in their homes, or adults in industrial
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environments) [2]. Such services require an artificial system that beyond providing content, tracks the pro-
cesses according to the particular behavior of the individual [3]. There is a lot of research on human-machine
integration systems, in some cases trying to identify emotional states from people’s faces, but this involves
processing the image in familiar environments including children, which for many is a privacy risk. A less
intrusive strategy is based on the same principle of estimating emotions and special events but from acoustic
signals, which is the area of interest of this research.

However, the question is whether it is possible for a small robot to autonomously identify acoustic
events, particularly using convolutional networks. The identification of sound events by an autonomous robot
is a desirable feature because it can improve integration in task execution, particularly in human-machine
interaction [4]–[6]. The level of interaction, and thus task success, is strongly related to the robot’s ability to
anticipate human attitudes, which is particularly true for robots that provide care to people [7], [8]. Examples
of acoustic events may include screaming people, crying babies, or an audible alarm. However, these events
are characterized by complex parameters, which, while recognizable to a person, are not recognizable to a
computerized system [9], [10]. Two cries of people turn out to be completely different, parameters such as
volume, length, frequency, or acoustic power are not enough to characterize them, moreover, the robot should
identify the group of any person, which infers the need for a learning process with a large dataset [11], [12].
Although the characterization of these complex events is complex, convolutional networks have demonstrated
great success in the categorization of other problems with similar complexity [13], [14].

Additionally, convolutional models can be trained for specific needs. The databases, and the categories
defined within them, can be adjusted to the needs of the system [15]. For example, it is possible to identify
whether a set of images belong to a jungle landscape or a beach, but the same images can also be used to
determine whether there are people or animals in them, or whether there are vehicles or houses in them [16].
A dataset can contain a lot of information, and it is up to the use and designer of the classifier to define which
features he wants to identify and use in his model. In addition, while most of the known applications focus
on image categorization, in many applications the signals of a given system have been modified into a visual
representation, which has allowed its use in multiple situations with various input parameters [17], [18].

Finally, it is possible to autonomously identify acoustic events by a small robot using convolutional
neural networks (CNNs) because convolutional models can run in real-time after they have been trained cor-
rectly [19], [20]. Service robots must operate in human environments, interacting with humans, so they must
be able to respond in real-time to immediate needs [21]–[23]. If a service robot detects a person’s scream,
it must be able to autonomously give and request help at the same instant it detects the event [24]. Even so,
robots include a large number of parallel systems that allow them not only to interact but also to guarantee their
functionality and the safety of the users [25]. Therefore, the performance demands, and therefore on hardware,
are high. Each of these systems, including the sound event identification event, must be capable of running on
the robot hardware, considering the possibility of restricted communication in cases of emergency [26]. CNNs
can create models that can be deployed on small embedded systems without excessive resource consumption
[27], [28]. The current frameworks have compatibility for their implementation on different systems, which
also facilitates their continuous updating. Thus, while neural networks are black boxes, and their performance
is strongly dependent on their training, it is possible to autonomously identify acoustic events by a small robot
using convolutional neural networks. Beyond the existing acoustic event detection (AED) systems, our appli-
cation requires in addition to high performance the ability to operate in real-time, and the possibility of running
continuously as a parallel task in a small service robot. This is precisely the gap in the current research that
we seek to solve, since the reported solutions, to the best of our knowledge, have not reached a point of devel-
opment that allows their massive use on commercial hardware (embedded processors for these robots, audio
digitization systems, and cloud processing platforms).

The structure of this paper is as follows: section 2 provides the general details of the robotic develop-
ment platform, its function, and the objective of the acoustic event characterization scheme on it. It discusses
the desired characteristics of such a scheme, and how it should be integrated with the current robot schemes.
Section 3 provides the design features of the convolutional models, all the tasks developed for their imple-
mentation and evaluation, and the corresponding analysis in each case. All the characteristics of each test are
detailed, as well as the information required for its duplication. Section 4 focuses on the results of each model
concerning the performance metrics applied on them with an unknown data set. Section 5 provides the limi-
tation of this research. Finally, section 6 presents the interpretation of the performance results of each model,
and conclusions.
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2. PROBLEM STATEMENT AND STATE OF THE ART
The objective of this research is to evaluate whether a model based on deep networks can correctly

identify acoustic events that may indicate high risk to users. This model is intended to be implemented on a
service robot designed for home environments, performing tasks such as the care and surveillance of children,
the elderly, or vulnerable people. Therefore, the aim is to establish the real performance of convolutional
models trained to classify acoustic events from a specific database. If the robot can identify, for example,
screams or gunshots, it is expected to be able to communicate autonomously to request immediate help. This
idea can be extended to the care of sick people, or people with disorders that require special monitoring, or
even for assistance in disaster situations.

By definition, an acoustic event corresponds to an audio segment that is identifiable by the human
being to be related to a specific context [29]. In this way, a human being can identify the proximity of a vehicle
by listening to its engine or establish the aggressivity of a dog by listening to its bark. AED corresponds to the
identification of specific parameters in the audio signal that allow classifying the event that produces the sound.
This technique has been successfully applied in acoustic surveillance applications, audio signal labeling, and
environmental sound identification [30], [31].

The analysis strategies used in AED are of two types, those applied to monophonic sounds and those
used with polyphonic sounds, in which different events appear in the same audio signal. Most of the recent
research focuses on monophonic sounds under the assumption that the predominant acoustic event in the audio
sample is identified and characterized. This predominant event corresponds to an anomaly (a rare event) and
therefore should be easily separable from the rest of the sample. This approach goes hand in hand with the
development of systems for real-life tasks, since acoustic events are usually mixed with other sounds. In
addition, a good AED must be able to isolate and identify the event of interest regardless of the environment
(other sounds in the audio), which becomes irrelevant in the identification.

From this perspective, AED systems correspond to one of the strategies of computational auditory
scene analysis (CASA). These strategies are based on the development of artificial systems from computational
tools that can similarly isolate sounds as human beings do. This type of processing is performed by identify-
ing parameters and characteristics in the audio that allow classification. The audio is divided into segments,
and then the characteristics of interest are extracted from each segment. Something similar is done in the
development of trainable models, in which these features are paired with event labels.

Machine learning techniques have brought more tools to the process, including mel-frequency cepstral
coefficients (MFCCs), and perceptual linear prediction coefficients [32], [33]. The mel-scale is of particular
importance since it allows to express of digital acoustic signals on a scale following the human perception of
sounds. It corresponds to a perceptual scale of tones defined by human observers, which allows an artificial
system to respond to stimuli close to those experienced by humans. This scale has as a reference point a
1,000 Hz tone at 40 dBs above the auditory threshold, which is leveled with a 1,000 mels tone. In addition,
above 500 Hz the frequency intervals are exponentially separated, which is perceived by the human ear as a
more linear spacing. To convert a frequency f in Hertz to a value m in mels, (1) is used.

m = 1127.01048 loge

(
1 +

f

700

)
(1)

Convolutional networks have improved the performance of automatic classification systems, particu-
larly in applications with images [34]. This is convenient since musicians and psychologists often choose to
generate a two-dimensional representation of the mel-scale. To construct these representations, tone color or
chroma is assigned, as well as a pitch, which generates an image with the audio information itself. Many deep
convolutional network models have been proposed, which have been evaluated both with public datasets and
in proprietary applications. We propose to select some of these classification models to determine the actual
performance of a real-time event identification task.

3. METHODS AND MATERIALS
Our AED system is supported on deep networks, so the training database and its pre-processing are

critical. The goal is that the system will be robust to the presence of ambient noise, so the audio samples used in
training the models must contain background noise, as expected from the real-world operation. We selected a
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set of public databases that meet these characteristics. Not all samples in our dataset come from a single public
database, to avoid bias we mix audios from different databases, and some were even recorded by us in the lab.
In addition, in the cases where the human voice was required, we tried to make the database gender-balanced
(males comprise 41%). This database was separated into a training set and a validation set. We used 80% of
the audios in each category for training, and the remaining 20% for validation. The selection of the training and
validation sets was completely random, but the same set was used to train each convolutional model. In total,
we selected three deep architectures according to previous laboratory performance evaluation: residual neural
network (ResNet), dense convolutional network (DenseNet), and neural architecture search network (NASNet).
The fitted models were evaluated with the same metrics on the same validation set. Figure 1 shows the details
of our framework.

Figure 1. Framework to evaluate the robustness of CNN based AED

We examined different public databases to build the dataset used in our experiments. We used the
common voice dataset to build the base category corresponding to the human voice in a natural and quiet
(normal) state. This dataset contains the voice of people between 19 and 89 years old, corresponding to reading
blog posts, books, and movies mainly [35]. We also used the UrbanSound Dataset from which we extracted the
category corresponding to the gunshot. This database is composed of labeled sounds corresponding to urban
events such as children playing, dogs barking, vehicle sirens or gunshots [36]. Another key database in the
construction of our dataset is neural information processing group GENeral sounds (NIGENS), this database
also provides isolated urban acoustic events. From NIGENS we extracted the categories for crying baby (crying
baby), burning fire (burning fire), human screams of men and women (scream), and dog barking (dog) [37].
The last database used was TUT Rare Sound Events 2017, which was developed for the DCASE challenge
2017 Task 2, and is composed of events corresponding to babies crying, gunshots, and glass breaking. All
images from this dataset were used either to complement the already defined categories or to create the new
category corresponding to glass breakage (glass) [38]. Some of these databases provide the audio files in MP3
format, others in WAV format. All files were initially unified to WAV format. In the case of MP3 files, the
FFmpeg library was used to convert them to WAV format.

Our dataset is made up of 2,100 sounds (300 per category) with durations between 2 and 40 s. The
Mel spectrogram for the audio files was calculated using the librosa 0.8.1 library. The audio signals in WAV
format were sampled as a time-series input at a sampling rate of 22,050, the magnitude of the spectrogram was
calculated and then mapped onto the Mel scale. An FFT window of 1,024 was used, and 100 samples were be-
tween successive frames. Figure 2 shows some images resulting from this conversion process, Figure 2(a)
shows an audio corresponding to the normal base category, Figure 2(b) audio from the gunshot category,
Figure 2(c) audio from the baby crying category, Figure 2(d) audio from the burning fire category, Figure 2(e)
audio from the human scream category, Figure 2(f) audio from the dog barking category, and in Figure 2(g)
audio from the glass breaking category.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2. Sample of some Mel scale images used for model training (a) normal category, (b) gunshot category,
(c) baby crying category, (d) burning fire category, (e) human scream category, (f) dog barking category, and

(g) glass breaking category

The images resulting from this process originally had a size of 432×288 pixels. For ease of testing,
this size was modified to a square structure of 256×256 pixels using OpenCV 4.1.2. For this process, the
images were initially randomly shuffled by changing the seed for each category, and then stored in folders
labeled with the name of the corresponding category. These files had different characteristics such as length
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(some were 1 s, but others were as long as 2 min), number of channels, and frequencies. We pre-processed
these audios to normalize the frequency (they were adjusted to the bandwidth of the human ear), unified the
number of channels to monaural, and adjusted the length of the audios from 2 to 40 s. The seven categories or
labels are:
− Category 1: normal
− Category 2: gunshot
− Category 3: cryingbaby
− Category 4: burningfire
− Category 5: scream
− Category 6: dog
− Category 7: glass

The normal category corresponds to the voice of people in a quiet state reading texts, the second
category corresponds to the sounds of firearms in different scenarios, the third is the sound of small babies
crying, the fourth corresponds to the sound of flames burning different materials, the scream category again
has the voice of men and women but producing screams, category six includes barking dogs, and category
seven corresponds to sounds produced by breaking glass. The content of the audios in the public databases
was verified and edited to ensure the content of the event as the protagonist in each file. Most of the audios
correspond to polyphonic events.

We selected three convolutional architectures for the models. The selection was made according to
their high performance on similar problems, and the small size of the models that make them suitable for
implementation on the robot. The research group had previously used these architectures in other modules
of our robotic platform to solve problems such as automatic emotion recognition and movement strategies in
unknown and dynamic environments [19], [20]. The selected architectures are ResNet, DenseNet, and NASNet.
For the ResNet architecture, we selected the ResNet-50 model with 50 depth layers for a total of 23,602,055
parameters. For the DenseNet architecture, we selected DenseNet-121 for a total of 7,044,679 parameters,
and for the NASNet architecture, we selected NASNet-Mobile for a total of 4,277,115 parameters. All models
were fit for 20 epochs under the same criteria, i.e., categorical cross-entropy was used as the loss function,
and stochastic gradient descent (SGD) was used as the optimizer. In all cases, the optimization process was
monitored by calculating both the accuracy and the mean squared error (MSE) of the model with the training
and validation samples. Table 1 summarizes the number of parameters related to each model.

Table 1. Parameters related to each model
Model ResNet 50 DenseNet 121 NASNet-Mobile

Non-trainable parameters: 53,120 83,648 36,738
Trainable parameters: 23,548,935 6,961,031 4,240,377

Total parameters: 23,602,055 7,044,679 4,277,115

In all three cases, the training was optimized according to the behavior of its accuracy with both
training and validation data (although the latter were not directly considered for the optimization process).
In the case of the ResNet network the accuracy was increased from 32.9% to 90.2% for the training data
(considering the training process, i.e., epoch 1), and from 14.8% to 85.0% for the validation data. The
DenseNet network achieved an increase from 49.8% to 90.1% in the accuracy of the training data, and from
12.6% to 81.7% for the validation data. Finally, for the NASNet network, an increase in accuracy from
56.1% to 91.9% was achieved for the training data, but 16.2% for the validation data was not achieved. All
code was developed in Python 3.7 with support for Keras 2.6.0 and Tensorflow 2.6.0.

4. RESULT AND DISCUSSION
For the evaluation of the ability of the convolutional models to identify the parameters of each event

correctly, standard machine learning metrics were used in the evaluation of classification models. These metrics
were calculated from the behavior of the models against 20% of the dataset unknown to the model and initially
separated for validation. As mentioned in the methodological development, during model training, accuracy
and MSE were tracked at each epoch for both training and validation data, the results are summarized in
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Figure 3, Figure 3(a) shows the performance for the ResNet model, Figure 3(b) shows the performance for the
DenseNet model, and Figure 3(c) shows the performance for the NASNet model.

(a) (b)

(c)

Figure 3. Summary of accuracy and error of the three models throughout training (a) ResNet, (b) DenseNet,
and (c) NASNet

The smallest model is NASNet, however, it is also the model with the worst generalization ability. All
three models managed to considerably reduce the error against the training data during the first five epochs;
ResNet achieved an error of 0.48 and an accuracy of 81.5%, DenseNet showed an error of 0.42 and an accuracy
of 84.2%, and NASNet an error of 0.25 with an accuracy of 88.2%. Although the best values for the train-
ing dataset were achieved by NASNet, this model suffered overfitting that prevented it from generalizing its
categorization capability to unknown data. From the fifth epoch onwards, ResNet and DenseNet considerably
reduce the error against validation data without reducing their performance on the training data, while NASNet
reduces it but without achieving good performance. At the end of training ResNet and DesnseNet achieve an
error on validation data of 0.03, while NASNet only achieves a value of 0.23. Similar behavior is observed in
the accuracy of the validation data.

The metrics used to evaluate the models are precision, Recall, F1-score, confusion matrix, and receiver
operating characteristic (ROC) curves. Precision evaluates how many elements assigned to a category really
belong to it. It corresponds to the ratio of true positives to the total number of elements identified in a category
(true positives plus false positives). The Recall metric allows establishing how many of the elements assigned
to a category by the model really belong to that category. It is calculated as the ratio between true positives
concerning the elements that actually belong to the category (true positives plus false negatives). These two
metrics can be visually summarized in the confusion matrix, since the main diagonal of this matrix corresponds
to the true positives, the elements above it correspond to the false positives, and the elements below it corre-
spond to the false negatives. To build this matrix, a table is assembled in which the rows correspond to the
real categories of the elements, and the columns to the elements classified according to the model, values with
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which the matrix is filled. The F1-score value corresponds to the weighted average of precision and Recall, so
it somehow summarizes these two metrics. Finally, the ROC curve corresponds to a graphical representation of
the sensitivity versus the specificity of the classifier. It uses changes in the threshold of the decision to evaluate
the ratio of true positives to false positives. This graph is constructed with a diagonal curve, and all points
above it (towards the upper left corner) are considered good classification results.

Table 2 outlines the results of the first three metrics. The values in the table are related to the previous
curves. The ResNet and DenseNet models perform much better than the NASNet model, which performed
poorly for the validation data. The only interesting value of the NASNet model corresponds to the Recall of
the sixth category, with a value of 100%. This contrasts with the values for the other metrics in all categories
but shows that the model was unable to categorize the elements of the validation group, assigning them all to a
single category, the one corresponding to dog barking. Leaving the NASNet model aside, the performance of
the first two models is excellent. In both cases, the average values of the three metrics were in the worst case at
79%. These values indicate that these models classify most of the validation values in the correct category. In
both cases, however, problems are noted in two categories, in the third category (cryingbaby) very low Recall
values are obtained, and in the seventh category (glass) very low precision values are obtained. In the first case,
it is observed that many elements of this category were classified in other categories, i.e., the crying baby is
not adequately differentiated from other sounds. In the second case, it means that many of the elements of this
category do not really belong to it, i.e. it confuses as glass breakage many of the sounds of other categories.

Table 2. Precision, Recall, and F1-score values for the three models with validation data
Category ResNet DenseNet NasNet

Precission Recall F1-Score Precission Recall F1-Score Precission Recall F1-Score
normal 1.00 1.00 1.00 1.00 0.98 0.99 00.00 00.00 00.00
gunshot 1.00 0.98 0.99 0.90 0.98 0.94 00.00 00.00 00.00

crying baby 0.88 0.19 0.31 0.79 0.20 0.32 00.00 00.00 00.00
burningfire 1.00 1.00 1.00 0.81 1.00 0.89 00.00 00.00 00.00

scream 0.96 1.00 0.98 0.98 1.00 0.99 00.00 00.00 00.00
dog 1.00 1.00 1.00 1.00 1.00 1.00 00.16 1.00 00.28
glass 0.46 0.96 0.63 0.42 0.70 0.52 00.00 00.00 00.00

Weighted avr. 0.91 0.85 0.83 0.85 0.82 0.79 00.03 00.16 00.05

The problem identified in the metrics can be observed and analyzed in the confusion matrix in Figure 4,
Figure 4(a) shows the confusion matrix for the ResNet model, Figure 4(b) shows the confusion matrix for the
DenseNet model, and Figure 4(c) shows the confusion matrix for the NASNet model. The confusion matrices
of the ResNet and DesneNet models show that in fact the problems in the third and seventh categories are
related. The plots of these matrices use color-coding that makes it easy to identify the behavior of the diagonal
of the matrix, and the classification model it represents. Dark colors show a lower amount of elements in the
box, while light colors show a high concentration (scale on the right of each matrix). This coding should show
in light colors the diagonal of a good classifier. In the ResNet and DenseNet models, this diagonal is quite well
defined for most categories, but as before, problems are observed in the third and seventh categories. The third
category looks in both cases very dark, and in the same row, in the seventh column, a high number of false
positives are observed. The matrices show that many of the sounds corresponding to baby cries are erroneously
placed in the category glass breakage. While this may be an isolated problem, the fact that both models have
the same inconsistency suggests problems in the audio quality of the training dataset. In the third matrix, the
one corresponding to the NASNet model, it is observed as before that all items were categorized in the sixth
category. This caused the audios that belonged to the category to match, but the overall performance was poor
due to the misclassification of all the others.

Since the ROC curve considers only the ratio of true positives to false positives, it is to be expected that
the behavior for the NASNet model moves close to the diagonal, while for the ResNet and DenseNet models
the curve seeks the upper left corner as shown in Figure 5, Figure 5(a) shows the ROC curve for the ResNet
model, Figure 5(b) shows the ROC curve for the DenseNet model, and Figure 5(c) shows the ROC curve for the
NASNet model. This means that the latter two models can correctly classify the elements that actually belong
to a certain category (vertical axis of the ROC curve), something equivalent to the Recall metric. In short, the
performance of the ResNet and DenseNet models is very high and similar to each other, while the NASNet
model is inadequate for the development of the event characterization system.
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(a)

(b)

(c)

Figure 4. Confusion matrix of the three models with validation data (a) ResNet, (b) DenseNet, and (c) NASNet
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(a) (b)

(c)

Figure 5. ROC curves of the three models with validation data (a) ResNet, (b) DenseNet, and (c) NASNet

5. LIMITATION
Our experiments relied on audio signals captured by commercial microphones, in some cases installed

in low-quality devices. While this approach goes hand in hand with the existing microphones in our robot, and
with the hearing ability of an average adult, it is clear that the audio quality and performance capability of
the acoustic event characterization system is increased with the use of higher-quality sensors. Future develop-
ments of our system contemplate the use of these sensors and the development of a proprietary database that
incorporates the acoustic signals captured by them.

The other limitation of our research is its narrow focus, which is primarily on domestic service robots.
While this is our field of research, and the scope of our robotic prototypes, this limited perspective also limits
the usefulness of our results in other scenarios such as applications in commercial and industrial environments.
Still, we believe that the general scheme of work, as well as the results with the evaluated convolutional models,
can serve as an initial stage for these application fields.

6. CONCLUSION
In this work, we propose the development of an autonomous system for the characterization of acoustic

events that can be implemented in small service robots, particularly dedicated to the development of domestic
tasks. In this sense, a scheme based on convolutional networks capable of being trained for a dataset specific
to the needs of the problem is proposed. A dataset is built according to seven specific events: human voice
in a normal state, gunshot, baby crying, fire in burning processes, human screams, dog barking, and glass
breaking. For the construction of these categories, the use of public databases was chosen to evaluate the initial
performance of the convolutional models. A database with 300 audios in each category was assembled, which
were randomly separated into two groups, a training group with 80% of the data, and a validation group with the
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remaining 20%. The audio signals were filtered to produce a homogeneous set of different parameters. To feed
the convolutional models with an input signal that reflected the characteristics identifiable by the human ear, the
entire dataset was converted to the Mel scale. The code was developed in Python with Keras and Tensorflow
support, and the processing of the audios was performed with librosa and then transformed into images with
OpenCV. The three convolutional models evaluated for the system were ResNet, DenseNet, and NASNet, these
were selected due to their high performance in similar tasks and their compact size compared to other structures.
The training was performed in all three cases under the same conditions, which involved the use of categorical
cross-entropy as loss function and SGD as optimization function. The training was performed for 20 epochs,
during which the error and accuracy of the training and validation data were calculated for model control and
adjustment. To evaluate the performance, the Precision, Recall, F1-score, confusion matrix, and ROC curve
metrics were used on the models trained with the validation data. The results provided by the metrics confirm
a high performance for the ResNet and DenseNet models (average F1-score of 83% for ResNet and 79% for
DenseNet), while they show that the NASNet model is unable to generalize the behavior to unknown data.
Some problems were observed in two categories which we intend to evaluate with our dataset captured in the
laboratory. Finally, although the ResNet model outperforms the DenseNet model in some values, the latter
is selected for the development of the prototype system due to its smaller size and memory requirements.
The research will continue adjusting the model to the conditions of the robotic platform, which implies the
reconstruction of a more complex and higher-quality dataset.
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[11] R. Löwe, J. Böhm, D. G. Jensen, J. Leandro, and S. H. Rasmussen, “U-FLOOD-Topographic deep learn-
ing for predicting urban pluvial flood water depth,” Journal of Hydrology, vol. 603, pp. 1–6, 2021, doi:
10.1016/j.jhydrol.2021.126898.

[12] T. C. Pham, C. M. Luong, V. D. Hoang, and A. Doucet, “AI outperformed every dermatologist in dermoscopic
melanoma diagnosis, using an optimized deep-CNN architecture with custom mini-batch logic and loss function,”

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6684–6696



Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 6695

Scientific Reports, vol. 11, no. 1, pp. 1–12, 2021, doi: 10.1038/s41598-021-96707-8.
[13] Y. Xu and M. Vaziri-Pashkam, “Limits to visual representational correspondence between convolutional neural net-

works and the human brain,” Nature Communications, vol. 12, no. 1, 2021, doi: 10.1038/s41467-021-22244-7.
[14] J. Karhade, S. K. Ghosh, P. Gajbhiye, R. K. Tripathy, and U. R. Acharya, “Multichannel multiscale two-stage con-

volutional neural network for the detection and localization of myocardial infarction using vectorcardiogram signal,”
Applied Sciences, vol. 11, no. 17, 2021, doi: 10.3390/app11177920.

[15] Z. Nabulsi et al., “Deep learning for distinguishing normal versus abnormal chest radiographs and generaliza-
tion to two unseen diseases tuberculosis and COVID-19,” Scientific Reports, vol. 11, no. 1, pp. 1–10, 2021, doi:
10.1038/s41598-021-93967-2.

[16] A. De Cesarei, S. Cavicchi, G. Cristadoro, and M. Lippi, “Do humans and deep convolutional neural networks use
visual information similarly for the categorization of natural scenes?,” Cognitive Science, vol. 45, no. 6, pp. 1–14,
2021, doi: 10.1111/cogs.13009.

[17] T. Hachaj, Ł. Bibrzycki, and M. Piekarczyk, “Recognition of cosmic ray images obtained from cmos sensors used
in mobile phones by approximation of uncertain class assignment with deep convolutional neural network,” Sensors,
vol. 21, no. 6, pp. 1–16, 2021, doi: 10.3390/s21061963.

[18] D. Gibert, C. Mateu, J. Planes, and R. Vicens, “Using convolutional neural networks for classification of malware
represented as images,” Journal of Computer Virology and Hacking Techniques, vol. 15, no. 1, pp. 15–28, 2019, doi:
10.1007/s11416-018-0323-0.

[19] F. Martinez, C. Hernández, and A. Rendón, “Identifier of human emotions based on convolutional neural network
for assistant robot,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 18, no. 3, pp.
1499-1504, Jun. 2020, doi: 10.12928/telkomnika.v18i3.14777.

[20] F. Martı́nez, C. Penagos, and L. Pacheco, “Deep regression models for local interaction in multi-agent robot tasks,”
in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 10942, 2018, pp. 66–73, doi: 10.1007/978-3-319-93818-9 7.

[21] M. Arduengo, C. Torras, and L. Sentis, “Robust and adaptive door operation with a mobile robot,” Intelligent Service
Robotics, vol. 14, no. 3, pp. 409–425, 2021, doi: 10.1007/s11370-021-00366-7.

[22] J. C. Molina-Molina, M. Salhaoui, A. Guerrero-González, and M. Arioua, “Autonomous marine robot based on
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[25] A. Moreno and D. F. Páez, “Performance evaluation of ROS on the Raspberry Pi platform as OS for small robots,”
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