
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 13, No. 2, April 2023, pp. 1757~1772 

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i2.pp1757-1772      1757  

 

Journal homepage: http://ijece.iaescore.com 

Tiny datablock in saving Hadoop distributed file system wasted 

memory 
 

 

Mohammad Bahjat Al-Masadeh1, Mohd Sanusi Azmi2, Sharifah Sakinah Syed Ahmad2  
1Deanship of information technology, Umm Al-Qura University, Al-Aziziyah, Mecca, Kingdom of Saudi Arabia 
2Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Durian Tunggal, Malaysia  

 

 

Article Info  ABSTRACT  

Article history: 

Received Oct 17, 2021 

Revised Sep 30, 2022 

Accepted Oct 21, 2022 

 

 Hadoop distributed file system (HDFS) is the file system whereby Hadoop is 

use it to store all the upcoming data inside it. Since it been declared, HDFS 

is consuming a huge memory amount in order to serve a normal dataset. 

Nonetheless, the current file saving mechanism in HDFS save only one file 

in one datablock. Thus, a file with just 5 Mb in size will take up the whole 

datablock capacity causing the rest of the memory unavailable for other 

upcoming files, and this is considered a huge waste of memory in serving a 
normal size dataset. This paper proposed a method called tiny datablock-

HDFS (TD-HDFS) to increase the usability of HDFS memory and increase 

the file hosting capabilities by reducing the datablock size to the minimum 

capacity, and then merging all the related datablocks into one master 
datablock. This master datablock consists of tiny virtual datablocks that 

contain the related small files together; will exploit the full memory of the 

master datablock. The result of this study is a running HDFS with a 

minimum amount of wasted memory with the same read/write data 
performance. The results were examined through a comparison between the 

standard HDFS file hosting and the proposed solution of this study. 

Keywords: 

Big data  

Datablock  

Datanode 

Hadoop  

Hadoop distributed file system  

Wasted memory 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Mohammad Bahjat Al-Masadeh 

Deanship of information technology, Umm Al-Qura University 

Al-Aziziyah, 24243, Mecca, KSA 

Email: mbmasadeh@uqu.edu.sa 

 

 

1. INTRODUCTION  

In Bigdata world, many companies declared their own analysis systems as a “platform as a service” 

product such as HDInsight’s from Microsoft and Amazon S3 from Amazon [1], [2]. However, whether the 

service is based on cloud or built on premise, most of these data platforms were developed and customized 

based on an open sources system namely Hadoop. Hadoop is a distributed open sources system built by 

Apache software and it is used to host and analyze all kinds and models of bigdata. Hadoop consists of one 

node called namenode or master node, with thousands of nodes connected together called datanodes [3]. 

Hadoop is a set of sub systems called ecosystems whereby some of these systems are used for keeping and 

tracing purposes, while some others are for data analysis and extract, transform, load/extract, load, transform 

(ETL/ELT) data injection, and only one of them, which is Hadoop distributed file system (HDFS), is for data 

hosting [4]. HDFS is the main ecosystem that Hadoop uses to host files in a distributed manner. HDFS is 

used to split every new datanode into a bunch of storing units called datablocks [5]. Thus, the datablock is the 

smallest storing cell in HDFS that can be used to store Hadoop files in <key, value> manner [6], [7]. The 

default size of any datablock in all datanodes is 64 MB, but in several custom usages, it can be upgraded to 

be 128 Mb or even 256 MB [8]. Figure 1 shown the basic assignment in namenode to datanodes in HDFS 

that B1 block in all datanodes are belonging to one file. The client could be anything, a human, a sensor, 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 1757-1772 

1758 

machines, and so forth. The file storing assignment begins by sending a dataset from client to the namenode. 

In this regard, the namenode jobs are: i) check if there is a free memory for the new dataset, ii) provide the 

free datablock IDs to the new dataset, and iii) splitting the large files =>64 MB to assigning to multi 

datablocks. After all operations above, the dataset will continue to the assigned datablock to be stored in 

there and send the required metadata files to the namenode to update the namenode on the new dataset files 

and location inside HDFS [9], [10]. 

 

 

 
 

Figure 1. How HDFS stores a new dataset [11] 

 

 

Each time Hadoop user injects HDFS with a bunch of new files, HDSF will go through the same 

scenario above to host these new data. One of Hadoop’s features is the “data high availability” that’s every 

single file is available for use even if it is corrupted or being deleted [12]. Hadoop adopts a technique called 

“replication manner” whereby every file must go into three copies so that if one copy is somehow  

un-available, the other copies will be the replacement and the processing and insight job will resume.  

Figure 2 demonstrates the replication manner [13], [14]. 

 

 

 
 

Figure 2. HDSF replication manner [15] 

 

 

In Figure 2, the 1 Gb file requires approximately 16 Datablocks to store it. Then, to apply the HDFS 

high availability principle, all of these datablocks must be replicated 3 times in total. Lastly, all of these new 

datablocks and their replications must send some metadata files to the namenode to complete the files storing 

steps [16]. In HDFS, each datablock can host only one file, irrespective of whether or not the file fits the 

datablock size [17]. This technique works will with bigdata in big files that’s every file in the dataset is 

greater than the datablock size [18]. However, things are different with big data in small files whereby every 

file is smaller than the default datablock size [19]. The datablock hosts only one file because the namenode 

can access the desired file via datablock ID only. In other words, the namenode cannot access anything inside 

the datablock directly. Thus, a small file will occupy the required memory and cause the rest of the datablock 

memory inaccessible [20]. The (1) shows the amount of wasted memory for each datablock. Wm is the 

wasted memory, dbs is the datablock size and fs is the file size. Figure 3 shows the standard file hosting in 

HDFS whereby the injected dataset to HDFS datablocks is big data in small files. 

 

𝑤𝑚 = 𝑑𝑏𝑠 − 𝑓𝑠       (1) 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Tiny datablock in saving Hadoop distributed file system wasted memory (Mohammad Bahjat Al-Masadeh) 

1759 

 
 

Figure 3. The traditional datablocks hosting method [17] 

 

 

In order to determine the depth of the problem, (1) will be re-applied on the results in Figure 3, as (2):  

 

∑𝑤𝑚 = 𝑑𝑏𝑠 − 𝑓𝑠 (2) 

 

Thus, the summation of the wasted memory is 225 MB out of the total amount of datablocks size 

which is 448 MB. Lastly, the 225 MB wasted memory is one of three copies that HDFS must create in order 

of data high availability in case of data reading failure because of the unavailability of the desired data. Thus, 

a 225 MB will be turned into a 675 MB of total wasted memory [15]. These numbers shown a huge wasted 

memory amount just to host a small dataset [11]. The final formula for the datablock wasted memory is 

shown as in Table 1. 

 

 

Table 1. Formula flow of the wasted memory problem 
Step Stage Operation Equation Description 

1 Data feeding Feeding cd = cd + nd cd: current data, nd: new data 

2 Data allocation Appending db = cd.append() db: datablock, append (): add the file to the 

datablock 

3 Wasted memory 

calculation on single file 

Finding the wasted 

memory of a single 

datablock 

wm = dbs - fs wm: wasted memory, dbs is a collection of 

datablocks inside HDFS, fs: file size. 

4 Total files in the 

datablocks 

Total files size ∑ fs.append() In this stage, the fs will go into cd which will be 

the total files size into a datablocks. 

5 Total wasted memory on 

all of used datablocks 

Total datablock size ∑ (wm.release())-db wm is the wasted memory that is released from 

the used one 

6 Results of the problem 

statement 

Results wm = ∑dbs - ∑fs It is the final total wasted memory in Hadoop 

cluster. 

 

 

2. RELATED STUDIES 

There are some popular solutions to solve the problem, the first one is Hadoop archive (HAR). HAR 

compresses the small files into one HAR inside one datablock and use two index ID’s are used to access the 

desired file inside HAR [13]. The second one is dynamic partitioning which is used to add a new node to the 

cluster called aggregator node to determine that if the upcoming new file if greater or less than the datablock 

size. The next section will discuss the most popular technique in solving the problem of this study. 

 

2.1.  HAR file 

Hadoop archive (HAR) is the earliest attempt to solve the problem above which packs a number of 

small files into one archive file before pushing it inside HDFS. However, the small files inside this new 

archive file cannot be accessed directly because two index IDs have to be searched before reaching the 

desired file. The access is done in the main memory. Figure 4 presents HAR file access diagram [21]. 

Basically, HAR was designed to solve big data in small files issue. Thus, the technique that’s 

adopted to solve this issue is also used to reduce the HDFS wasted memory [16]. So, instead of placing every 

small file in a standalone datablock, HAR file will do the job by archiving all of them in one file. However, 

creating a HAR file involves running a MapReduce job into a targeted directory “/dir” that consist all the 

desired small files to be archived. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 1757-1772 

1760 

 
 

Figure 4. Hadoop archive HAR [21] 

 

 

In accessing a desired file in any HDFS archive, user needs to go through two index files: the first 

one is master index, and the second one is index table. Figure 5 is shown the accessing method for each 

single HAR archive. This access mechanism slows down the HDFS data retrieval as the use of HAR 

technique is only appropriate for the rarely accessed data (cold data) such as logs files [22]. Another shortage 

for HAR is that it cannot append more files to the archive. This means that if a new file is already injected in 

HDFS, it will be hosted in a new datablock even if there is a HAR file that is not full yet making it unable to 

host more. Hence, any upcoming file cannot be appended to this HAR and it will be directed to a new one. 

The extra unused memory in the old HAR and the new one is considered as a wasted memory [23]. 

 

 

 
 

Figure 5. Accessing a file inside HAR [22] 

 

 

2.2.  Dynamic partitioning 

Hadoop cluster principle operates on one namenode and thousands of datanodes. However, dynamic 

partitioning approach is used to alter is principle by appending a decision maker node namely aggregator 

node which is located between the namenode and the rest of the cluster [22]. Aggregator node is the decision 

maker of the cluster that’s when a new file being injected to the namenode, namenode will split it and pass 

the results to the aggregator node to check if the size is 64 => dataset > 64. If the dataset’s size is greater or 

equal than the datablock size, it will be directly assigned to the targeted datablock. On the other hand, if the 

dataset is less than 64 Mb [24], aggregator node will transfer it to the proposed datablock using a dynamic 

partitioning approach. Hence, partitioning approach will fit the size of the datablock with the upcoming 

dataset. The result of this approach will overcome the HDFS fragmentation that’s that’s causing memory 

wastage as demonstrated in Figure 6 [11], [25]. 

Dynamic partitioning is used to alter the attitude for the decision making of the namenode. The 

Namenode is the master of Hadoop that uses yet another resource negotiation (YARN) to ride the rest of the 

cluster. Thus, the decision was partially moved to be with the aggregator node which does not match the aim 

of this study, that is, to solve wasted memory problem without any major customization on Hadoop default 

structure. Thus, the reading process of dynamic partitioning will be slow because each analysis script and the 

attained result must go through the aggregator node, and this will be reflected negatively on the read/write 

performance, and the connection latency will increase. 

 

2.3.  Sequence file 

This study is not targeting HDFS wasted memory. Sequence file was placed as a solution to reduce 

the negative impact of big data in small files. Here, a file that consists of a set of small files is created inside 

one file called sequence file. However, this new file will be reported to the namenode as a single file with one 

metadata file only, and this is a good solution for the problem of big data in small files whereby one metadata 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Tiny datablock in saving Hadoop distributed file system wasted memory (Mohammad Bahjat Al-Masadeh) 

1761 

file will be sent to the namenode directory instead of hundreds of metadata files whereby each will present 

one datablock to the namenode [1]. Thus, instead of hosting every small file inside a standalone datablock, 

Sequence file will collect all of these small files that act like a series of files with a unique ID for each one of 

them under the following rules: i) the sequence file cannot be greater than the datablock, and if so, the system 

will generate a new one in a new datablock; and ii) the reading mechanism adobes the binary search without 

indexing, which means that each time the search process accesses a small file in the sequence file, the binary 

search method must search for the desired file from the beginning of the sequence file till the end of it [13], 

[26]. 

Sequence file is reducing the HDFS wasted memory perfectly. But the problem of this solution is as 

following: i) the access method complexity is very high (n2), and the binary search must include all files in 

the sequence file to find the desired file; and ii) since the datablock is not required to be changed (expanding 

or shrinking). Sequence file will follow the default datablock size is 64 Mb. However, in case of the sequence 

file is smaller than the datablock size, the rest of free memory of the datablock is unreachable and 

considering a wasted memory [1]. 

Based on the shortages of all the studied solutions (HAR, dynamic partitioning and sequence file), 

this study proposed a solution that will prevent the problem of slow file reading, which is the shortage of 

HAR and sequence file, and the problem of cluster datablock multiple capacity that could not fit all of the 

small files, which is the shortage of the dynamic partitioning. The next section will provide the details of the 

new solution proposed in this study. 

 

 

 
 

Figure 6. Dynamic partitioning [11] 

 

 

3. THE PROPOSED METHOD: TINY DATABLOCK (TD) 

The adopted dataset is big data in small files is a huge amount of data (more than 10 Tb) consisting 

of small files (each file is less than the default datablock size) [22]. This kind of data will used as a 

quantitative methodology to find the gap between the standard HDFS file hosting, the available methods in 

file hosting boost, with the proposed method as shown in detail in the next part. A solution called tiny 

datablock was proposed. This solution is based on the principle which requires that every datablock drops its 

size to be 5 Mb only by default. However, the default datablock size’s changing manner will be on the top of 

HDFS. 

 

3.1.  The algorithm 

This part is shown the proposed method to come over the HDFS wasted memory and to save them 

for hosting more files in the Hadoop cluster. The proposed method will adopt the shrinking mechanism to 

host each small file in an independent manner, then merge them all in one datablock. The proposed solution 

uses two methods to reduce the problem highlighted in this study: 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 1757-1772 

1762 

3.1.1. Memory shrinking 

This method will shrink all of the available datablocks to 5 MB. The aim of shrinking the datablock 

size down to be 5 MB is to match the most popular size required in hosting big data in small files in each 

datablock in HDFS. Figure 7 describes the shrinking action. 

 

 

 
 

Figure 7. Memory shrinking 

 

 

3.1.2. Datablock merging 

This method is the next step after the execution of the memory shrinking method. Once these tiny 

datablocks are allocated to the new small files from the namenode, they will have an ability to merge with 

each other into one or more datablock(s) with only one metadata file (reference file) which is also head 

towards the namenode. This means that if three files with a total size of 15 Mb (small file) are injected into 

HDFS, then, three datablocks will be required to host all of these three files. These three datablocks can be 

merged together to become one datablock with the size of 15 MB and generates only one metadata file 

heading to the namenode, as shown in Figure 8. 

 

 

 
 

Figure 8. TD migration 

 

 

3.2.  Datablock reading 

To read from a pre-merged datablock, this study will adopt a byte-to-byte algorithm that counts 

every data chunk in the merged datablock as a stand-alone file. Byte-to-byte formula is a counter that 

captures the end point of each chunk inside the merged file based on a pre-given address supported by the 

namenode. The formula of byte-to-byte will be explained in section 3.2.3. withen data reading stage. 

Meanwhile, the application of TD migration method in any Hadoop cluster requires that TD goes through 

several stages and steps to complete the migration correctly. These stages begin with reading each upcoming 

small file size, followed by placing the file into datablocks, and finally, migrating the datablocks into a single 

datablock. The second stage is related to how to read files from the new datablock. Figure 9 shows the tiny 

datablock-HDFS (TD-HDFS) file writing. 

 

3.2.1. Stage one (reading each new file size) 

HDFS file injection and the addressing method begin by the attainment of a positive request to the 

namenode about the ability to host an upcoming file(s) or dataset. In this regard, the returned response will 

carry out a new address somewhere in the datanodes to host the new file(s). Then, Hadoop will continue to 

the datablocks based on the given address (datanode then datablock inside). Finally, Hadoop will host the 

file. TD-HDFS will alter this technique by appending a method called size calculator that will work as 

follows: 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Tiny datablock in saving Hadoop distributed file system wasted memory (Mohammad Bahjat Al-Masadeh) 

1763 

 
 

Figure 9. TD-HDFS writing stage 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 1757-1772 

1764 

Step 1 (blocks packages) 

Namenode will be supported by a database consisting of capacity packages records. Here, the 

namenode will read the new files information and create a metadata file. This metadata file consists of 

information about the file size and the required datablocks to store it. Table 2 accordingly shows the file size 

range and the volume database already installed in the namenode. 

 

 

Table 2. Datablock classifying packages 
Index File Size Range (Mb) Required Datablocks 

1 F <= 5 1 

2 5 < F <= 15 3 

3 15 < F <=30 6 

4 30 < F <= 45 9 

5 45 < F <= 51 10 

 

 

Step 2 (file addressing) 

The metadata file is now ready with all the data to be stored in the targeted datablock(s). These data 

consist of the datablock ID, datablock reference and the new one is the datablocks number that is required to 

store the new file. As a scenario: there is a new file (20 MB) that must be injected into the HDFS using one 

of Hadoop’s ecosystems which are sqoop and/or flume. This new file is a structured database. Thus, the 

metadata file generated by the namenode will assign a four datablocks for this new 20 MB file. Table 2 

shows the differences between the old file addressing method and the TD one to host a 20 MB file size. 

Based on Table 3, in the old file addressing method, HDFS will book a 64 MB datablock to host the new  

20 MB file. In TD-HDFS file addressing method, HDFS will book only four tiny datablocks, and each of 

them is only 5MB in size.  

 

 

Table 3. Old file addressing vs TD-HDFS file addressing 
Old File Addressing  TD File Addressing 

New File Vol Datablock ID Size New File Vol Datablock (s) ID Size 

20 Mb aa128885c7321s94 64 Mb 20 Mb 38821hd4E388dc21 5 Mb 

  329981005t23e122 5 Mb 

218t544qw2113500 5 Mb 

664388922221094d 5 Mb 

 

 

Step 3 (datablocks merging) 

Back to step two, the four datablocks must be located on the same datanode. In this regard, if the 

selected datanode has only 3 free tiny datablocks, the namenode must find another datanode with more side-

to-side free datablocks. The datablock merging process will send the selected file to be stored in the pre-

selected datablocks IDs as shown in Table 2. HDFS will split the new file of 20 to 4 MB related files that 

every file fits a tiny datablock. These datablocks are on the same datanode and each one of them hosts one 

file. TD-HDFS will alter HDFS behavior with an equation called “merger.” However, “merger” equation will 

use the metadata file generated from the namenode back in step one to merge the four datablocks above into 

one datablock with only one reference ID similar to the earliest datablock ID. The goal of “merger” equation 

is to minimize the metadata files that are returning to the namenode. Figure 10 shows the mechanism of 

merger equation. 

The merger mechanism equation will merge all the pre-booked datablock1 to datablock4 into one 

datablock referred as datablock1. The merging procedure will cover all the following: i) merger will start 

reading all the datablocks that hold a part of the same file. In Figure 10 there will be four datablocks; 

ii) merger already knows that there are four datablocks with a total size of 20 MB; iii) merger will expand the 

first datablock (datablock1) size into 20 MB; iv) if the datanode is full, merger will stop with an error 

message asking for free datablocks; v) if all of datablock1, datablock2, datablock3 and datablock4 are related 

to each other (each one is a part of the original file), the next step (step four) is not applicable; vi) datablock1 

is ready to be read without a need for the reading stage (later on this paper); vii) if each of datablock1, 

datablock2, datablock3 and datablock4 has a non-related file, step four is required; viii) all of datablock2, 

datablock3 and datablock4 will be migrated to the new datablock1 as a new chunk; ix) the new datablock will 

be full of non-related chunks that each chunk presents only one file; and x) by now, all of datablock2, 

datablock3 and datablock4 are useless and need to be assigned as an empty block by the namenode. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Tiny datablock in saving Hadoop distributed file system wasted memory (Mohammad Bahjat Al-Masadeh) 

1765 

 
 

Figure 10. Merger equation mechanism 

 

 

Step 4 (classifier) 

Before setting up the final phase of datablock1, the chunks inside it are separated, and at this point, 

there is no relation between these chucks but they reside as one piece that is not readable yet. Thus, the 

equation (classifier) will add an extra metadata to the original datablock metadata to tell the next equation 

(stage 3 in this paper) how to read these non-related and non-addressed chunks. This extra metadata is 

presented in Table 4. Byte capacity is the capacity of each chunk inside the datablock, and this information 

will be used by the namenode in stage three to read the chunks. 

 

 

Table 4. Chunks inside datablock 
Datablock 1 Byte capacity 

Chunk 1 5,000,000 

Chunk 2 5,000,000 

Chunk 3 4,000,000 

Chunk 4 5,000,000 

 

 

3.2.2. Stage two (erase the datablock) 

Since Merger does not have a master permission to delete the useless datablocks, there is another 

equation that will assign this job to the namenode-YARN ecosystem. Thus, the new equation here is called a 

“deleter.” This equation will deceive the namenode by sending it the empty datablocks ID. Thus, the 

namenode will automatically update the HDFS by the following new situation: i) there is no change on 

datablock1 but the size is expanded from 5 to 20 MB; ii) all of datablock2, datablock3 and datablock4 are 

assigned as free datablocks. Thus, the namenode-YARN will assign all of them as empty datablocks that are 

ready to use for another upcoming data; and iii) the final results are displayed in Figure 11. 

 

 

 
 

Figure 11. Chunks inside each datablock as a final step 

 

 

3.2.3. Stage three (data reading) 

There is no way to read each chunk inside a single datablock because the chunks are already 

separated but acting like one file to the namenode. HDFS files hosting is only 80% of the total datablock size, 

while the rest of it is used to host the metadata on the datablock, providing the namenode more information 

about it. To make the chunks inside each datablock readable and discernible to the namenode, the metadata in 

each datablock has to be altered as appeared in Table 3. before providing more information about the desired 

chunk in the datablock. TD-HDFS added an equation called “founder” and this equation is controlled by the 

namenode-YARN to read out the metadata about each datablock that is already updated by the “classifier” 

equation. However, founder will retrieve everything in the datablock as a metadata to the namenode memory 

in order to read them correctly. Moreover, “classifier” equation will tell the namenode how to separate the 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 1757-1772 

1766 

chunks inside each datablock to fetch the desired chunk data. Founder will use the byte-to-byte formula to 

separate the chunks from each other based on the given metadata. Byte by byte formula will read the whole 

data as a counting bytes of array. The array is the data inside the desired datablock. Thus, byte by byte will 

obtain the information about each chunk volume, and in which byte it will start and end. Table 5. shows an 

example about the chunks in a single datablock, with byte information about each chunk. Byte information is 

retrieved from datablock metadata. 

 

 

Table 5. An example of each chunk inside each datablock 
Datablock 1 Byte Capacity (Byte) File Info 

Chunk 1 5000000 Image 

Chunk 2 5000000 Xls file 

Chunk 3 4000000 Pdf file 

Chunk 4 5000000 Image 

Total 19000000 - 

 

 

Founder via byte-to-byte formula will start separating the chunks away from each other, and the 

beginning of the datablock array is the beginning of the first chunk. The byte counter will count  

5,000,000 bytes before it stops and checks out this chunk as a separated file. The second 5,000,000 bytes are 

counted in similar manner. The byte counting will end when the counting reaches the total datablock byte 

capacity. The outcome encompasses four separated files that are ready to show up to the end user. Byte-to-

byte formula will not run if the datanode holds only one file as mentioned in step three of the first stage. 

Figure 12 is describing the steps to read the desired file in each datablock. 

 

 

 
 

Figure 12. TD-HDFS data reading 

 

 

4. TESTING AND COMPARING 

This paper attempts to fit the current HDFS files with the available in-charge datablocks. However, 

the TD technique utilizes a comprehensive model to absorb a lot of small files on the same datablocks total 

capacity without the traditional memory wasting like in the standard HDFS technique. Figure 13 shows a 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Tiny datablock in saving Hadoop distributed file system wasted memory (Mohammad Bahjat Al-Masadeh) 

1767 

parallel test of pushing only 1 GB dataset of small files into a Hadoop cluster. However, the first cluster runs 

a standard HDFS while the second one runs a customized HDFS with TD technique (TD-HDFS). 

Both of the clusters are running a native copy of Hadoop 3.1.2 version. Thus, since Hadoop is an 

open-sources that’s written in Java, TD-HDFS cluster will got the updates equation on the default size of 

each datablock. The new added equations are: 

− MergingEquation(). Included in Hadoop datanodes. 

− FounderEquation(). Included in Hadoop namenode and running byte-to-byte formula 

− ClassifierEquation(). Used by the namenode metadata. 

Both of the clusters will running the same hardware. Normally, Hadoop used the commodity 

hardware to run the analysis jobs. Typically, each machine in the cluster must not less than 16 GB RAM,  

500 GB SHD with most recent version of core i5 processor. However, each node of the cluster will run an OS 

(Ubuntu 20) that’s the best practice for the Hadoop performance and reliability. Figure 13 presents a full 

series of traditional HDFS filing as compared to the TD technique. However, the TD technique shows that 

there is more added time to the file injection steps to be completed in terms of the extra steps (step one, two, 

three and four) and two more stages (stage one and stage two) that are already appended to the whole system. 

 

  

 
 

Figure 13. A parallel test between HDFS and TD-HDFS 

 

 

4.1.  Data reading 

In data reading (stage 3), there are two scenarios for TD technique. The first one involves a 

datablock with related chunks, which is easy to read. The second one involves a datablock with non-related 

chunks. However, reading from no-related chunks inside the datablock requires metadata generated by the 

previous classifier. These metadata are: i) metadata about every chunk inside the datablock (in the namenode 

metadata file) and ii) metadata about the byte capacity for every chunk (in the datablock metadata part). 

However, the first metadata is resident in the namenode memory, and the metadata make every 

chunk well known to the namenode in order to easily find it in the desired datablock. Suppose the namenode 

is willing to read chunk number 3 in datablock 1. Thus, in Hadoop, there is no actual reading mechanism as 

data processing is happening in the datablock, and the namenode job is to send the scripts to the data place to be 

processed and a readable insight is obtained. Thus, the namenode will send the “founder” script to the 

datablock, and the byte-to-byte counting is applied to reach the desired chunk. Figure 14 shows the reading 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 1757-1772 

1768 

series. Regarding Table 5, byte to byte counting already knows that the desired chunk 3 length is 4 MB. 

Thus, byte-to-byte will start from the end of chunk 2 and count 4 MB of bytes before stopping the counting 

and fetching the results. 

 

 

 
 

Figure 14. Check reading series 

 

 

5. RESULTS AND DISCUSSION 

The result of this study is standing on a comparison between the previous solutions to short coming 

HDFS memory wasting and the new proposed solution TD-HDFS that’s presenting in Table 6. Figure 15 is 

transforming the results n Table 6 into a meaningful way in order to clarify the positive memory saving result 

of TD-HDFS against the other primary studies in this field. 

 

 

Table 6. A results table for all previous studies and TD-HDSF 
 Reading Complexity Write Complexity Reduce Wasted Memory 

HDFS Medium Medium Low 

HAR High High Medium 

Dynamic Partitioning High Low Medium 

TD-HDFS Low High High 

 

 

 
 

Figure 15. Reading/writing complexity results for all related studies 

 

 

In Figure 14 TD-HDFS has the best results in reading complexity. The steps were taken during the 

writing step to generate more metadata on the desired chunk ID, and the byte-by-byte counter makes it easy 

to use these metadata to make a quick access to that file as a chunk in combined datablock. However, these 

extra steps increase the writing complexity and take more time to complete a single file write. However, the 

most important question in data hosting and analytics is “How fast can the system retrieve the desired file?” 

In this regard, TD-HDFS based on the results above provide the best performance in data retrieving.  

Figure 16 presents memory saving between HDFS and TD-HDFS. The comparison is based on the injection of 

Metadata about the 
desired Chunk. 

Processing Script. 
Some other Jobs if 

needed 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Tiny datablock in saving Hadoop distributed file system wasted memory (Mohammad Bahjat Al-Masadeh) 

1769 

20 files towards Hadoop cluster, followed by the examination of the results of the standard HDFS vs. TD-HDFS. 

Each file of the testing sample is of 5 MB in size. 

 

 

 
 

Figure 16. Memory saving in HDFS and TD-HDFS 

 

 

The test sample requires almost 1.250 Gb of datablocks capacity (20 datablocks) to host these  

20 files, but when it comes to TD-HDFS, the required resources will reduce to only 2 datablocks with a total 

capacity 110 MB. This result can be change up and/or down depending on the following parameters: i) files 

number, ii) files size for each file, iii) default datablock capacity either for the standard HDFS or for  

TD-HDFS, and iv) total files capacity (for big and small files).  

In Figure 17, HAR will working well in a comparison with the standard HDFS due to HAR will 

archive all of the small files in one file. But on the other hand, HAR is treating the files as a file, not like  

TD-HDFS that’s treating the file as a datablock. Thus, in HAR case, the archive file could consist of files 

only and set the rest of the datablock free but un-reachable. TD-HDFS is treating the new files as a datablock 

and combine the datablocks depending one the new file size. The final results of comparing TD-HDFS with 

HAR shown that’s TD-HDFS doing better than HAR regarding HAR file is just an archive inside a datablock 

with a chance to not fill it completely depends on the fils capacity. 

 

 

 
 

Figure 17. Memory saving in HAR and TD-HDFS 

 

 

One last study, is to make the comparison results with TD-HDFS and dynamic partitioning. 

However, dynamic partitioning used to classify the upcoming data files based on its size to be stored in a 

suitable datablock. The results shown a light different between dynamic partitioning and TD-HDFS in 

memory saving due to dynamic partitioning does not has the combine step in combing the related datablocks 

together. Moreover, if dynamic partitioning has been injected with many of small files, are smaller than the 

smallest datablock in the cluster, the datablocks cannot combine to each other to release more memory. In 

other words, the small file will take place in the datablock and leave the rest free but unreachable, which 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 1757-1772 

1770 

returns to the first square of the problem. Figure 18 shown the final result for dynamic partitioning in a 

comparison with TD-HDFS. 

 

 

 
 

Figure 18. Memory saving in dynamic partitioning and TD-HDFS 

 

 

This study adopted three parameters to compare between TD-HDFS and other solutions in the same 

area. These parameters are reading, writing and wasted memory reduction. In data reading, all of other 

studies are slower than TD-HDFS. Achieving the final chunk in TD-HDFS and reading it are easy because all 

the required IDs and addresses are supported in the metadata file already stored in the namenode, and thus, it 

is easy to find the desired datablock and fetch the pointed chunk to read it. Meanwhile, the writing step is 

complex because it involves setting up the merging steps and generating the metadata file with all IDs and 

addresses which will consume more time compared to other studies. In reducing HDFS wasted memory 

which is the core of this study, TD-HDFS with all equations presented in section 6 were used to fit the 

required memory with the new files. Meanwhile, HAR cannot fit the required memory with the new files 

volume because HAR could archive 2 files only in one datablock and keep the rest of it free and usable. 

 

5.1.  Data integrity 

Moving the data from one datablock to another datablock will not cause any data corruption because 

the moving mechanism is not of cut-paste, but of copy-paste followed by the deletion of the original one. 

Thus, the copy-paste mechanism is the same mechanism that’s used in HDFS file replication manner already 

adopted in all Hadoop files transactions. This means that the chunks are holding a file with a start offset and 

end offset, and away from any customization.  

 

5.2.  Cold and hot data 

TD is a customized HDFS behavior used to add extra steps to the existing system of writing 

purposes in order to reduce the HDFS memory wasting. Thus, these extra steps are adding more complexity 

to the write performance as the steps will slow down the daily files feeding performance. On the other hand, 

TD-HDFS will work much better in data reading due to there is no complexity in data reading. Thus, due to 

one of Hadoop principles is “write one-read many”, the focusing on reading data performance is matter rather 

than the data writing, this will make TD-HDFS is reliable in data reading with both of hot and cold data. 

 

 

6. CONCLUSION  

There are several popular solutions to HDFS wasted memory problem. The first one is HAR file 

which is basically directed to solve big data in small files issue, but it is only able to save some wasted 

memory. Accordingly, the aim of this study is to solve the HDFS wasted memory without placing a major 

upgrade on the HDFS structure. Hence, both HAR and dynamic partitioning were used to move with the 

HDFS wasted memory problem to a good solution and save some memory. However, the complexity in 

reading from HAR makes this solution appropriate only with cold data. The other solution namely dynamic 

partitioning was used to alter the HDFS communication structure by adding a new node called aggregate 

node between the namenode and the datanodes, but this could expand the connection latency between the 

original nodes of HDFS which will slow down the reading process. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Tiny datablock in saving Hadoop distributed file system wasted memory (Mohammad Bahjat Al-Masadeh) 

1771 

Comparatively, TD-HDFS was able to resolve the problem of HDFS wasted memory without 

majorly altering the HDFS behavior. However, TD-HDFS has a complex writing mechanism during new data 

injection to HDFS because of the new metadata creation and appendage to the original datablock metadata. 

Thus, this new metadata will simplify the analysis and reading stage which will make the reading mechanism 

quick in fetching the required data from each combined datablock. 

 

 

ACKNOWLEDGEMENTS  

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for 

supporting this work by Grant Code: (22UQU4331450DSR03). 

 

 

REFERENCES 
[1] M. B. Masadeh, M. S. Azmi, and S. S. S. Ahmad, “Available techniques in Hadoop small file issue,” International Journal of 

Electrical and Computer Engineering (IJECE), vol. 10, no. 2, pp. 2097–2101, Apr. 2020, doi: 10.11591/ijece.v10i2.pp2097-2101. 

[2] K. Salah, K. Elbadawi, and R. Boutaba, “An analytical model for estimating cloud resources of elastic services,” Journal of 

Network and Systems Management, vol. 24, no. 2, pp. 285–308, Apr. 2016, doi: 10.1007/s10922-015-9352-x. 

[3] Ishwarappa and J. Anuradha, “A brief introduction on big data 5Vs characteristics and Hadoop technology,” Procedia Computer 

Science, vol. 48, no. C, pp. 319–324, 2015, doi: 10.1016/j.procs.2015.04.188. 

[4] A. A. Yulianto, “Extract transform load (ETL) process in distributed database academic data warehouse,” APTIKOM Journal on 

Computer Science and Information Technologies, vol. 4, no. 2, pp. 61–68, Jul. 2019, doi: 10.11591/APTIKOM.J.CSIT.36. 

[5] Y. Guan, Z. Ma, and L. Li, “HDFS optimization strategy based on hierarchical storage of hot and cold data,” Procedia CIRP,  

vol. 83, pp. 415–418, 2019, doi: 10.1016/j.procir.2019.04.086. 

[6] A. Bhaskar and R. Ranjan, “Optimized memory model for Hadoop map reduce framework,” International Journal of Electrical 

and Computer Engineering (IJECE), vol. 9, no. 5, pp. 4396–4407, Oct. 2019, doi: 10.11591/ijece.v9i5.pp4396-4407. 

[7] P. Haripriya, “An efficient storage and retrieval of DICOM objects using big data technologies,” International Journal of 

Advanced Research in Computer Science, vol. 8, no. 3, pp. 271–275, 2017, doi: 10.26483/ijarcs.v8i3.2993. 

[8] C. Choi, C. Choi, J. Choi, and P. Kim, “Improved performance optimization for massive small files in cloud computing 

environment,” Annals of Operations Research, vol. 265, no. 2, pp. 305–317, Jun. 2018, doi: 10.1007/s10479-016-2376-0. 

[9] P. P. Deshpande, “Hadoop distributed FileSystem: Metadata management,” International Research Journal of Engineering and 

Technology, vol. 4, no. 10, pp. 1830–1833, 2017. 

[10] M. Chi, J. Liu, and J. Yang, “ColdStore: A storage system for archival data,” Wireless Personal Communications, vol. 111, no. 4, 

pp. 2325–2351, Apr. 2020, doi: 10.1007/s11277-019-06989-5. 

[11] B. Jena, P. K. Kanaujia, S. Rautaray, and M. Pandey, “Improvising block placement policy in Hadoop framework,” in 2017 

International Conference on Computer Communication and Informatics (ICCCI), Jan. 2017, pp. 1–3, doi: 

10.1109/ICCCI.2017.8117743. 

[12] M. M. Alshammari, A. A. Alwan, A. Nordin, and I. F. Al-Shaikhli, “Disaster recovery in single-cloud and multi-cloud 

environments: Issues and challenges,” in 2017 4th IEEE International Conference on Engineering Technologies and Applied 

Sciences (ICETAS), Nov. 2017, pp. 1–7, doi: 10.1109/ICETAS.2017.8277868. 

[13] A. Mohanty, P. Ranjana, and D. V. Subramanian, “Small files consolidation technique in Hadoop cluster,” International journal 

of simulation: systems, science & technology, vol. 19, no. 6, pp. 31.1--31.5, Feb. 2019, doi: 10.5013/IJSSST.a.19.06.31. 

[14] C. B. V. Vardhan and P. K. Baruah, “Improving the performance of heterogeneous Hadoop cluster,” in 2016 Fourth International 

Conference on Parallel, Distributed and Grid Computing (PDGC), 2016, pp. 225–230, doi: 10.1109/PDGC.2016.7913150. 

[15] A. Chiniah and A. Mungur, “Dynamic erasure coding policy allocation (DECPA) in Hadoop 3.0,” in 2019 6th IEEE International 

Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing 

and Scalable Cloud (EdgeCom), Jun. 2019, pp. 29–33, doi: 10.1109/CSCloud/EdgeCom.2019.00015. 

[16] P. Matri and S. P, “TýrFS: Increasing small files access performance with dynamic metadata replication,” in 2018 18th 

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2018, pp. 452–461, doi: 

10.1109/CCGRID.2018.00072. 

[17] İ. Demir and A. Sayar, “Procedia technology Hadoop optimization for massive image processing: case study face detection,” 

International Journal of Computers Communications & Control, vol. 9, no. 6, pp. 664–671, 2012. 

[18] G. Attigeri, M. Pai. M. M, and R. M. Pai, “Framework to predict NPA/willful defaults in corporate loans: a big data approach,” 

International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 5, pp. 3786–3797, Oct. 2019, doi: 

10.11591/ijece.v9i5.pp3786-3797. 

[19] R. Rathidevi and S. Srinivasan, “Small files problem in Hadoop-a survey,” International Journal of Pure and Applied 

Mathematics, vol. 119, no. 15 Special Issue B, pp. 2833–2841, 2018. 

[20] L. Tu, S. Liu, Y. Wang, C. Zhang, and P. Li, “An optimized cluster storage method for real-time big data in internet of things,” 

The Journal of Supercomputing, vol. 76, no. 7, pp. 5175–5191, Jul. 2020, doi: 10.1007/s11227-019-02773-1. 

[21] T. Renner, J. Müller, L. Thamsen, and O. Kao, “Addressing Hadoop’s small file problem with an appendable archive file format,” 

in Proceedings of the Computing Frontiers Conference, May 2017, pp. 367–372, doi: 10.1145/3075564.3078888. 

[22] M. A. Ahad and R. Biswas, “Dynamic merging based small file storage (DM-SFS) architecture for efficiently storing small size 

files in Hadoop,” Procedia Computer Science, vol. 132, pp. 1626–1635, 2018, doi: 10.1016/j.procs.2018.05.128. 

[23] A. Khare and B. Indira, “A review on small files in Hadoop,” International Journal of Innovative Technology and Research 

(IJITR), vol. 5, no. 4, pp. 6585–6588, 2017. 

[24] H. Brabra, A. Mtibaa, W. Gaaloul, and B. Benatallah, “Toward higher-level abstractions based on state machine for cloud 

resources elasticity,” Information Systems, vol. 90, May 2020, doi: 10.1016/j.is.2019.101450. 

[25] J. Geetha, D. S. Jayalakshmi, and N. G. Harshit, “Implementation and performance analysis of dynamic partitioning of graphs in 

Apache Spark,” International Journal of Advanced Computer Research, vol. 10, no. 48, pp. 116–127, May 2020, doi: 

10.19101/IJACR.2020.1048023. 

[26] B. Gupta, R. Nath, G. Gopal, and K. Kartik, “An efficient approach for storing and accessing small files with big data 

technology,” International Journal of Computer Applications, vol. 146, no. 1, pp. 36–39, Jul. 2016, doi: 10.5120/ijca2016910611. 
 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 1757-1772 

1772 

BIOGRAPHIES OF AUTHORS  

 

 

Mohammad Bahjat Al-Masadeh     PhD candidate data mining/big data Universiti 

Teknikal Malaysia Melaka (UTeM), Master in information technology Universiti Utara 
Malaysia (UUM) in 2008, 2009. Currently a data engineer/big data researcher at Umm alQurah 

University, Mecca. He is a Sr .Net developer. Sr Sharepoint developer in info tech deanship 

Umm alQurah university, Mecca, Wordpress blogger about Hadoop administration, big data 

geek, Co-founder of wrshaa.com. He can be contacted at email: mbmasadeh@uqu.edu.sa. 

  

 

Mohd Sanusi Azmi     BSc., Msc and Ph.D from Universiti Kebangsaan Malaysia 

(UKM) in 2000, 2003 and 2013. He joined Department of Software Engineering, Universiti 
Teknikal Malaysia Melaka (UTeM) in 2003. Now, he is currently an Associate Professor at 

UTeM. He is the Malaysian pioneer researcher in identification and verification of digital 

images of Al-Quran Mushaf. He is also involved in Digital Jawi Paleography. He actively 

contributes in the feature extraction domain. He has proposed a novel technique based on 
geometry feature used in Digit and Arabic based handwritten documents. He can be contacted 

at email:  sanusi@utem.edu.my. 

 

  

 

Sharifah Sakinah Syed Ahmad     received B. Applied Science (Hons) Computer 
Modelling and M. Sc Mathematics from Universiti Sains Malaysia (USM). Her PhD is in 

Software Engineering and Intelligent System from University of Alberta, Canada. She is expert 

in computer aided geometric design (CAGD) and neural networks. Sharifah Sakinah is 

currently an Associate Professor in the Department of Intelligent Computing and Analytics 
(ICA), Faculty of Information and Communication Technology, Universiti Teknikal Malaysia 

Melaka (UTeM). She received her bachelor's and Masters degree of Applied Mathematics in 

School of Mathematics from the University Science Malaysia. Following this, she received her 

Ph.D. from the University of Alberta, Canada in 2012 in Intelligent System. Her research in 
graduate school focused on granular computing and fuzzy modeling. Her current research 

work is on the granular fuzzy rule-based system, evolutionary method, modeling and data 

science. She can be contacted at email: sakinah@utem.edu.my. 

 

https://orcid.org/0000-0002-8090-4709
https://scholar.google.com/citations?user=QtVJ2t8AAAAJ&hl=en
https://orcid.org/0000-0002-4355-3938
https://scholar.google.com/citations?user=uBzuUBcAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57198002453
https://orcid.org/0000-0002-3803-4578
https://scholar.google.com/citations?user=6R_cL9AAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=55994776000
https://publons.com/researcher/4505500/sharifah-sakinah-syed-ahmad/

