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 Motivated by the fact that the complexity of the computations is one of the 

main challenges in large multiple input multiple output systems, known as 

massive multiple-input multiple-output (MIMO) systems, this article 

proposes a low-complex minimum mean squared error (MMSE) Bayesian 

channel estimator for uplink channels of such systems. First, we have 

discussed the necessity of the covariance information for the MMSE 

estimator and how their imperfection knowledge can affect its accuracy. 

Then, two reduction phases in dimension and floating-point operations have 

been suggested to reduce its complexity: in phase 1, eigenstructure reduction 

for channel covariance matrices is implemented based on some truncation 

rules, while in phase 2, arithmetic operations reduction for matrix 

multiplications in the MMSE equation is followed. The proposed procedure 

has significantly reduced the complexity of the MMSE estimator to the first 

order O(M), which is less than that required for the conventional MMSE 

with O(M3) in terms of matrix dimension. It has been shown that the 

estimated channels using our proposed procedure are asymptotically aligned 

and serve the same quality as the full-rank estimated channels. Our results 

are validated by averaging the normalized mean squared error (NMSE) over 

a length of 500 sample realizations through a Monte Carlo simulation using 

MATLAB R2020a. 

Keywords: 

Computational complexity 

Imperfect covariance matrix 

Massive multiple-input 

multiple-output 

Minimum mean squared error 

estimator 

Singular value decomposition 

Uplink channel estimation 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Ahmed Hussein Shatti  

Department of Electrical Engineering, Faculty of Engineering, University of Babylon 

Babylon, Iraq 

Email: eng.ahmed.hussein@uob.edu.iq, dr.ehab@uob.edu.iq 

 

 

1. INTRODUCTION  

Massive multiple-input multiple-output (MIMO) systems are appreciated as an enabling technology 

for 5G and future generations [1]–[8]. The technology improved on traditional systems by employing large-

scale antennas at the base station (BS). This allows tens of terminal users (TUs) to be spatially multiplexed at 

the BS. For this purpose, the base station needs to pick up (to estimate) the uplink channels from all TUs in 

the cell. However, corresponding to the channel propagation issues, the channel of each TU should be 

repeatedly estimated during each coherence block. In practice, the individual elements of each channel vector 

are correlated at the BS, which implies that the practical channel is spatially correlated [9]. On the other 

hand, a careful design for such a large antenna system, also defined as a massive MIMO system, should be 

considered to improve antenna efficiency and performance on both the BS and the receiving side [10]–[13]. 

The channel covariance information describes the spatial characteristics of the channel, and its 

knowledge plays a crucial role in investigating an optimal minimum mean squared error (MMSE) channel 

estimate at the BS. The knowledge of statistical information of the channel is also relevant to the pilot 

contamination suppression [14]–[16] and source allocation [17]. In almost all literature on massive MIMO, 

https://creativecommons.org/licenses/by-sa/4.0/
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covariance matrices are assumed to be perfectly known [18], which is debatable because the dimensions of 

the covariance matrices change (growing) over time [19], [20]. However, in practice, the BS has incomplete 

knowledge about the statistics of the covariance matrices of the channels and needs to be estimated. The 

common approach to capturing such matrices is by evaluating sample covariance matrices for them, where 

the BS needs to see many pilot signal observations from each TU in the network. However, the estimated 

channels produced by this method are full-rank covariance matrices with large dimensions. Hence, promising 

approaches have been suggested in [21]–[24], to estimate such practical large-dimensional matrices, based on 

regularizing the diagonal and off-diagonal elements. 

Since these large matrices have to be manipulated every millisecond, their computational 

complexity will be a bottleneck problem. The underlying linear algebra operations such as matrix inversions 

and matrix-matrix multiplications have well-known defined structures that can be efficiently implemented in 

hardware and make the implementation of such large matrices possible. In this paper, two main phases were 

applied depending on the power of linear algebra and its possibilities in solving problems of large matrices. 

In the first one, a proposed truncation approach was applied for the large matrices that are estimated in [23] 

to reduce their dimensions/eigenstructure. We have done this based on the truncated singular value 

decomposition (TSVD) with a new proposed threshold (denoted by successive empirical threshold) and the 

singular value hard thresholding (SVHT) with the optimal threshold [25]. In the second phase, a factor-solve 

procedure [26] was implemented to reduce the arithmetic operation or what is called floating-point operations 

(FLOPS) of the MMSE computations. Our suggested procedure shows that the complex computations of our 

proposed MMSE estimator are significantly reduced to the order of 𝑂(𝑀) instead of 𝑂(𝑀3) corresponding to 

the conventional MMSE estimator. On the other hand, the quality of the estimated channels of our proposed 

approach has been validated in terms of the normalized MSE measurement. Due to the large reduction in 

complex computations, the results of our work will have important implications for the channel estimation 

using the MMSE estimator.  

The paper is organized: In section 2, two different covariance matrix estimation models are 

presented depending on the knowledge of the statistical information of the channel. In section 3, a proposed 

approach is suggested for the full-rank matrices developed in section 2. Evaluation results are discussed, 

analyzed, and validated in section 4. Finally, the paper concluded in section 5. 

 

 

2. CHANNEL ESTIMATION MODELS 

The main purpose of the estimation process is to find an approximate value for the unknown 

variable based on some observations. In this paper, we are particularly concerned with the Bayesian 

estimator, where the unknown variable is the channel between the TU and the BS and is a realization of a 

random variable with known or partially known statistical information at the BS. On the other hand, the 

observation signals are the received pilot signals at the BS. Therefore, in motivation with the knowledge of 

channel statistics, two models of channel estimation will be discussed here. The first one depends on the local 

scattering model [18], which has completely known statistical information at the BS, while the second model 

deals with the practical case, that is, when the BS has imperfect covariance information. We will use the 

following corollaries from [18], and [27] to define the local scattering model and the Bayesian estimator, 

respectively:  

Corollary1: The local scattering model: In this model, rich scattering objects are assumed to be 

surrounded the terminal user (TU), while the BS is elevated in a way that makes it free from scatters as 

shown in Figure 1, which is a non-line-of-sight (NLoS) propagation channel model. In almost all the 

literature on massive MIMO systems, the local scattering model is used to show how the channels are 

strongly spatially correlated, that is, which spatial direction is more likely than others. If hℓ𝑘
𝒿
∈ ℂ𝑀𝒿  denotes 

the uplink channel vector from a single-antenna TU 𝑘 in cell ℓ to a BS 𝒿 equipped with a uniform linear array 

(ULA) antennas, then the complex Gaussian distribution of the channel will be denoted by  

hℓ𝑘
𝒿
∼ ℂ𝒩 (0𝑀𝒿 , Rℓ𝑘

𝒿
), where Rℓ𝑘

𝒿
∈ ℂ𝑀𝒿×𝑀𝒿 , is a positive semi-definite covariance matrix. The (𝑙, 𝑚)𝑡ℎ 

element of Rℓ𝑘
𝒿

 is described: 

 

[Rℓ𝑘
𝒿
]
𝑙,𝑚
= 𝛽ℓ𝑘

𝒿
𝑒2πjd𝐻(𝑙−𝑚)sin⁡(𝜑)𝑒−

𝜎𝜑
2

2
(2πd𝐻(𝑙−𝑚) cos(𝜑))

2
 (1) 

 

where 𝛽 is the average channel gain, 𝜑 denotes the nominal angle of the reached planner array from the TU, 

and 𝜎𝜑 refers to the angular standard deviation from the nominal angle, assumed to be Gaussian distributed.  

Corollary2: The Bayesian MMSE estimator: the MMSE estimator is defined as the mean of the 

posterior PDF of the random variable h given the observation y i.e., ĥ(y) = 𝔼{h|y}. Also, it is defined as the 
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estimator that minimizes the expectation of the squared difference of the loss function ℓ(h − ĥ(y)), that is it 

will minimize the MSE 𝔼{‖h⁡ − ĥ(y)‖
2
)}. Let ĥ(y) denotes the Bayesian estimator of the unknown variable 

h ∼ ⁡ℂ𝒩(0𝑀, R) based on the observation signal y = h𝑞 + n, where 𝑞 ∈ ℂ and n is the additive noise with 

n ∼ ⁡ℂ𝒩(0𝑀, S). If R and S are positive semi-definite covariance matrices and they are independent, then the 

Bayesian MMSE estimator can be written as: ĥ(y) = 𝑞∗R(|𝑞|2R + S)−1y and the MSE is given by  

MSE = 𝑡𝑟(R−|𝑞|2R(|𝑞|2R + S)−1R). More details are in [27]. 

 

 

 
 

Figure 1. NLoS, local scattering model, four of many path components are shown with key parameters:  

𝑑𝐻 = 1 2⁄  wavelength spacing antenna, 𝜑 =nominal angle of TU, and 𝜎𝜑 =angular standard deviation 

 

 

2.1.  Channel estimation of the completely known covariance matrix 

In general, to estimate the channel h𝒿𝑘
𝒿

 at the BS 𝒿 in cell 𝒿 from a particular TU 𝑘, first, the BS 

observes the sending pilot signals (Y𝒿
𝑃) by all TUs in the network, each with 𝜏𝑝 pilot sequence length, then, 

correlates its observation with the pilot sequence 𝜙𝒿𝑘 ∈ ℂ
𝜏𝑝 of the desired 𝑘th TU. The received pilot signal 

Y𝒿
𝑃 and its processing signal 𝑦𝒿𝒿𝑘

𝑃  are defined in (2) and (3), respectively: 

 

Y𝒿
𝑃 = ∑ √𝑝𝒿𝑘 ⁡h𝒿𝑘

𝒿
⁡𝜙𝒿𝑘
𝑇𝐾𝒿

𝑘=1⏟            
𝑖𝑛𝑡𝑟𝑎−𝑐𝑒𝑙𝑙⁡𝑇𝑈𝑠

+ ∑ ∑ √𝑝ℓ𝑖 ⁡hℓ𝑖
𝒿
⁡𝜙ℓ𝑖
𝑇𝐾𝑖

𝑖=1⁡⁡
𝐿
ℓ=1⏟              
𝑖𝑛𝑡𝑒𝑟−𝑐𝑒𝑙𝑙⁡𝑇𝑈𝑠⁡(ℓ≠𝒿)

+ N𝒿
𝑃 (2) 

 

𝑦𝒿𝒿𝑘
𝑃 = Y𝒿

𝑃𝜙𝒿𝑘
∗ = ∑ ∑ √𝑝ℓ′𝑖′ ⁡hℓ′𝑖′

𝒿
𝜙ℓ′𝑖′
𝑇 ⁡

𝐾
𝑖′

𝑖′=1
𝐿
ℓ′=1 𝜙𝒿𝑘

∗ + N𝒿
𝑃𝜙𝒿𝑘

∗  (3) 

 

where Y𝒿
𝑃 ∈ ℂ𝑀𝒿×𝜏𝑝, N𝒿

𝑃 ∈ ℂ𝑀𝒿×𝜏𝑝 ∼ ⁡ℂ𝒩(0𝑀𝒿 , 𝜎UL
2 ) is the additive noise at the ULA of the BS, 𝜙ℓ′𝑖′  is the 

pilot sequence associated with each 𝑖th TU in the network, and 𝑝ℓ′𝑖′ is the sending signal power during the 

pilot transmission period. However, (3) can be rewritten in general form: 

 

𝑦𝒿𝒿𝑘
𝑃 = √𝑝𝒿𝑘 ⁡𝜏𝑝h𝒿𝑘

𝒿
+ ∑ √𝑝ℓ′𝑖′ ⁡𝜏𝑝hℓ′𝑖′

𝒿
⁡(ℓ′,𝑖′)∈𝒫𝒿𝑘
+ N𝒿

𝑃𝜙𝒿𝑘
∗
 (4) 

 

where 𝜏𝑝 = 𝜙ℓ′𝑖′
𝑇 𝜙𝒿𝑘

∗  , and the set (ℓ′, 𝑖′) ∈ 𝒫𝒿𝑘 is defined for all TUs that have a similar pilot sequence as the 

𝑘th desired TU. If the last equation is normalized by 𝑠𝒿𝑘
𝑡𝑟 = √𝑝𝒿𝑘 ⁡𝜏𝑝, the processed received signal will be: 

 

𝑦𝒿𝒿𝑘
𝑃 = h𝒿𝑘

𝒿
+ ∑ hℓ𝑖

𝒿
⁡𝐿

ℓ=1,ℓ≠𝒿 +
1

√𝑠𝒿𝑘
𝑡𝑟
N𝒿
𝑃𝜙𝒿𝑘

∗
 (5) 

Now, based on the predesigned pilots at the BS and the normalized processed received signal 𝑦𝒿𝒿𝑘
𝑃 , the 

MMSE estimate of the channel h𝒿𝑘
𝒿

 [18], [23] will has the formula: 

 

ĥ𝒿𝑘
𝒿
= R𝒿𝑘

𝒿
(Ψ𝒿𝑘

𝒿
)−1𝑦𝒿𝒿𝑘

𝑃  (6) 

 

where Ψ𝒿𝑘
𝒿
= 𝔼 {𝑦𝒿𝒿𝑘

𝑃 (𝑦𝒿𝒿𝑘
𝑃 )

𝐻
} /𝜏𝑝, refers to the sum of correlation matrices of all interfering TUs, given  

by (7). 
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Ψ𝒿𝑘
𝒿
= ∑ Rℓ𝑘

𝒿
⁡𝐿

ℓ=1 +
1

𝑠𝒿𝑘
𝑡𝑟 I𝑀 (7) 

 

However, the estimator in (6) is a channel vector that is used to minimize the second-order moment 

of estimation error 𝔼{‖h̃𝒿𝑘
𝒿
‖
2

= ‖h𝒿𝑘
𝒿
− ĥ𝒿𝑘

𝒿
‖
2

}. The vectors ĥ𝒿𝑘
𝒿

 and h̃𝒿𝑘
𝒿

 are both independent random 

vectors, their distributions described as ĥ𝒿𝑘
𝒿
∼ ⁡ℂ𝒩(0𝑀𝒿 , R̂𝒿𝑘

𝒿
) and h̃𝒿𝑘

𝒿
∼ ⁡ℂ𝒩(0𝑀𝒿 , R𝒿𝑘

𝒿
− R̂𝒿𝑘

𝒿
), where  

R̂𝒿𝑘
𝒿
= 𝔼{ĥ𝒿𝑘

𝒿
(ĥ𝒿𝑘
𝒿
)𝐻} is the statistical information of the estimated channel using the MMSE estimator [24]. 

 

R̂𝒿𝑘
𝒿
= R𝒿𝑘

𝒿
(Ψ𝒿𝑘

𝒿
)−1R𝒿𝑘

𝒿
 (8) 

 

Note that the covariance matrix of the channel estimate ĥ𝒿𝑘
𝒿

 is mainly dependent on the statistics of 

all channels in the network. It means that the BS can determine the MMSE estimator ĥ𝒿𝑘
𝒿

 only when it knows 

the covariance matrices R𝒿𝑘
𝒿

 and Ψ𝒿𝑘
𝒿

. However, in practice, the BS has no prior knowledge about these 

statistics. In the following part, we will explain how the BS can estimate the channel covariance matrices 

practically. 

 

2.2.  Channel estimation of the practical covariance matrix 

In practice, to estimate the channel vector, the BS needs to see many observations from the sending 

pilot signal by all TUs in the network. The channel statistics are assumed constant during the entire system 

bandwidth (over several coherence blocks). Let’s start with the estimation of Ψ𝒿𝑘
𝒿

. 

 

2.2.1. Estimation of 𝚿𝒿k
𝒿

 

Suppose the BS 𝒿 has 𝑁𝛹 observations from 𝑦𝒿𝒿𝑘
𝑃  denoted by 𝑦𝒿𝒿𝑘

𝑃 [1], … , 𝑦𝒿𝒿𝑘
𝑃 [𝑁𝛹]. Hence, it can be 

shaped the sample covariance matrix as (9). 

 

Ψ̂𝒿𝑘
𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)

=
1

𝑁𝛹
∑ 𝑦𝒿𝒿𝑘

𝑃 [𝑛](𝑦𝒿𝒿𝑘
𝑃 [𝑛])𝐻

𝑁𝛹
𝑛=1  (9) 

 

Corresponding to the ergodic characteristics of the channel and large numbers law, the particular variance of 

any antenna, indexed by 𝑚, converges to the real variance when 𝑁𝛹 goes to infinity. 

 

[
1

𝑁𝛹
∑ 𝑦𝒿𝒿𝑘

𝑃 [𝑛](𝑦𝒿𝒿𝑘
𝑃 [𝑛])𝐻

𝑁𝛹
𝑛=1 ]

𝑚,𝑚

⁡⁡⁡⁡⁡⁡𝑎.𝑠⁡⁡⁡⁡⁡
→     [Ψ𝒿𝑘

𝒿
]
𝑚,𝑚

 (10) 

 

Note that the standard deviation in (10) decays as 1 √𝑁𝛹⁄ . Hence, the BS needs only a few numbers 

from the observation 𝑦𝒿𝒿𝑘
𝑃  to achieve a near-optimal channel estimate. The same approach is utilized for 

estimating the 𝑀 ×𝑀 covariance matrix Ψ̂𝒿𝑘
𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)

. Similarly, every (𝑙, 𝑚)𝑡ℎ element in the sample 

covariance matrix will be close to the symmetrical location in the true covariance matrix Ψ𝒿𝑘
𝒿

. However, due 

to the estimation error in the 𝑀2 elements, there is a more challenge to get on a sample covariance matrix 

whose eigenstructure is well aligned with those of the true Ψ𝒿𝑘
𝒿

 matrix. This may have a crucial impact on the 

channel estimate in massive MIMO systems since the MMSE estimator exploits such eigenstructure in its 

major formula in (6). However, since the diagonal elements of the covariance matrices define the sample 

variances of all antennas at the BS; hence, one can exploit only the diagonal elements in Ψ̂𝒿𝑘
𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)

 matrix 

to formulate a diagonal matrix as Ψ̂𝒿𝑘
𝒿 (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙)

. However, convex combination approaches that use both the 

sample and diagonal matrices have been suggested in [21]–[23] to obtain a robust estimation: 

 

Ψ̂𝒿𝑘
𝒿 (𝑐) = 𝑐⁡Ψ̂𝒿𝑘

𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)
+ (1 − 𝑐)Ψ̂𝒿𝑘

𝒿 (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙)
 (11) 

 

where Ψ̂𝒿𝑘
𝒿 (𝑐) refers to the regularized sample covariance matrix, and 𝑐 denotes the regularization factor, it 

takes random values between 0 and 1. Hence, one can optimize this parameter to obtain a robust estimation 

for the Ψ̂𝒿𝑘
𝒿

. However, due to the regularization method in these convex approaches, they produce full-rank 
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covariance matrices from Ψ̂𝒿𝑘
𝒿

 even the number of observations is less than the number of antennas at the 

base station. 

 

2.2.2. Estimation of 𝐑𝒿𝑘
𝒿

 

In this part, the same approach is followed to estimate the individual covariance matrix R𝒿𝑘
𝒿

, but with 

extra pilots for the interfering TUs [23]. A procedure for two-stage of estimations has been suggested here: in 

the first stage, the BS will estimate Ψ̂𝒿𝑘,
𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)

, the sum of sample covariance matrices of all interfering TUs 

including desired TU (with extra pilots assigned for each TU), while, in the second stage, the BS uses the 

extra pilot observations 𝑁𝑒𝑥𝑡𝑟𝑎 of interfering users to estimate their covariance matrices as Ψ̂𝒿𝑘,−𝑘
𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)

, 

without including desired TU. Then, the desired sample covariance matrix of the TU is determined: 

 

R̂𝒿𝑘
𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)

= Ψ̂𝒿𝑘
𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)

−⁡Ψ̂𝒿𝑘,−𝑘
𝒿

(𝑠𝑎𝑚𝑝𝑙𝑒)

 (12) 

 

Similarly, using a regularizing factor, the regularized individual matrix is given by (13): 

 

R̂𝒿𝑘
𝒿
(𝛼) = 𝛼R̂𝒿𝑘

𝒿 (𝑠𝑎𝑚𝑝𝑙𝑒)
+ (1 − 𝛼)R̂𝒿𝑘

𝒿 (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙)
 (13) 

 

2.2.3. Estimation of h𝒿𝑘
𝒿

 

Depending on the estimated covariance matrices in the previous parts, it can be now computing the 

approximate MMSE channel estimate: 

 

ĥ𝒿𝑘
𝒿
= A𝒿𝑘

𝒿 (𝑐, 𝛼)⁡𝑦𝒿𝒿𝑘
𝑃  (14) 

 

where A𝒿𝑘
𝒿 (𝑐, 𝛼) = R̂𝒿𝑘

𝒿 (𝛼)⁡(Ψ̂𝒿𝑘
𝒿 (𝑐))−1, and is mainly dependent on the observation 𝑦𝒿𝒿𝑘

𝑃 . However, the 

estimation quality can be measured by the normalized MSE in terms of the matrix A𝒿𝑘
𝒿 (𝑐, 𝛼) [18]: 

 

NMSE (A𝒿k
𝒿
) = 1 −

2√𝑝𝜏𝑝⁡ℜ(tr(R̂𝒿𝑘
𝒿
A𝒿k
𝒿
))−𝜏𝑝tr(A𝒿k

𝒿
Ψ̂𝒿𝑘
𝒿 −1

A𝒿k
𝒿 𝐻

)

tr(R̂𝒿𝑘
𝒿
)

 (15) 

 

where R̂𝒿𝑘
𝒿

 and Ψ̂𝒿𝑘
𝒿 −1

= (𝑝𝜏𝑝R̂𝒿𝑘
𝒿
+ 𝜎UL

2 I𝑀) are the regularized covariance matrices. 

 

 

3. PROPOSED APPROACH 

In this section, two phases of complexity reduction have been suggested for getting a lower 

computational estimator. In phase 1, the covariance matrices of the spatial channels were reduced in 

dimensions exploiting their eigenstructure properties. In phase 2, an arithmetic operation reduction procedure 

was followed to minimize matrix multiplications of the MMSE in (14). 

 

3.1.  Phase 1: eigenstructure reduction of the covariance matrices 

In this phase, we will describe how the dimensions of the channel’s covariance matrices are reduced 

with the aid of their eigenstructure properties. It has used the singular value decomposition (SVD) as the 

basic math of Lemmas (1) and (2). A greater dimension’s reduction for the covariance matrices happens in 

Lemma (3) with a new proposed threshold the “Successive empirical TSVD threshold (SETSVD)”.  

 

3.1.1. Lemma 1. Eigenstructure of R 

Let h ∼ ⁡ℂ𝒩(0𝑀 , R) be an arbitrary channel of any TU at the BS. The eigenstructure of the channel 

covariance can be written as R = UΣUH, where U ∈ ℂ𝑀×𝑀is a matrix that contains the eigendirections and 

Σ = diag(λ1, … , λ𝑀) contains the corresponding eigenvalues. If h̃𝒿𝑘
𝒿
∼ ⁡ℂ𝒩(0𝑀𝒿 , R𝒿𝑘

𝒿
− R̂𝒿𝑘

𝒿
) denotes the 

estimation error; then, it can be defined its correlation matrix [18]:  

 

C = R − 𝑝𝜏𝑝R(𝑝𝜏𝑝R + 𝜎UL
2 I𝑀)

−1
R = U⁡ (Σ − 𝑝𝜏𝑝Σ(𝑝𝜏𝑝Σ + 𝜎UL

2 I𝑀)
−1
Σ)⁡UH 
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Substitute Σ by the individual eigenvalue λ𝑖 , then: 

 

C = U⁡diag(λ1 −
𝑝𝜏𝑝λ1

2

𝑝𝜏𝑝λ1+𝜎UL
2 , ……… , λ𝑀 −

𝑝𝜏𝑝λ𝑀
2

𝑝𝜏𝑝λ𝑀+𝜎UL
2 )⁡U

H (16) 

 

Also, it can be rewritten (16): 

 

C = U⁡diag(
λ1

SNR𝒿𝑘
eff⁡

λ1

𝛽
𝒿𝑘
𝒿 +1

, ……… ,
λ𝑀

SNR𝒿𝑘
eff⁡

λ𝑀

𝛽
𝒿𝑘
𝒿 +1

)⁡UH (17) 

 

where SNR𝒿𝑘
eff = 𝑝𝒿𝑘𝜏𝑝𝛽𝒿𝑘

𝒿
𝜎UL
2⁄  denotes the effective SNR, and 𝜏𝑝 refers to the channel processing gain. Note 

that the eigenvectors of matrix C are the same as the eigenvectors of matrix R. Only the eigenvalues are 

different and take a fractional form as described in (17). However, each eigenvalue in C represents the 

variance of the estimation error in each eigendirection, and it approaches zero when SNR𝒿𝑘
eff → ∞. Each 

eigendirection in R with a large eigenvalue will have a smaller normalized error variance. Hence, killing the 

unnecessary eigenvalues and keeping only the large ones, will have a major impact on reducing the errors in 

the dimensions of the covariance matrices, and the complex computations as well.  

 

3.1.2. Lemma 2. Reduced eigenstructure of R 

 Let R = UΣUH be the SVD structure of an arbitrary large matrix R ∈ ℂ𝑀×𝑀. Hence, the reduced 

eigenstructure of the matrix depending on its rank 𝑟 will be R̃ ≈ ŨΣ̃ŨH. The matrix Ũ contains the first 𝑟 ≪
𝑀 columns of U and Σ̃ contains the first 𝑟 × 𝑟 upper left block of the Σ. 

 

R = UΣUH = [U𝑟|U𝑟+1→𝑀] [
Σ𝑟 0
0 0

] [U𝑟|U𝑟+1→𝑀]
H = 

[U𝑟|U𝑟+1→𝑀] [
Σ𝑟 0
0 0

] [
Ur
H

Ur+1→M
H

] = [U𝑟][Σ𝑟][Ur
H] 

 

The last term is the approximation of R and is sometimes denoted as the reduced SVD of R or R̃ ≈ ŨΣ̃ŨH. 

 

3.1.3. Lemma 3. Successive-empirical TSVD threshold vs. optimal SVHT threshold 

If R is a large 𝑀 ×𝑀 matrix, two well-known truncation approaches have been used to reduce such 

large matrices. The first one is called the truncated singular value decomposition (TSVD) which is given by 

(18): 

 

RTSVD = ∑ λ𝑖𝑢𝑖𝑣𝑖
′𝑟

𝑖=1  (18) 

 

where 𝑟 refers to the rank of matrix R, λ𝑖  denotes the individual eigenvalue, 𝑢𝑖𝑣𝑖
′ are left and right 

eigenvectors, respectively. The equation (18) represents a standard truncation rule since it uses the rank of the 

matrix to find its approximation. However, to get more reduction in the eigenstructure, we have suggested 

successive threshold values [28], [29] (SETSVD) that are extracted empirically from the data of the 

covariance matrices and applied in (18). The second type of truncation approach utilizes the SVHT rule [25], 

which has the formula: 

 

RSVHT = ∑ 𝒯𝐻(λ𝑖; 𝜏)𝑢𝑖𝑣𝑖
′𝑀

𝑖=1  (19) 

 

where 𝒯𝐻(λ𝑖; 𝜏) = {λ𝑖:⁡λ𝑖 ≥ 𝜏} denotes the hard thresholding rule. The optimal SVHT threshold for R𝑀×𝑀 is 

given by: 𝜏 = 2.858⁡𝑦𝑚𝑒𝑑 ⁡, where 𝑦𝑚𝑒𝑑 =median of the singular values.  

 

3.2.  Phase 2: floating-point operations reduction of the MMSE estimator 

Often, the computational complexity is measured by counting the FLOPS of the arithmetic 

operations and expressed as a polynomial (function of the matrices dimensions). Each flop point is defined as 

one addition, multiplication, subtraction, or division of two floating-point numbers [26]. To simplify the cost 

of the total FLOPS, we often ignore the lower terms and keep the leading terms (the terms with the largest 

exponents). For example, to evaluate the number of FLOPS of the inner product of two vectors x and y both 

are ∈ ℝ𝑀, the term x𝑇y will multiply all 𝑥𝑖𝑦𝑖 elements and then add them with 𝑀 multiplication and 𝑀 − 1 

addition i.e., 2𝑀 − 1 FLOPS are required, which can be then simplified to 2𝑀 FLOPS by keeping only the 
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leading term. Hence, we can say that the inner product requires 2𝑀 FLOPS only. Another example is  

matrix-vector multiplication⁡y, where Ψ⁡ ∈ ℝ𝑀×𝑀 and y ∈ ℝ𝑀 requires 2𝑀2 FLOPS which represents the 

calculation of the inner product of the 𝑀 components of y with each row of the matrix. The standard 

complexity of computations of the MMSE estimator in (6) is given in [18]: i) correlating 𝑦𝒿𝒿𝑘
𝑃  with 

predesigned pilot sequences at the BS, given by 𝑀𝒿𝜏𝑝, ii) multiplication 𝑦𝒿𝒿𝑘
𝑃  with R𝒿𝑘

𝒿
 and Ψ𝒿k

𝒿
 matrices, 

given by (4M𝒿
3 −M𝒿)/3, and iii) per additional TU computations, given by 𝑀𝒿

2. 

The problems of matrix inversions and matrix-vector multiplications are often arising when we try 

to solve linear equations such as the MMSE estimator in (6). Notably, the generic method for solving these 

linear equations requires a computational complexity that grows approximately as 𝑀3. However, to solve 

such equations more efficiently with computational savings, the factor-solve method [26] with two essential 

steps, matrix factorization and backward solving provides an effective approach that can be followed. In this 

paper, we have used the factor-solve method based on SVD matrix factorization with and without reducing 

the eigenstructure of the covariance matrices. 

 

3.2.1. Factor-solve method without reducing eigenstructure of 𝐑  

From corollary2 we have derived ĥ(y) = 𝑞∗R(|𝑞|2R + S)−1y, which can be expressed in terms of 

the eigenstructure of R described in Lemma (1): ĥ(y) = 𝑞∗UΣUH(|𝑞|2UΣUH + S)−1y. The factor-solve 

procedure will be: For SVD factorization, the cost will be 2𝑚𝑛2 + 11𝑛3 for an 𝑚 × 𝑛 matrix [30] without 

any reduction in the eigenstructure, that is if 𝑚 = 𝑛 = 𝑀, the cost will be 13𝑀3. The factorization and 

solving steps can be summarized: i) factorization: factor R as R = UΣUH without reducing eigenstructure this 

has a cost (13𝑀3) FLOPS; ii) backward solving: we start with inverse matrix computations. 

− Solving ΣUH = (𝑀 ×𝑀) ∗ (𝑀 ×𝑀) = 𝑀 ×𝑀 matrix, costs (2𝑀2) FLOPS since Σ is diagonal. 

− Solving U(ΣUH)= (𝑀 × 𝑀) ∗ (𝑀 ×𝑀) = 𝑀 ×𝑀 matrix, costs (2𝑀3) FLOPS. 

− Multiplication (𝑀 ×𝑀) matrix by |𝑞|2 costs (𝑀2) FLOPS. 

− Addition (𝑀 ×𝑀) matrix with S is also (𝑀 ×𝑀) matrix, costs (𝑀2) FLOPS. 

Now, let |𝑞|2UΣUH + S = Ψ, then Ψ−1y = w ⟹ Ψw = y is a set of 𝑀 linear equations with 𝑀 

variables that costs (2 3)⁄ 𝑀3 [26]. Hence, the total number of FLOPS for solving the inverse matrix is 

2𝑀3 + 4𝑀2 + (2 3)⁄ 𝑀3 FLOPS. The rest of the computations of the multiplication E−1y by 𝑞∗UΣUH using 

the backward solving procedure will cost 4𝑀2 + 3𝑀. Thus, the total number of FLOPS will be the sum of 

the cost at both the factorization and backward solving steps, that is 2𝑀3 + (2 3)⁄ 𝑀3 + 8𝑀2 + 3𝑀. Keeping 

only the leading terms, the total cost of computations without reducing the eigenstructure of R will be 

(8 3)⁄ 𝑀3FLOPS, which has 𝑂(𝑀3) order of complexity.  

 

3.2.1. factor-solve method with reducing eigenstructure of 𝐑  

Depending on the reduced eigenstructure in Lemma (2), the MMSE estimator in corollary2 can be 

rewritten as ĥ = ŨRΣ̃RUR
H⁡(ŨΨ−1Σ̃Ψ−1ŨΨ−1

H )𝑦 using a small trick here, by equating (|𝑞|2UΣUH + S)−1 = Ψ−1 

and making another factorization for the resultant matrix. Although this procedure costs us another 

factorization cost for Ψ−1matrix but it contributes to reducing the computation to a lower order. However, 

following the same procedure above, the total number of FLOPS is calculated: first, the multiplication ŨΨ−1
H 𝑦 

is an (𝑟 × 𝑀). (𝑀 × 1)⁡matrix-vector multiplication that yields (𝑟 × 1)⁡vector and results in 2𝑀𝑟 FLOPS. 

Second, the next multiplication Σ̃Ψ−1(ŨΨ−1
H 𝑦) is another matrix-vector multiplication that produces 2𝑟 

FLOPS, since Σ̃Ψ−1  is a diagonal matrix that multiplies (𝑟)⁡diagonal elements from (𝑟 × 𝑟) matrix by 

(𝑟 × 1)⁡vector, resulting in another (𝑟 × 1)⁡vector. The last multiplication ŨΨ−1(Σ̃Ψ−1(ŨΨ−1
H ⁡𝑦)) is multiplied 

(𝑟 × 𝑀). (𝑀 × 1) and results in 2𝑀𝑟 FLOPS. Thus, the number of FLOPS in solving Ψ−1 matrix is given by 

4𝑀𝑟 + 2𝑟. The same procedure was followed for the R matrix, which in turn results in the number of FLOPS 

4𝑀𝑟 + 2𝑟. Hence, for solving steps, the cost is 2(4𝑀𝑟 + 2𝑟) FLOPS. By adding the cost of factorization 

step for the reduced eigenstructure (4𝑀𝑟2 − (4 3)⁄ 𝑟3) [30], the total number of FLOPS for the MMSE 

estimator will be 2(4𝑀𝑟 + 2𝑟) + 2(4𝑀𝑟2 − (4 3)⁄ 𝑟3) FLOPS. Since ≪ 𝑀, hence, the last polynomial can 

be more simplified by keeping only the leading terms 8𝑀𝑟2 which has a first-order 𝑂(𝑀) of complexity. 

This result represents the major contribution of our work; hence, our proposed MMSE estimator requires 

only 𝑂(𝑀) instead of 𝑂(𝑀3) of complex computations of the conventional MMSE estimator. The 

complexity of our proposed procedure and the state of the art in [22] are compared in Table 1. 

Moreover, since we have assumed constant statistics during the coherence time. So, R and Ψ 

matrices will be identical for all subscribers in the coherence block. Hence, the multiplication by these 

matrices is precomputed at one time and only for one TU then accounts for all users in the same coherence 

time. 
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Table 1. A comparison of complex computations in MMSE estimator  
Algorithm Computational complexity Total number of (flops) 

Factor-solve algorithm (without 
reducing eigenstructure) 

𝑂(𝑀3) 2𝑀3 + (2 3)⁄ 𝑀3 + 8𝑀2 + 3𝑀 ≈ (8 3)⁄ 𝑀3 

Factor-solve algorithm (our 

proposed) (with reducing 
eigenstructure) 

𝑂(𝑀) 2(4𝑀𝑟 + 2𝑟) + 2(4𝑀𝑟2 − (4 3)⁄ 𝑟3) ≈ 8𝑀𝑟2 

Polynomial expansion channel 

(PEACH) algorithm [22] 
𝑂(𝑀2) 𝑘𝑐[(8𝐿 + 4)𝑀

2 − (4𝐿 + 2)] + 𝑘𝑠[2𝑀
2 −𝑀] 

Where 𝐿 is a polynomial degree, 𝑘𝑐 is the 

precomputations per channel realization, and 𝑘𝑠 is 

the precomputations per coherence time. 

 

 

4. RESULTS ANALYSIS 

To evaluate the performance of our proposed approach, we have considered the scenario of the local 

scattering model shown in Figure 1, with the following parameters: the number of antennas at the BS  

𝑀 = 100, the wavelength antenna spacing dH= 1 2⁄ , and the angular standard deviation σφ=10o, assuming 

Gaussian distribution with an effective signal-to-noise ratio of 10 dB. Our proposed low-complex MMSE 

estimator is implemented using the NMSE in (14) with different ranks from the eigenstructure of covariance 

matrices and averaged over different sample realizations (500 samples) using a Monte Carlo simulation in 

Figure 2. It is found that the curve of the NMSE of the truncated matrices of our proposed approach has 

aligned with the curve of the full-rank covariance matrices as shown in Figure 2. 

 

 

 
 

Figure 2. NMSE of the estimated spatially correlated channel for intra-cell TU averaged over a range of 

samples under imperfect knowledge covariance matrices and different ranks, the number of observations=50 

 

 

Also, it has been shown that the curve of the NMSE decays asymptotically and close to the lower 

bound (the case of closing to minimum MSE) with about (100 samples) range, which is the case for the 

number of antennas at the BS. On the other hand, the complex calculations including reduced and full-rank 

eigenstructure of covariance matrices are concluded in Table 2. Behind the large reduction in the 

eigenstructure of the covariance matrices with SETSVD and (optimal SVHT) thresholds; the computational 

complexity of the estimated channels has been significantly reduced, especially at the ranks 𝑟 = 35 and  

𝑟 = ⁡48. However, we have obtained undesirable estimated channels when reducing the eigenstructure of the 

covariance matrices to ranks 𝑟 = 20 and 𝑟 = 30 as shown in Figure 2 (blue and red curves). As mentioned in 

(17), the error in each eigendirection is inversely proportional to the SNRjk
eff, this fact can be clearly seen in 

Figure 3, the NMSE curve decays in two orders of magnitude when the effective signal-to-noise ratio 

becomes as high as 20⁡dB. Our results in Figure 3 show that the estimation error with the truncated matrices 

is even better than the completely known covariance matrix of the local scattering model since the error in 

the last one is larger. Figure 4 shows the keeping and killing eigenvalues of the channel covariance matrices, 

however, it shows how we can ultimately reduce the eigenstructure of the covariance matrices when using 

the proposed empirical threshold and the optimal as well. 
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Table 2. Complex computations of the low-complex MMSE estimator based on reduced eigenstructure 
Rank Flops Polynomial Flops Computations 

𝑟1 = 20 8𝑀𝑟2 32 e+04 
𝑟2 = 30 8𝑀𝑟2 72 e+04 

𝑟3 = 35, ESTSVD 8𝑀𝑟2 98 e+04 
𝑟4 = 48, optSVHT 8𝑀𝑟2 184.32 e+04 

𝑟5 = 100 (8 3)⁄ 𝑀3 2.666666+06 

 

 

 
 

Figure 3. NMSE of the estimated channels using the truncated covariances averaged over different values 

from the effective SNR and different ranks, the number of observations=50 

 

 

 
 

Figure 4. truncation singular values using optimal SVHT threshold=48 and the proposed SETSVD  

threshold=35 

 

 

5. CONCLUSION 

In this paper, we have proposed a low-complex MMSE channel estimator for the uplink (UL) 

channels in the massive MIMO system. First, we have discussed the necessity of the covariance information 

for the MMSE channel estimator in such a large MIMO system and how can they affect the accuracy of the 

estimator. Then, we have used two phases of a procedure to reduce the computational complexity in the 

conventional MMSE estimator. A truncation approach has been used in phase 1 to reduce the eigenstructure 

of the estimated channels based on the well-known matrix truncation methods TSVD and SVHT, while the 

factor-solving procedure has been followed in phase 2 to reduce the total number of FLOPS of the MMSE 
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estimator. The main advantage of this article is that the MMSE estimator has been reduced to the order of 

𝑂(𝑀) complexity which is less than that required for the conventional MMSE estimator. It is noticed that the 

estimated channels with reduced eigenstructure have served the same quality as the full-rank channels while 

keeping lower computational complexity. Also, it is found that the estimation error with truncated matrices is 

less than the error when using the completely known covariance matrix of the local scattering model. The 

precomputations of the MMSE estimator at the BS including covariance matrices multiplications are 

significantly reduced when we have applied the proposed SETSVD. The last one outperforms the optimal-

SVHT threshold in reducing the computations listed in Table 2, in particular when using the rank 𝑟⁡ = 35, 

which is the best empirical rank for approximating the covariance matrices without estimation error, that is 

the estimated channels at this rank keep a minimum MSE for the Bayesian estimator.  
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