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 Photovoltaic (PV) parameters estimation from the experimental current and 

voltage data of PV modules is vital for monitoring and evaluating the 

performance of PV power generation systems. Moreover, the PV parameters 

can be used to predict current-voltage (I-V) behavior to control the power 

output of the PV modules. This paper aimed to propose an improved 

differential evolution (DE) integrated with a dynamic population sizing 

strategy to estimate the PV module model parameters accurately. This study 

used two popular PV module technologies, i.e., poly-crystalline and  

mono-crystalline. The optimized PV parameters were validated with the 

measured data and compared with other recent meta-heuristic algorithms. 

The proposed population dynamic differential evolution (PDDE) algorithm 

demonstrated high accuracy in estimating PV parameters and provided 

perfect approximations of the measured I-V and power-voltage (P-V) data 

from real PV modules. The PDDE obtained the best and the mean RMSE 

value of 2.4251E-03 on the poly-crystalline Photowatt-PWP201, while the 

best and the mean RMSE value on the mono-crystalline STM6-40/36 was  

1.7298E-03. The PDDE algorithm showed outstanding accuracy 

performance and was competitive with the conventional DE and the existing 

algorithms in the literature. 
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1. INTRODUCTION 

The solar photovoltaic (PV) industry is currently experiencing rapid growth, which is indicated by 

the ability to mass-produce modules at low prices [1] and their applications for residential and utility-scale 

PV power generations. The use of PV modules for power generations is increasingly in demand and will 

increase in the future [2], [3] due to the availability of solar irradiation, which is naturally abundant,  

eco-friendly, and independent from fossil fuels. Moreover, the PV power generations have the advantages 

such as sustainability, long project lifespan, and less maintenance during operation. It is crucial to know the 

actual dynamic behavior of the PV modules in order to control, monitor, and evaluate the operation of the PV 

systems [4]. Therefore, it is necessary to find accurate PV parameters referring to the measured voltage and 

current data. The PV parameters can be used to predict the current-voltage (I-V) and power-voltage (P-V) 

characteristics of the PV modules. The current-voltage curve describes the output voltage and current 
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generated by the PV modules when operating under certain solar irradiance and temperature conditions. 

From the power-voltage curve, the most efficient output voltage operating at maximum power can be traced. 

Several computational attempts have been made to estimate the parameters of PV models. 

Evolutionary algorithms are widely adopted to predict PV parameters from the measured data because of 

their flexibility, efficiency, and reliability [5]. Among the evolutionary algorithms, there are three popular 

algorithms i.e., genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE).  

Zagrouba et al. [6] used the GA to estimate PV parameters of the poly-crystalline PV cell and 

module to find the maximum power point (MPP). The GA was also implemented to search the maximum 

power point of the Conergy PowerPlus 214P PV panel through the P-V characteristics [7]. The PSO was 

applied to extract PV parameters of 30XLS and 30XLS1 modules as reported in [8]. Wang [9] developed an 

enhanced PSO to identify PV parameters of the Radiotechnique Compelec (RTC) France silicon PV cell and 

the Photowatt-PWP201 PV module. In studies [10], [11], the poly-crystalline, mono-crystalline, and  

thin-film PV module optimum parameters were estimated using the DE algorithm.  

In the literature, several works on PV parameter estimations have been carried out using DE 

variants. Cárdenas-Bravo et al. [12] reported that the DE integrated with parameter boundaries adaptation 

successfully calculated the PV parameters of the poly-crystalline KC200GT PV module. Li et al. [13] 

developed a memetic adaptive DE (MADE), the combination of success-history based adaptive DE 

(SHADE) and Nelder-Mead simplex method (NMM), to estimate PV parameters of the RTC France silicon 

PV cell and three PV modules such as Photowatt-PWP201, STM6-40/36, and STP6-120/36. Song et al. [14] 

proposed an enhanced SHADE (EBLSHADE), which used the less and more greedy mutation strategy and 

the linear population size reduction strategy to optimize the parameters of PV models. Liao et al. [15] 

improved DE by reusing the successful difference vectors in DE with an adaptive mutation strategy 

(DVADE) to extract the unknown parameters of different PV models. Yu et al. [16] hybridized an adaptive 

algorithm based on JAYA and DE (HAJAYADE) to identify PV parameters. Wang et al. [17] presented a 

heterogeneous DE algorithm (HDE) to extract the parameters of PV models.  

The DE algorithms are population-based optimization algorithms. Population size is one of the 

essential parameters that must be determined to achieve high accuracy results [18]. In DE, an initial 

population is created in the first step. The population is then evaluated to find the best individuals. The new 

population is generated repeatedly for each step of the DE algorithm process until the best criteria are met.  

Most DE variants used a fixed population sizing scheme. In this scheme, the search process runs 

with a fixed population size. However, a variable population sizing scheme improved the DE performance 

and yielded better results, as shown in [14], [17]. This study aimed to propose an improved DE algorithm to 

estimate the PV parameters of the poly-crystalline and mono-crystalline PV modules. A dynamic population 

strategy was applied to dynamically change the size of the population during the DE algorithm process to 

find accurate PV parameters. Finally, the results were cross-checked using experimental data to ensure a high 

level of accuracy. 

 

 

2. RESEARCH METHOD 

In this study, the measured current and voltage data sets are obtained from the poly-crystalline 

Photowatt-PWP201 and mono-crystalline STM6-40/36 modules. The Photowatt-PWP201 PV module has 36 

series-connected poly-crystalline silicon cells, while the STM6-40/36 has 36 mono-crystalline silicon cells 

joined together in series. An improved DE algorithm integrated with a dynamic population strategy (PDDE) 

is constructed to accurately estimate the PV parameters from the data sets.  

 

2.1.  Photovoltaic parameters 

A PV module is made up of PV cells connected in series and parallel. Series-connected PV cells 

increase the output voltage of the PV module, while parallel PV cells produce more output current. The PV 

module equivalent circuit can be represented by using a current source, series-parallel connected diodes, one 

resistor connected in series, and the other resistor connected in parallel [19], as seen in Figure 1. 

When the solar irradiation hits the PV module, the PV cells generate the photo-current. The  

photo-current depends on the proportion of the solar irradiation. According to the equivalent circuit as shown 

in Figure 1, the I-V characteristics of the PV module can be mathematically described as (1): 

 

𝐼 = 𝑁𝑃𝐼𝑃𝑉 − 𝑁𝑃𝐼𝑂 {exp [
(𝑉+𝐼𝑅𝑆(𝑁𝑆/𝑁𝑃))

A𝑉𝑡ℎ𝑁𝑆
] −  1} −  

𝑉+𝐼𝑅𝑆(𝑁𝑆/𝑁𝑃)

𝑅𝑃(𝑁𝑆/𝑁𝑃)
 (1) 

 

where IPV is the photo-current, IO is the reverse saturation current of the diode, NS is the number of series-

connected diodes, NP is the number of diodes connected in parallel, RS is the series resistance, RP is the 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 5, October 2022: 4538-4548 

4540 

parallel resistance, A is the diode ideality factor, I is the PV output current, V is the PV output voltage, and 

VTH is the PV module thermal voltage, which can be calculated with 

 

𝑉𝑇𝐻 = 𝑁𝑆𝑘𝑇/𝑞 (2) 

 

where k is the Boltzmann constant (in J/K), q is the charge of an electron (in Coulomb), and T is the 

photovoltaic cell temperature (in Kelvin). 

 

 

 

 

Figure 1. Equivalent circuit of the PV module 

 

 

The PV module has five PV parameters to be computed, i.e., IPVM, IOM, AM, RSM, and RPM. 

Considering (1), IPVM=NPIPV, IOM=NPIO, RSM=(NS/NP)RS, RPM=(NS/NP)RP, and AM=NSA, therefore: 

 

𝐼 = 𝐼𝑃𝑉𝑀 − 𝐼𝑂𝑀 {exp [
(𝑉+𝐼𝑅𝑆𝑀)

𝐴𝑀𝑉𝑇𝐻
] −  1} −  

𝑉+𝐼𝑅𝑆𝑀

𝑅𝑃𝑀
 (3) 

 

In addition, the P-V characteristics of the PV module can be found by multiplying (3) and the output voltage 

of the PV module.  

 

2.2.  Optimization problem 

The estimation of PV module parameters is an optimization problem to predict the I-V and P-V 

characteristics. The optimal parameters are found by minimizing the error between the measured and 

estimated data. The PV module model has five unknown parameters, which are written in the design vector 

as in (4). 

 

𝑋 = (𝐼𝑃𝑉𝑀 , 𝐼𝑂𝑀 , 𝐴𝑀, 𝑅𝑆𝑀, 𝑅𝑃𝑀) (4) 

 

The absolute accuracy error (AAE) between the measured and estimated current is defined as in (5). 

 

𝐴𝐴𝐸(𝑉, 𝐼, 𝑋) = |𝐼 − (𝐼𝑃𝑉𝑀 − 𝐼𝑂𝑀 {exp [
(𝑉+𝐼𝑅𝑆𝑀)

𝐴𝑀𝑉𝑇𝐻
] −  1} −  

𝑉+𝐼𝑅𝑆𝑀

𝑅𝑃𝑀
)| = |𝐼 − 𝐼𝑒𝑠𝑡| (5) 

 

In this study, the optimal parameters (IPVM, IOM, AM, RSM, and RPM) are determined by minimizing the root 

mean square error (RMSE) [20] of the fitness function for N measured data as described by (6). 

 

𝑅𝑀𝑆𝐸 = min {√
1

𝑁
∑ [𝐴𝐴𝐸(𝑉𝑗 , 𝐼𝑗 , 𝑋)]

2𝑁
𝑗=1 } (6) 

 

2.3.  Optimization algorithm 

In the proposed approach, a DE algorithm [21]–[23] with a population dynamic method is used to 

solve the optimization problem for the PV modules. The DE algorithm is started by creating a population size 

of PV parameters, and then the PV parameters will evolve with an adequate population size to find the best 

PV parameters in the search space. The method will dynamically change the population size during the 

search process to enhance the convergence speed and find accurate results. The flowchart of the optimization 

algorithm, including the DE process, is given in Figure 2. The DE algorithm in this study is adopted from the 

reference [21] with DE/rand/2 mutation strategy. 

IPV

IP

RP

RS
+

_

I/NP

V/NS

NS
NP



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Photovoltaic parameters estimation of poly-crystalline and mono-crystalline … (Ayong Hiendro) 

4541 

The population dynamic method is a deterministic method based on the variable population sizing 

scheme, which is proposed in [24], and the bisection method. The population size is reduced monotonically 

as the DE runs. In this method, the population size is continuously decreased according to the number of 

function evaluations as (7): 

 

𝑁𝑃(𝐺+1) =  𝑟𝑜𝑢𝑛𝑑 [(
𝑁𝑃𝑚𝑖𝑛−𝑁𝑃(𝐺)

𝑁𝐹𝐸𝑚𝑎𝑥
) . 𝑁𝐹𝐸 + 𝑁𝑃(𝐺)] (7) 

 

where NP(G+1) is the next-generation population size, NP(G) is the previous-generation population size, NPmin 

is the smallest population size, NFE is the number of function evaluations, and NFEmax is the maximum NFE 

value. The population size in each generation is produced at the beginning of the DE algorithm. The next-

generation population is created after the best PV parameters are selected based on the previous-generation 

population. Furthermore, during the DE process, if NP(G+1) < NP(G), then (NP(G) - NP(G+1)) PV parameter 

members that give the worse RMSE values will be removed from the population. The mutation variant 

applied in this method is the DE/rand/2 [21], which requires five individuals so that NPmin=5. The maximum 

population size used in this study is 100. The maximum population size refers to the population size at 

generation G=0 or NP(G=0). The large population size in the first stage is used to generate extensive 

exploration in the search space. Meanwhile, as the population size decreases as long as the DE is running, the 

exploitation process will reach DE convergence. 

 

 

 
 

Figure 2. The population dynamic differential evolution algorithm flowchart 

 

 

3. RESULTS AND DISCUSSION 

In this section, the PDDE algorithm is applied to estimate the unknown photovoltaic parameters of 

the Photowatt-PWP201 and STM6-40/36 PV modules. The accuracy of the proposed PDDE algorithm is 

compared with other recent algorithms according to the RMSE values. The PDDE algorithm uses the same 

parameter search intervals as the competing algorithms in order to get a fair comparison. The measured 

voltages and currents of 25 data points for the Photowatt-PWP201 module under 1 kW/m2 at 45 °C are 

presented in Table 1. Table 1 also contains a group of 20 voltage and current measurement data points of the 

STM6-40/36 module under 1 kW/m2 at 51 °C. 
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Table 1. Experimental data of PV modules 
j Photowatt-PWP201 STM-40/36 

Vj (V) Ij (A) Vj (V) Ij (A) 

1 0.1248 1.0315 0.0000 1.6630 

2 1.8093 1.0300 0.1180 1.6630 

3 3.3511 1.0260 2.2370 1.6610 
4 4.7622 1.0220 5.4340 1.6530 

5 6.0538 1.0180 7.2600 1.6500 

6 7.2364 1.0155 9.6800 1.6450 
7 8.3189 1.0140 11.5900 1.6400 

8 9.3097 1.0100 12.6000 1.6360 

9 10.2163 1.0035 13.3700 1.6290 
10 11.0449 0.9880 14.0900 1.6190 

11 11.8018 0.9630 14.8800 1.5970 

12 12.4929 0.9255 15.5900 1.5810 
13 13.1231 0.8725 16.4000 1.5420 

14 13.6983 0.8075 16.7100 1.5240 

15 14.2221 0.7265 16.9800 1.5000 
16 14.6995 0.6345 17.1300 1.4850 

17 15.1346 0.5345 17.3200 1.4650 

18 15.5311 0.4275 17.9100 1.3880 
19 15.8929 0.3185 19.0800 1.1180 

20 16.2229 0.2085 21.0200 0.0000 

21 16.5241 0.1010 - - 
22 16.7987 -0.0080 - - 

23 17.0499 -0.1110 - - 

24 17.2793 -0.2090 - - 
25 17.4885 -0.3030 - - 

 

 

3.1.  Estimating parameters of Photowatt-PWP201 module 

According to the photovoltaic module model, there are five unknown parameters to be estimated, 

i.e., IPV, IO, A, RS, and RP. The search intervals of the related parameters are tabulated in Table 2. The results 

of the five unknown parameters, along with the RMSE values for the Photowatt-PWP201 module estimated 

by different algorithms, are shown in Table 3. In this case, the proposed PDDE algorithm is compared with 

other algorithms such as: DE, MADE, adaptive differential evolution (JADE), SHADE, EBLSHADE, 

DVADE, HAJAYADE, HDE, triple-phase teaching-learning-based optimization (TPTLBO), grey wolf 

optimizer and cuckoo search (GWOCS), improved teaching-learning-based optimization (ITLBO), 

performance-guided JAYA (PGJAYA), improved sine cosine algorithm (ISCA), symbiotic organisms search 

(SOS), teaching-learning-based artificial bee colony (TLABC), improved cuckoo search algorithm (ImCSA), 

improved JAYA (IJAYA), self-adaptive teaching-learning-based optimization (SATLBO), and hybrid 

adaptive Nelder-Mead simplex algorithm based on eagle strategy (EHA-NMS).  

Table 3 shows photovoltaic parameters and RMSE values with the varying decimal place limit 

found by different algorithms. It can be observed that all algorithms provide their best RMSE values. The 

best RMSE value means the smallest RMSE found because no exact RMSE is available. Table 3 also shows 

a significant difference in the RPM value given by each algorithm. The HAJAYADE gives an RMSE of 

2.4251E-03, but the parameter IOM is 0.34823. The HDE reports an RMSE of 2.4250749E-03, but the 

parameters AM, RSM, and RPM are very distinct from the other algorithms. To clarify such cases, the RMSE 

values obtained by all algorithms can be validated using the PV parameters and the objective function as 

suggested by Gnetchejo et al. [25]. Calasan et al. [26] also investigated these issues, and they found that the 

RMSE values would be incorrect if the exact expression of the PV output current data were not used correctly.  

The photovoltaic parameter values obtained by PDDE i.e., IPVM=1.03051430 A, IOM=3.48226301E-

06 A, AM=48.64283497, RSM=1.20127101 Ω, RPM=981.98228397 Ω, and measured data (as shown in  

Table 1) are substituted into the objective function as: 

 

𝑅𝑀𝑆𝐸 = √
1

25
∑ [𝐼𝑗 − (𝐼𝑃𝑉𝑀 − 𝐼O {exp [

(𝑉𝑗 + 𝐼𝑗𝑅𝑆𝑀)

𝐴𝑀𝑉𝑇𝐻
] −  1} −

𝑉𝑗 + 𝐼𝑗𝑅𝑆𝑀

𝑅𝑃𝑀
)]

225

𝑗=1

 

 

As a result, the RMSE value is 2.42507487E-03, and this value matches the RMSE found by the PDDE 

algorithm (RMSE=2.425075E-03).  

Further confirmation of the accuracy of the PDDE algorithm, the I-V and P-V curves of both 

measured and estimated data are plotted as presented in Figure 3. The measured and estimated current data 
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match very well, as shown in the I-V curve. The P-V curve also indicates that the power measurement data 

fits the power estimation data perfectly. 

The difference between the measured and estimated data can be determined by observing the 

absolute accuracy error of current (AAEI) and power (AAEP), as presented in Figure 4. According to the 

AAE of current, the differences between the measured and estimated current are less than 0.004 A for all 

ranges of voltage. The smallest AAE of current is 0.00006 A, and it is found at the voltage point of 17.05 V. 

The AAE of power data shows that most AAE values are smaller than 0.04 W. The highest AAE of power is 

0.08 W at the voltage point of 16.52 V. This finding indicates that the PDDE algorithm can accurately 

estimate the photovoltaic parameters of the Photowatt-PWP201 module. 

 

 

Table 2. Parameter search intervals on the Photowatt-PWP201 module 
Parameter IPVM IOM AM RSM RPM 

Search Interval [0, 2] A [0, 50] µA [1, 50] [0, 2] Ω [0, 2000] Ω 

 

 

Table 3. Photovoltaic parameters and RMSE values for the Photowatt-PWP201 module 
Ref. Algorithm IPVM (A) IOM (µA) AM RSM (Ω) RPM (Ω) RMSE 

- PDDE 1.03051430 3.48226301 48.64283497 1.20127101 981.98228397 2.425075E-03 

[11] DE 1.0305 3.4823 48.6428 1.2013 981.9819 2.4251E-03 
[12] MADE 1.0305 3.4823 48.6428 1.2013 981.9823 2.425E-03 

[14] JADE 1.0305 3.4823 48.6238 1.2012 982.3236 2.4343E-03 

[14] SHADE 1.0305 3.4823 48.6428 1.2013 981.9822 2.4251E-03 
[14] EBLSHADE 1.0305 3.4823 48.6428 1.2013 981.9825 2.4251E-03 

[15] DVADE 1.0305 3.4823 48.6428 1.2013 981.9824 2.4251E-03 

[16] HAJAYADE 1.0305 0.34823 48.6428 1.2013 981.9824 2.4251E-03 
[17] HDE 1.03051430 3.48226262 1.35118985 0.03336864 27.27728467 2.4250749E-03 

[27] TPTLBO 1.0305 3.4823 48.6428 1.2013 981.9822 2.4251E-03 

[28] GWOCS 1.03049 3.4650 48.62367 1.2019 982.7566 2.4251E-03 
[29] ITLBO 1.0305 3.4823 48.6428 1.2013 981.9823 2.4251E-03 

[30] PGJAYA 1.0305 3.4818 48.6424 1.2013 981.8545 2.425075E-03 

[31] ISCA 1.030514201 3.4822623 48.64283 1.201271659 981.9966 2.4251E-03 

[32] SOS 1.0303 3.5616 48.7291 1.1991 1017.7000 2.4251E-03 

[33] TLABC 1.03056 3.4715 48.63131 1.20165 972.93567 2.42507E-03 

[34] ImCSA 1.030514 3.482263 48.660397 1.201271 981.982233 2.425E-03 
[35] IJAYA 1.0305 3.4703 48.6298 1.2016 977.3752 2.425129E-03 

[36] SATLBO 1.030511 3.48271 48.6433077 1.201263 982.40376 2.425E-03 

[37] EHA-NMS 1.030514 3.482263 48.642835 1.201271 981.982256 2.4250E-03 

 

 

  
 

Figure 3. Measured and estimated I-V/P-V of the 

Photowatt-PWP201 module 

 

Figure 4. Absolute accuracy error of current and 

power of the Photowatt-PWP201 module 

 

 

3.2.  Estimating parameters of STM6-40/36 module 

The five unknown parameters to be estimated, i.e., IPVM, IOM, AM, RSM, and RPM, and the search 

intervals of related parameters are presented in Table 4. The five unknown parameters and the RMSE values 

estimated by different algorithms on the STM6-40/36 module are shown in Table 5. In this case, the 

algorithms compared are PDDE, DE, MADE, JADE, SHADE, EBLSHADE, DVADE, HAJAYADE, HDE, 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 5, October 2022: 4538-4548 

4544 

TPTLBO, GWOCS, ITLBO, ImCSA, cuckoo search algorithm with biogeography-based optimization (CS-BBO), 

enhanced leader particle swarm optimization (ELPSO), and chaotic improved artificial bee colony (CIABC). 

 

 

Table 4. Parameter search intervals on the STM6-40/36 module 
Parameter IPVM IOM AM RSM RPM 

Search Interval [0, 2] A [0, 50] µA [1, 60] [0, 0.36] Ω [0, 1000] Ω 

 

 

Table 5. Photovoltaic parameters and RMSE values for STM6-40/36 module   
Ref. Algorithm IPVM (A) IOM (µA) AM RSM (Ω) RPM (Ω) RMSE 

- PDDE 1.66390478 1.73865691 1.52030292 0.00427377 15.92829413 1.729814E-03 

[11] DE 1.6630 2.3342 1.5534 0.0033 17.6907 1.8669E-03 

[12] MADE 1.6639 1.7387 1.5203 0.0043 15.9283 1.7298E-03 
[14] JADE 1.6638 1.7946 1.5238 0.0042 16.0190 2.1308E-03 

[14] SHADE 1.6639 1.7386 1.5203 0.0043 15.9282 1.7306E-03 

[14] EBLSHADE 1.6639 1.7387 1.5203 0.0043 15.9283 1.7298E-03 
[15] DVADE 1.6639 1.7387 1.5203 0.0043 15.9283 1.7298E-03 

[16] HAJAYADE 7.4725 2.3351 1.2601 0.0045946 22.2199 1.6601E-02 

[17] HDE 1.66390478 1.73865689 1.52030292 0.00427377 15.92829411 1.72981371E-03 
[27] TPTLBO 1.6639 1.7387 1.5203 0.0043 15.9283 1.7298E-03 

[28] GWOCS 1.6641 1.7449 1.5207 0.00424 15.7326 1.7337E-03 
[29] ITLBO 1.6639 1.7387 1.5203 0.0043 15.9283 1.7298E-03 

[34] ImCSA 1.663971 2.0000 1.533499 2.913631 15.840511 1.79436329E-03 

[38] CS-BBO 1.6639 1.73866 1.5203 0.00427 15.92829 1.7298E-03 
[39] ELPSO 1.666268 0.4596141 50.458643 0.5 497.747315 2.1803E-03 

[40] CIABC 1.6642 1.676 1.4976 4.40 15.617 1.819E-03 

 

 

The accuracy of the comparison algorithms in estimating the five photovoltaic unknown parameters 

on the STM6-40/36 module can be observed from the RMSE results, as seen in Table 5. It is seen that the 

PDDE algorithm is as accurate as MADE, EBLSHADE, DVADE, HDE, TPTLBO, ITLBO, and CS-BBO 

algorithms. The JADE, HAJAYADE, ImCSA, and ELPSO obtain larger RMSE values than other algorithms. 

The HAJAYADE, ImCSA, and ELPSO also give the photovoltaic parameters with very different values from 

other comparison algorithms. The RMSE values found can be validated to ensure their accuracy [25], [26].  

To crosscheck the accuracy results obtained by the PDDE algorithm on the STM6-40/36 module, 

the parameters, i.e., IPVM=1.66390478 A, IOM=1.73865691E-06 A, AM=1.52030292, RSM=0.00427377 Ω, 

RPM=15.92829413 Ω, and measured data from Table 1 are substituted into the following objective function: 

 

𝑅𝑀𝑆𝐸 = √
1

20
∑ [𝐼𝑗 − (𝐼𝑃𝑉𝑀 − 𝐼OM {exp [

(𝑉𝑗 + 𝐼𝑗𝑅𝑆𝑀)

𝐴𝑀𝑉𝑇𝐻

] −  1} −
𝑉𝑗 + 𝐼𝑗𝑅𝑆𝑀

𝑅𝑃𝑀

)]

220

𝑗=1

 

 

The computational RMSE is 1.72981371E-03, and this result is in agreement with the estimated value 

(RMSE=1.729814E-03).  

Additionally, the I-V and P-V curves of both measured and estimated data on the STM6-40/36 

module are shown in Figure 5. It is seen that the estimated currents and powers closely match the measured 

data. The AAEI and AAEP between the measured and estimated data on the STM6-40/36 module are shown 

in Figure 6. It can be noticed that the AAEI values are smaller than 0.002 A, except at the voltage point of 

14.88 V. The AAEI at the voltage point of 14.88 V is 0.006 A, and this value is relatively small compared to 

the measured current (1.597 A). As shown in Figure 6, most of the AAEP value is less than 0.01 W. The 

largest AAEP from the estimated power of 0.09 W occurs at a measured voltage of 14.88 V and a measured 

power of 23.76 W. From the AAEI and AAEP values, it is evident that the PDDE has excellent accuracy in 

estimating the photovoltaic parameter of the STM6-40/36 module. 

Further, the PDDE performance is compared to the conventional DE and the results are presented in 

Table 6. The results are obtainable after 30 independent experiments. It is noted that the smaller the RMSE 

value means the more accurate the estimation results. The small standard deviation (SD) value specifies the 

good reliability, while the mean RMSE determines the average accuracy of the algorithm. According to 

Table 6, both PDDE and DE obtain the best and the mean RMSE of 2.4251E-03 on the Photowatt-PWP201. 

Meanwhile, on STM6-40/36, the PDDE is able to achieve the best and the mean RMSE of 1.7298E-03, 

which is more accurate than the DE (RMSE=1.8669E-03). In terms of the SD and the worst RMSE, the 

PDDE outperforms the DE algorithm on both Photowatt-PWP201 and STM6-40/36. 
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Finally, the performances of the PDDE algorithm working on the poly-crystalline Photowatt-

PWP201 and mono-crystalline STM6-40/36 modules are compared. According to the aforementioned results, 

the PDDE algorithm can estimate PV parameters on the mono-crystalline module (RMSE=1.729814E-03) 

more accurately than on the poly-crystalline module (RMSE=2.425075E-03). However, in terms of 

convergence speed, the estimation of PV parameters on the poly-crystalline module is faster than on the 

mono-crystalline module, as shown in Figure 7. For the Photowatt-PWP201 module, the minimum value of 

the RMSE is reached before the 6,000 number of function evaluations, but for the STM6-40/36 module, the 

algorithm consumes more than the 30,000 number of function evaluations to reach the minimum value of the 

RMSE. 

 

 

  
 

Figure 5. Measured and estimated I-V/P-V of the 

STM6-40/36 module 

 

Figure 6. Absolute accuracy error of current and 

power of the STM6-40/36 module  

 

 

Table 6. Comparison between PDDE and DE 
 Photowatt-PWP201 STM6-40/36 

 DE PDDE DE PDDE 

IPVM (A) 1.0305 1.0305 1.6630 1.6639 

IOM (µA) 3.44823 3.4823 2.3342 1.7387 

RSM (Ω) 1.2013 1.2013 0.0033 0.0043 

RPM (Ω) 981.9819 981.9819 17.6907 15.9283 

AM 48.6428 48.6428 1.5534 1.5203 

 the best RMSE 2.4251E-03 2.4251E-03 1.8669E-03 1.7298E-03 

the worst RMSE 2.4384E-03 2.4268E-03 1.8984E-03 1.7332E-03 

the mean RMSE 2.4251E-03 2.4251E-03 1.8669E-03 1.7298E-03 

standard deviation (SD)  2.7000E-06 5.2004E-07 4.3531E-06 6.5879E-07 

 

 

 
 

Figure 7. The convergence speed performance of the PDDE algorithm 
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4. CONCLUSION 

A PDDE algorithm was applied to estimate the five unknown PV parameters on both poly-

crystalline and mono-crystalline modules. It revealed that the proposed algorithm had the ability to accurately 

estimate PV parameters, which was indicated by the small RMSE and AAE values between the measured 

data and the estimated data. The characteristics of the I-V and P-V results also showed that the proposed 

algorithm had a very competitive accuracy compared to the results reported in the literature. Results indicated 

that the proposed algorithm was a potential tool for estimating both poly-crystalline Photowatt-PWP201 and 

mono-crystalline STM-40/36 PV modules parameters. Nevertheless, the PDDE algorithm estimated the PV 

parameters on the mono-crystalline module more accurately than on the poly-crystalline module. The PDDE 

obtained the best and mean RMSE value of 2.4251E-03 with a standard deviation of 5.2004E-07 on the 

Photowatt-PWP201. In another case, the proposed algorithm achieved the best and mean RMSE value of 

2.4251E-03 with a standard deviation of 6.5879E-07 on the STM-40/36. On the other hand, the PDDE 

algorithm converged faster with a smaller standard deviation when working on the poly-crystalline 

Photowatt-PWP201 module than on the mono-crystalline STM-40/36 module.  

 

 

REFERENCES 
[1] M. A. Green, “How did solar cells get so cheap?,” Joule, vol. 3, no. 3, pp. 631–633, Mar. 2019, doi: 10.1016/j.joule.2019.02.010. 

[2] E. Vartiainen, G. Masson, C. Breyer, D. Moser, and E. Román Medina, “Impact of weighted average cost of capital, capital 
expenditure, and other parameters on future utility‐scale PV levelised cost of electricity,” Progress in Photovoltaics: Research 

and Applications, vol. 28, no. 6, pp. 439–453, Jun. 2020, doi: 10.1002/pip.3189. 

[3] J. Yin, A. Molini, and A. Porporato, “Impacts of solar intermittency on future photovoltaic reliability,” Nature Communications, 
vol. 11, no. 1, Dec. 2020, doi: 10.1038/s41467-020-18602-6. 

[4] A. M. Alzahrani and M. A. Zohdy, “Real-time performance assessment of operating photovoltaic (PV) systems,” Energy and 

Power Engineering, vol. 12, no. 06, pp. 339–347, 2020, doi: 10.4236/epe.2020.126020. 
[5] C. Saha, N. Agbu, R. Jinks, and M. N. Huda, “Review article of the solar PV parameters estimation using evolutionary 

algorithms,” MOJ Solar and Photoenergy Systems, vol. 2, no. 2, pp. 66–78, 2018 

[6] M. Zagrouba, A. Sellami, M. Bouaïcha, and M. Ksouri, “Identification of PV solar cells and modules parameters using the genetic 
algorithms: application to maximum power extraction,” Solar Energy, vol. 84, no. 5, pp. 860–866, May 2010, doi: 

10.1016/j.solener.2010.02.012. 

[7] S. Hadji, J.-P. Gaubert, and F. Krim, “Theoretical and experimental analysis of genetic algorithms based MPPT for PV systems,” 
Energy Procedia, vol. 74, pp. 772–787, Aug. 2015, doi: 10.1016/j.egypro.2015.07.813. 

[8] A. Harrag and S. Messalti, “Three, five and seven PV model parameters extraction using PSO,” Energy Procedia, vol. 119,  

pp. 767–774, Jul. 2017, doi: 10.1016/j.egypro.2017.07.104. 
[9] R. Wang, “Parameter identification of photovoltaic cell model based on enhanced particle swarm optimization,” Sustainability, 

vol. 13, no. 2, Jan. 2021, doi: 10.3390/su13020840. 

[10] M. A. Abido and M. S. Khalid, “Seven-parameter PV model estimation using differential evolution,” Electrical Engineering,  
vol. 100, no. 2, pp. 971–981, Jun. 2018, doi: 10.1007/s00202-017-0542-2. 

[11] X. Yang, W. Gong, and L. Wang, “Comparative study on parameter extraction of photovoltaic models via differential evolution,” 

Energy Conversion and Management, vol. 201, Dec. 2019, doi: 10.1016/j.enconman.2019.112113. 
[12] C. Cárdenas-Bravo, R. Barraza, A. Sánchez-Squella, P. Valdivia-Lefort, and F. Castillo-Burns, “Estimation of single-diode 

photovoltaic model using the differential evolution algorithm with adaptive boundaries,” Energies, vol. 14, no. 13, Jun. 2021, doi: 

10.3390/en14133925. 
[13] S. Li, W. Gong, X. Yan, C. Hu, D. Bai, and L. Wang, “Parameter estimation of photovoltaic models with memetic adaptive 

differential evolution,” Solar Energy, vol. 190, pp. 465–474, Sep. 2019, doi: 10.1016/j.solener.2019.08.022. 
[14] Y. Song, D. Wu, A. W. Mohamed, X. Zhou, B. Zhang, and W. Deng, “Enhanced success history adaptive DE for parameter 

optimization of photovoltaic models,” Complexity, vol. 2021, pp. 1–22, Jan. 2021, doi: 10.1155/2021/6660115. 

[15] Z. Liao, Q. Gu, S. Li, Z. Hu, and B. Ning, “An improved differential evolution to extract photovoltaic cell parameters,” IEEE 
Access, vol. 8, pp. 177838–177850, 2020, doi: 10.1109/ACCESS.2020.3024975. 

[16] X. Yu, X. Wu, and W. Luo, “Parameter identification of photovoltaic models by hybrid adaptive JAYA algorithm,” Mathematics, 

vol. 10, no. 2, Jan. 2022, doi: 10.3390/math10020183. 
[17] D. Wang, X. Sun, H. Kang, Y. Shen, and Q. Chen, “Heterogeneous differential evolution algorithm for parameter estimation of 

solar photovoltaic models,” Energy Reports, vol. 8, pp. 4724–4746, Nov. 2022, doi: 10.1016/j.egyr.2022.03.144. 

[18] V. Kachitvichyanukul, “Comparison of three evolutionary algorithms: GA, PSO, and DE,” Industrial Engineering and 
Management Systems, vol. 11, no. 3, pp. 215–223, Sep. 2012, doi: 10.7232/iems.2012.11.3.215. 

[19] H. Sheng et al., “Parameters extraction of photovoltaic models using an improved moth-flame optimization,” Energies, vol. 12, 

no. 18, Sep. 2019, doi: 10.3390/en12183527. 
[20] M. B. H. Rhouma, A. Gastli, L. Ben Brahim, F. Touati, and M. Benammar, “A simple method for extracting the parameters of the 

PV cell single-diode model,” Renewable Energy, vol. 113, pp. 885–894, Dec. 2017, doi: 10.1016/j.renene.2017.06.064. 

[21] A. Hiendro, “Multiple switching patterns for SHEPWM inverters using differential evolution algorithms,” International Journal 
of Power Electronics and Drive Systems (IJPEDS), vol. 1, no. 2, pp. 94–103, Oct. 2011, doi: 10.11591/ijpeds.v1i2.101. 

[22] M. Georgioudakis and V. Plevris, “A comparative study of differential evolution variants in constrained structural optimization,” 

Frontiers in Built Environment, vol. 6, Jul. 2020, doi: 10.3389/fbuil.2020.00102. 
[23] A. Slowik and H. Kwasnicka, “Evolutionary algorithms and their applications to engineering problems,” Neural Computing and 

Applications, vol. 32, no. 16, pp. 12363–12379, Aug. 2020, doi: 10.1007/s00521-020-04832-8. 

[24] J. L. J. Laredo, C. Fernandes, J. J. Merelo, and C. Gagné, “Improving genetic algorithms performance via deterministic population 
shrinkage,” Proceedings of the 11th Annual conference on Genetic and evolutionary computation (GECCO ’09), 2009, doi: 

10.1145/1569901.1570014. 

[25] P. J. Gnetchejo, S. N. Essiane, P. Ele, R. Wamkeue, D. M. Wapet, and S. P. Ngoffe, “Important notes on parameter estimation of 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Photovoltaic parameters estimation of poly-crystalline and mono-crystalline … (Ayong Hiendro) 

4547 

solar photovoltaic cell,” Energy Conversion and Management, vol. 197, Oct. 2019, doi: 10.1016/j.enconman.2019.111870. 
[26] M. Ćalasan, S. H. E. Abdel Aleem, and A. F. Zobaa, “On the root mean square error (RMSE) calculation for parameter estimation 

of photovoltaic models: A novel exact analytical solution based on Lambert W function,” Energy Conversion and Management, 

vol. 210, p. 112716, Apr. 2020, doi: 10.1016/j.enconman.2020.112716. 
[27] Z. Liao, Z. Chen, and S. Li, “Parameters extraction of photovoltaic models using triple-phase teaching-learning-based 

optimization,” IEEE Access, vol. 8, pp. 69937–69952, 2020, doi: 10.1109/ACCESS.2020.2984728. 

[28] W. Long, S. Cai, J. Jiao, M. Xu, and T. Wu, “A new hybrid algorithm based on grey wolf optimizer and cuckoo search for 
parameter extraction of solar photovoltaic models,” Energy Conversion and Management, vol. 203, Jan. 2020, doi: 

10.1016/j.enconman.2019.112243. 

[29] S. Li et al., “Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization,” Energy 
Conversion and Management, vol. 186, pp. 293–305, Apr. 2019, doi: 10.1016/j.enconman.2019.02.048. 

[30] K. Yu, B. Qu, C. Yue, S. Ge, X. Chen, and J. Liang, “A performance-guided JAYA algorithm for parameters identification of 

photovoltaic cell and module,” Applied Energy, vol. 237, pp. 241–257, Mar. 2019, doi: 10.1016/j.apenergy.2019.01.008. 
[31] H. Chen, S. Jiao, A. A. Heidari, M. Wang, X. Chen, and X. Zhao, “An opposition-based sine cosine approach with local search 

for parameter estimation of photovoltaic models,” Energy Conversion and Management, vol. 195, pp. 927–942, Sep. 2019, doi: 

10.1016/j.enconman.2019.05.057. 
[32] G. Xiong, J. Zhang, X. Yuan, D. Shi, and Y. He, “Application of symbiotic organisms search algorithm for parameter extraction 

of solar cell models,” Applied Sciences, vol. 8, no. 11, Nov. 2018, doi: 10.3390/app8112155. 

[33] X. Chen, B. Xu, C. Mei, Y. Ding, and K. Li, “Teaching–learning–based artificial bee colony for solar photovoltaic parameter 
estimation,” Applied Energy, vol. 212, pp. 1578–1588, Feb. 2018, doi: 10.1016/j.apenergy.2017.12.115. 

[34] T. Kang, J. Yao, M. Jin, S. Yang, and T. Duong, “A novel improved cuckoo search algorithm for parameter estimation of 

photovoltaic (PV) models,” Energies, vol. 11, no. 5, Apr. 2018, doi: 10.3390/en11051060. 
[35] K. Yu, J. J. Liang, B. Y. Qu, X. Chen, and H. Wang, “Parameters identification of photovoltaic models using an improved JAYA 

optimization algorithm,” Energy Conversion and Management, vol. 150, pp. 742–753, Oct. 2017, doi: 

10.1016/j.enconman.2017.08.063. 
[36] K. Yu, X. Chen, X. Wang, and Z. Wang, “Parameters identification of photovoltaic models using self-adaptive teaching-learning-

based optimization,” Energy Conversion and Management, vol. 145, pp. 233–246, Aug. 2017, doi: 

10.1016/j.enconman.2017.04.054. 
[37] Z. Chen, L. Wu, P. Lin, Y. Wu, and S. Cheng, “Parameters identification of photovoltaic models using hybrid adaptive Nelder-

Mead simplex algorithm based on eagle strategy,” Applied Energy, vol. 182, pp. 47–57, Nov. 2016, doi: 

10.1016/j.apenergy.2016.08.083. 
[38] X. Chen and K. Yu, “Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic 

model parameters,” Solar Energy, vol. 180, pp. 192–206, Mar. 2019, doi: 10.1016/j.solener.2019.01.025. 

[39] A. R. Jordehi, “Enhanced leader particle swarm optimisation (ELPSO): an efficient algorithm for parameter estimation of 
photovoltaic (PV) cells and modules,” Solar Energy, vol. 159, pp. 78–87, Jan. 2018, doi: 10.1016/j.solener.2017.10.063. 

[40] D. Oliva, A. A. Ewees, M. A. El Aziz, A. E. Hassanien, and M. Peréz-Cisneros, “A chaotic improved artificial bee colony for 

parameter estimation of photovoltaic cells,” Energies, vol. 10, no. 7, Jun. 2017, doi: 10.3390/en10070865. 

 

 

BIOGRAPHIES OF AUTHORS  

 

 

Ayong Hiendro     is currently an associate professor at the Department of Electrical 

Engineering and served as the head of the Department of Mechanical Engineering, 

Tanjungpura University. He received his M.Eng. degree in electric power engineering from 

Bandung Institute of Technology, Indonesia, in 2000. He is a member of the Institution of 

Engineers Indonesia (PII) and the Indonesian Electrical Power Society (MKI). His research 

interests include renewable energy, power quality, power electronics, and metaheuristic 

optimization algorithm. He can be contacted at email: ayong.hiendro@ee.untan.ac.id. 

  

 

Ismail Yusuf     obtained his Ph.D. in electrical engineering from Toyohashi 

University of Technology, Japan, in 2003. He joined the JSPS postdoctoral fellowship-Japan in 

2005-2007. He is currently a professor at the Department of Electrical Engineering, Faculty of 

Engineering, Tanjungpura University, Pontianak, Indonesia. He is also head of the Energy 

Research Center at Tanjungpura University. His research interests include applications of wind 

and solar energy, power quality, and energy management system. He can be contacted at 

email: ismail.yusuf@ee.untan.ac.id. 

  

https://orcid.org/0000-0003-4001-2893
https://scholar.google.com/citations?user=TYbRYLMAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=36144355400
https://publons.com/researcher/2302013/ayong-hiendro/
https://orcid.org/0000-0001-9571-6789
https://scholar.google.com/citations?hl=en&user=tNXBXbMAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57200672449


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 5, October 2022: 4538-4548 

4548 

 

Fitriah Husin     received the B.Eng. and M.Eng. degrees in electrical engineering 

from Tanjungpura University, Pontianak, Indonesia, in 2009 and 2011, respectively. She is a 

lecturer at the Department of Electrical Engineering, Tanjungpura University, Indonesia. Her 

research interests involve renewable energy, computation, and energy management and 

planning. She can be contacted at email: fitriah@ee.untan.ac.id. 

  

 

Kho Hie Khwee     received his B.Eng. degree in electrical engineering from 

Tanjungpura University, Indonesia, in 1991 and his M.Eng. degree in electric power 

engineering from Bandung Institute of Technology, Indonesia, in 1996. He is an associate 

professor at the Department of Electrical Engineering, Tanjungpura University. His research 

interests include renewable energy and applications of electric motors. He can be contacted at 

email: andreankhow@yahoo.co.id. 

 

https://orcid.org/0000-0002-5750-8978
https://scholar.google.com/citations?hl=en&user=zj0hcLoAAAAJ
https://orcid.org/0000-0002-2153-0268
https://scholar.google.com/citations?hl=en&user=Yk2LzfwAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57192161469

