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 A major issue for fabric quality inspection is in the detection of defaults, it 

has become an extremely challenging goal for the textile industry to 

minimize costs in both production and quality inspection. The quality 
inspection is currently done manually by professionals; hence the need for 

the implementation of a fast, powerful, robust, and intelligent machine 

vision system in order to achieve high global quality, uniformity, and 

consistency of fabrics and to increase productivity. Consequently, the 
automatic inspection control process can improve productivity and enhance 

product quality. This article describes the approach used in developing a 

convolutional neural network for identifying fabric defects from input 

images of fabric surfaces. The proposed neural network is a pre-trained 
convolutional model ‘DetectNet’, it was adapted to be more efficient to the 

fabric image feature extraction. The developed model is capable of 

successfully distinguishing between defective fabric and non-defective with 

93% accuracy for the first model and 96% for the second model. 
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1. INTRODUCTION 

With the fast progress of computer science and image processing technologies, computer vision 

technology has been applied largely in the textile industry. Consequently, the automatic inspection of fabric 

defect will become a self-evident solution to achieve high quality and lowest manpower prices [1]. Deep 

learning and computer vision have been largely used in textile fields, and numerous researches are available 

on this subject [2]–[7]. 

Deep learning is a leading machine learning technique which use artificial neural networks; it tends 

to be able to handle higher levels of abstracting data by using horizontal hierarchical architectures [8]. This 

approach is recent and has been largely used in many areas of artificial intelligence, such as health care, 

automotive industry, natural language processing, document analysis and recognition [9]–[12]. Deep neuron 

networks (DNNs) for image classification generally combine layers of convolutional neural networks 

(CNNs) and fully connected artificial neurons stacked to satisfy overlaying vision areas. 

CNN is a category of deep learning and it is considered to be the leading classification system for 

image identification and classification problems. Instead of standard algorithms, CNNs are able to acquire 

advanced characteristics from the initial image without having to extract the specific features manually [13]. 

It has demonstrated an exceptional capacity in image treatment and categorization [2], [13]–[16]. 

The identification of fabric defects is of great interest to industrial and scientific researchers. The 

objective of identifying diverse anomalous designs in a complicated setting. Several approaches to identify 

defects under various hypotheses are available [17]–[22]. Abouelela et al. [20] supposed that the fabric 
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structure is a composite of many basic shapes and determined that an area with dissimilar shapes was 

defective. Because there are relevant and significant dissimilarities between defective and non-defective 

structures over frequency spectrum, Chan [21] employed a Fourier transform to distinguish the defective and 

non-defective areas. 

The deep learning approach has recently made an immense contribution to solving a wide number of 

computer vision challenges. Some methods [6], [23]–[26] implemented deep learning to identify defects in 

fabrics. On the basis of the trained and learned subdictionaries, Zhao et al. [26] developed a CNN model 

based on embedded short- and long-term visual storage for the classification of fabric images. The authors 

noted that the results show that deep learning methods conceived to solve a different classification task can 

be easily adapted to the problem of fabric fault classification, revealing the need for a well-conceived 

architecture. Although these methods have obtained good results in particular cases, most of them are 

restricted to the use of simple structures and are unable to deal with the real-world complexity of texture 

defect detection. In order to boost the efficiency of detecting fabric defects in the real world, a variety of 

important issues are required to be resolved. Firstly, labeling various real-world fabric faults is labor and 

required time. Due to the sophisticated variety of fabric and fault components, collecting a dataset of labelled 

data that spans all potential fabric textures is complicated and expensive. For example, when it comes to 

fabrics with unseen textures or materials, pre-trained detection models typically do not work well.  

In this paper, the ability of DetectNet, a CNN, to detect fabric defects in the "Tilda" dataset was 

proposed to be evaluated in order to develop a reliable system capable of detecting defects in real time. This 

work is structured as such. An overview on the literature of fabric defect detection methods. Next, the 

proposed method for automatic defect detection is bounced, including dataset preparation and description of 

the proposed network model. The results and discussion are presented, and a conclusion is provided. 

 

 

2. REVIEW OF PREVIOUS WORK 

The majority of available literature on tissue investigation is primarily concerned with uniform 

textiles [27], [28], namely plain and woven fabrics. There are four principal classes of these methods that can 

be classified into: i) statistics approaches, ii) spectral approaches, iii) model-based approaches, and  

iv) learning-based approaches [28]. Among statistics approaches, the autocorrelation function and the  

co-occurrence matrix [29], [30] have been effectively used to detect the defects. Zhu et al. [28] used a 

combination of autocorrelation function and gray level co-occurrence matrix (GLCM) approaches to detecting 

defects in yarn-dyed fabrics. The autocorrelation function is used to specify a scale for the pattern images. 

GLCM is able to map image features, like contrast. However, such approaches are very labor-intensive. 

Among the largely employed spectral approaches for defect detection are the Fourier transform [21], 

the wavelet transform [31], [32] and the Gabor filters [33]. Chan [21] applied Fourier transform to identify 

the structure fault of the tissue. To understand the behavior of the frequency spectrum, simulation techniques 

are used. A shortcoming when applying Fourier transform is that local data in the spatial region is not 

accessible and there is no tolerance for minor faults. As opposed to Fourier transform, Gabor filters and 

wavelet transform use spatial frequency analysis, which permits the identification of nearby imperfections.  

Ngan et al. [34] utilized the wavelet transform to consequently distinguish defaults on designed texture with 

a precision of 96.7%, Serdaroglu et al. [31] introduced a strategy that depends upon wavelet transformation 

before the analysis of autonomous features to handle default detection of textile fabric images, and Deotale 

and Sarode [33] proposed an algorithm in light of GLCM and Gabor wavelet extraction and refuse derived 

fuel (RDF) characterization technic, which describes the structure of fabric and featured the defect position. 

Model-based techniques are utilized to tackle the deformity identification issue by expecting that the 

surface complies with a specific dissemination model and that the model's boundaries are assessed.  

Yapi et al. [35] separated the picture into rudimentary monotonous units and recreated the conveyance of 

excess contourlet change (RCT) coefficients utilizing a limited combination of a summed up Gaussian 

model. These strategies can manage different kinds of material textures.  

Learning-based methodologies are likewise famous in identifying defaults, utilizing labeling tests to 

prepare classifiers that recognize default and non-default examples. CNN has strong performance in 

detecting, segmenting, analyzing, and reporting information, and has been used in a variety of applications in 

the field of environmental information. From the beginning of the 2000s, with the quick progress of big data 

and artificial intelligence, convolutional networks have very successfully implemented in data detecting, 

segmenting [18], [32], and identification of targets and areas in an image [4], especially in tasks involving a 

high volume of labelled data, such as surface finish [36], industry [10], heath images [37]–[39], and weed 

detection [16], [40], [41]. In our previous work [2], three famous pre-trained CNN models are compared to 

detect defect in fabric texture, and the three models automatically detected imperfections on designed texture 

with an exactness of 96%. 
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3. MATERIALS AND METHODS 

3.1. Object detection 

Object-based detection is able to identify single targets in the picture and position bounding boxes 

around the target. Successful detection of objects requires a system that can handle either the presence (or 

not) of items in arbitrary situations, can be scaled-independent, view of the item is not depending on the 

orientation, and can also detect semi-black-out objects. The images of the real environment sometimes 

include a couple of objects or a huge variety of objects; this may affect the precision and efficiency of the 

object detector. 

Transfer learning is currently deployed in deep learning applications to speed up training and 

increase the accuracy of the learning system. It means learning different techniques for a pre-trained network 

and uses it as a starting point. This can be very quick and easy instead of building a new network. You can 

quickly transfer the learned functions to a new task using a reduced number of training images. The use of 

pre-trained models accelerates the training and decreases the related fees for collecting massive data sets, 

labeling, and training models from zero. Training through transfer learning with pre-trained models are 

suitable for artificial intelligence (AI) applications in industrial inspection, health care, e-learning, and many 

other areas. Following is a description of the CNN model “DetectNet” employed in this research. 

 

3.2.  DetectNet architecture 

DetectNet is an item location design made by NVIDIA. It tends to be run from NVIDIA's deep 

learning graphical UI, DIGITS, which permits to arrangement and begin preparing characterization, object 

recognition, division, and different sorts of quick models. The DetectNet includes two prototype files 

delivered by NVIDIA: original single classes file and dual class file. The DetectNet architecture, see in 

Figures 1 and 2 is composed of five sections according to the Caffe model description folder [42]: i) a data 

layers embed the he pictures and names and a transformer layer is applying the online data augmentation,  

ii) a fully connected network (FCN) is used to extract features and predict object classes and boxes delimiters 

en grid square, iii) loss functions simultaneously measure the error in the two tasks of predicting the object 

coverage and object bounding box corners per grid square, iv) a clustering function produces the final set of 

predicted bounding boxes during validation, and v) a simplified version of the mean average precision (mAP) 

metric is computed to measure model performance against the validation dataset. 

 

 

 
 

Figure 1. DetectNet training architecture [43] 

 

 

 
 

Figure 2. DetectNet validation architecture [43] 
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DetectNet is a continuation of a famous architecture, GoogLeNet; the DetectNet FCN has similar 

construction to GoogLeNet except for the input data layer, the final pooling layer, and the output layers [44]. 

The main advantage of the use of a pre-formed GoogLeNet model to initialize DetectNet is to minimize the 

time needed for training and to ensure better accuracy for the model. The images in the training set should 

not be of different sizes. Otherwise, pad them or resize them to equal size, the size must divide the stride. 

1,248 by 384 pixels, the default image size of DetectNet, it is divided by 16. DetectNet has the ability to 

identify boxes that are within the size range of 50×50 pixels to 400×400 pixels, but it is difficult to detect 

boundary boxes outside this band. Training processes for object detection were realized through the CNN 

DetectNet conducted with the library NVIDIA DIGITS [45] release 5.0 on the Caffe framework. 

 

3.3.  Data preparation 

Experiments have been conducted on the popular TILDA database, is a textile texture database 

which was created inside the structure of the functioning gathering texture analysis of the Deutsche 

Forschungsgemeinschafts (DFGs) significant examination program "Programmed Visual Inspection of 

Technical Objects". This functioning gathering created and dissected strategies which made it conceivable to 

perceive and recognize surfaces of changing sorts [46]. This database consists of eight representative textile 

kinds, seven error classes and a non-defect class, which four main groups (C1-C4) with each group consisting 

of two different subgroups, see Figure 3. Therefore, each sub-folder holds just a single fabric kind of image, 

each of them being divided into 8 sub-folders containing 50 texture images in total. The first sub-folder 

labeled "e0" includes non-defect images, while the rest of the sub-folders ("e1"-"e7") include defect images. 

All images are resized to meet the architecture input size. In the studied cases, NVIDIA’s DetectNet 

will be used as the main object detection model in DIGITS v5 [47]. IrfanView Software is used to resize 

images to be of equal dimensions width 1024 and height 512. Labeling images for object detection is a process 

where we create files that contain descriptions about regions of interest on images (ROI), as shown in Figure 4. 

ROI consists of a quadratic box or box delimited by a zone in a picture that contains the object to be detected. 

There are a few formats for labeling object detection data, but NVIDIA’s DetectNet uses the KITTI format. 

Fiji software with the ALP's plugin was used to label all images, showing the position of the defect in the 

picture. The defective areas were tagged by defining rectangular ROIs of varying size to surround the 

defaults as shown in Figure 5. The upper left (x1, y1) and lower right (x2, y2) corner coordinates of the ROIs 

were identified and translated into text, see Figure 4. Then, the areas were allocated to two categories based 

on defect availability or not, category 0 for areas with defaults and category 1 for areas with no defects. 

Images and labels should be split into 3 folders: training, validation and testing. Each of them should 

also contain two folders, “images” and “labels”. Validation (Val) folder should contain about 10% of the 

images and labels from your original folder, testing (Test) folder should contain 10% and training (Train) 

folder should contain the other 80%. By doing this we are giving DIGITS a folder to be trained on, a folder to 

be validated on and a folder to be tested on as shown in Figure 6. After every training set using the images 

and labels in the "Train" file, DIGITS tries to validate the model through the images and labels in the "Val" 

file. The aim is to achieve the most accurate results possible. Finally, the last step is to test the model using 

the test folder. The "Testing" dataset was created in order to evaluate the model efficiency on an entirely 

fresh dataset. 

A small dataset of 1,000 images were only used, which was distributed arbitrarily to training, 

validation, and testing datasets. 800 of the images were used for training, 100 for validation and 100 for 

testing. The validation and training dataset consisted of 50% non-defective (Class 0) and 50% defective 

(Class 1). To improve the learning capacity when dealing with small data sets, data augmentation is used to 

increase the size of data sets by modifying and adapting image focus, luminosity, and sharpness through 

image treatment technology (IrfanView version 4.54). As a result, the training dataset were increased to 

12,000 patches. Two learning models were performed using the same datasets for training (training and 

validation) and testing, DetectNet has been trained over 300 epochs. 

 

 

 
 

Figure 3. Examples of defective fabric images from TILDA database 
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Figure 4. Corner coordinates: upper left (x1, y1) and lower right (x2, y2) 

 

 

 
 

Figure 5. A fabric image showing ROI (region of interest) designated by the blank box, with the corners 

coordinates 

 

 

 
 

Figure 6. Input folder structure for images and labels 

 

 

4. RESULTS AND DISCUSSION  

The DIGITS implementation survey depends on multiple measures. Nevertheless, in this paper, just 

four metrics are considered: accuracy, sensitivity, specificity, and the area under the receiver operating 

characteristic curve (AUC). The measures are best represented as follow [22]–[24]: 

− Accuracy: This is the degree of prediction efficiency; it measures the number of correct predictions. 

− Sensitivity: This is the number of correct positive decisions divided by the number of true positives. 

− Specificity: The number of true negative decisions divided by the number of actually negative cases. 

− The false positive fraction (FPF) = 1-specificity. 

− AUC: Is the area under the receiver operating characteristic curve, as shown in Figure 7. 

− ROC: Receiver operating characteristic curves, which are defined as a plot of F (1-specificity, sensitivity). 

After training the model for NVIDIA dataset in KITTI format, the performance of the model is as 

shown in Table 1. A significant difference were found in the Area under the receiver operating characteristic 

curve AUCs between the first and the second models. The sensitivity for detection of the default (class 0) 

was 0.90 for the first model and 0.92 for the second model. The sensitivity is higher than 0.90 which 

indicates in 90% of the images the learning machine can properly detect the existence of default. The 

investigation concluded that the use of DIGITS and DetectNet has achieved higher sensitivity and 

classification values in textile default detection. 
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The second model has arrived at 96% accuracy as shown in Table 1, which means that the model 

achieves high precision. Moreover, the sensitivity reaches 94% means that the model is efficient in 

identifying the relevant data as shown in Figure 7. Therefore, these experiments have demonstrated good 

achievement in training the CNN model to detect defect in textile. 

Deep learning conquered various different fields namely: health [38], [48], textile [2], [5], weed 

detection [16], [49] and many others [50], [51]. But not many studies have outlined the implementation of 

deep learning in textile quality control. The essence of the object detection system is to identify the location 

of an object in a specific image and to classify them. The database that is used consists of a restricted 

database of fabric images, to improve the model more fabric images are needed for training the model that 

will lead to improving it. Currently, hard working in collaboration with multiple textile firms is being done to 

create a large dataset of more than 100,000 labeled fabric images to boost the performance of the recognition 

system in data acquisition. 

 

 

 
 

Figure 7. The ROC curves for the first and second models 

 

 

Table 1. Performances of the deep learning systems "DetectNet" for detecting fabric defects 
Variable First Model Second Model 

Accuracy 0.93 0.96 

Sensitivity 0.91 0.94 

Specificity 0.96 1.00 

AUC 0.93 0.96 

 

 

5. CONCLUSION  

In this paper, a pre-trained convolution neural network “DetectNet” has been fine-tuned to detect the 

presence of defect in fabric images. The objective of this work was to elaborate an automatic fabric 

inspection system able to detect fabric defect images. Experimental results show an accuracy of 96% for the 

second model. The achieved systems were successful in this research. The neural network systems, for the 

identification and classification of fabric defects, have shown an overall precision equal to or greater than 

90%. In addition, a system containing these models for identifying and classifying a single failure provides 

an automated mechanism that highlights and displays the probability of classifying multiple types of failures 

with the accuracy shown in the previous paragraph. However, despite the promising results, there are still 

possibilities for improvement which are proposed as a future work, recognizing fabric defect in images with a 

multi-label approach is the essential aim of the convey. 
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